**10.1** A negative-feedback amplifier has a closed-loop gain  $A_f = 100$  and an open-loop gain  $A = 10^4$ . What is the feedback factor  $\beta$ ? If a manufacturing error results in a reduction of A to  $10^3$ , what closed-loop gain results? What is the percentage change in  $A_f$  corresponding to this factor of 10 reduction in A?

**10.7** A newly constructed feedback amplifier undergoes a performance test with the following results: With the feedback connection removed, a source signal of 5 mV is required to provide a 10-V output to the load; with the feedback connected, a 10-V output requires a 200-mV source signal. For this amplifier, identify values of A,  $\beta$ ,  $A\beta$ , the closed-loop gain,

**D 10.10** A designer is required to achieve a closed-loop gain of  $25 \pm 1$  % V/V using a basic amplifier whose gain variation is  $\pm 10$  %. What nominal value of A and  $\beta$  (assumed constant) are required?

10.16 A capacitively coupled amplifier has a midband gain of 1000 V/V, a single high-frequency pole at 10 kHz, and a single low-frequency pole at 100 Hz. Negative feedback is employed so that the midband gain is reduced to 10. What are the upper and lower 3-dB frequencies of the closed-loop gain?

\*10.22 The complementary BJT follower shown in Fig. P10.22(a) has the approximate transfer characteristic

shown in Fig. P10.22(b). Observe that for  $-0.7 \text{ V} \le v_I \le +0.7 \text{ V}$ , the output is zero. This "dead band" leads to crossover distortion (see Section 11.3). Consider this follower to be driven by the output of a differential amplifier of gain 100 whose positive-input terminal is connected to the input signal source  $v_s$  and whose negative-input terminal is connected to the emitters of the follower. Sketch the transfer characteristic  $v_o$  versus  $v_s$  of the resulting feedback amplifier. What are the limits of the dead band, and what are the gains outside the dead band?

**D 10.23** A particular amplifier has a nonlinear transfer characteristic that can be approximated as follows:

- (a) For small input signals,  $|v_I| \le 10 \text{ mV}$ ,  $|v_O|/|v_I| = 10^3$
- (b) For intermediate input signals, 10 mV  $\leq |v_I| \leq 60$  mV,  $\Delta v_O / \Delta v_I = 10^2$
- (c) For large input signals,  $|v_j| \ge 60 \text{ mV}$ , the output saturates

If the amplifier is connected in a negative-feedback loop, find the feedback factor  $\beta$  that reduces the factor-of-10 change in gain (occurring at  $|v_I| = 10$  mV) to only a 10% change. What is the transfer characteristic  $v_o$  versus  $v_s$  of the amplifier with feedback?





Fig. P10.22(b)