

Nyquist Pulses

• h(t) is the impulse response for transmit filter, channel and receive filter (\otimes denotes convolution) $h(t) = h_t(t) \otimes h_c(t) \otimes h_r(t)$ (1) $q(t) = \sum_{m = -\infty}^{\infty} A_m h(t - mT) + n(t) \otimes h_r(t)$ (2) • The received signal, q(t), is sampled at kT. $q_k = \sum_{m = -\infty}^{\infty} A_m h(kT - mT) + u(kT)$, $u(t) \equiv n(t) \otimes h_r(t)$ (3) • To have zero intersymbol interference (i.e. $q_k = A_k + u_k$) $h(kT) = \delta_k$ ($\delta_k = 0, 1, 0, 0, 0, ...$) (4) $h(kT) = \delta_k$ ($\delta_k = 0, 1, 0, 0, 0, ...$) (4)

Nyquist Pulses

For zero ISI, the same criteria in the frequency domain is: (f_s = 1/T)

$$\frac{1}{T}\sum_{m=-\infty}^{\infty}H(j2\pi f+jm2\pi f_s) = 1$$
(5)

• Known as Nyquist Criterion Example Nyquist Pulses (in freq domain)

Matched-Filter (pr oof)

• Consider isolated pulse case (so no worry about ISI)

$$r(t) = A_0 h_{tc}(t) + n(t)$$
(7)

$$q_0 = \int_{-\infty}^{\infty} r(\tau) h_r(t-\tau) d\tau \bigg|_{t=0} = \int_{-\infty}^{\infty} r(\tau) h_r(-\tau) d\tau$$
(8)

$$q_0 = A_0 \int_{-\infty}^{\infty} h_{tc}(\tau) h_r(-\tau) d\tau + \int_{-\infty}^{\infty} n(\tau) h_r(-\tau) d\tau$$
(9)

- · Want to maximize signal term to noise term
- · Variance of noise is

$$\sigma_n^2 = N_0 \int_{-\infty}^{\infty} h_r^2(-\tau) d\tau$$
(10)

University of Toronto

© D.A. Johns, 1997

Probability Density Function

• Derivative of $F_x(x)$ is p.d.f. defined as $f_x(x)$

$$f_x(x) \equiv \frac{dF_x(x)}{dx}$$
 or $F_x(x) = \int_{-\infty}^{\alpha} f_x(\alpha) d\alpha$ (16)

• To find prob that *X* is between *x*₁ and *x*₂

$$P_{r}(x_{1} < X \le x_{2}) = \int_{x_{1}}^{x_{2}} f_{x}(\alpha) d\alpha$$
(17)

► x

• It is the area under p.d.f. curve.

 $0 \cdot$

Jniversity of Toronto

Example SNR Calculation • Assume Gaussian noise added to receive signal. • Since symbols are distance 2 apart, a noise value greater than 1 will cause an error in receive symbol. • Want to find σ of Gaussian distribution such that likelihood of random variable greater than 1 is 10^{-10} . Recall $Q(x/\sigma) = 0.5 \operatorname{erfc}((x/\sigma)/\sqrt{2})$ (24)• Let x = 1 and set $2O(1/\sigma) = 10^{-10}$ (25)(2 value because variable might be >1 or <-1) $0.5 \times 10^{-10} = Q(1/\sigma) = 0.5 \operatorname{erfc}(1/(\sigma\sqrt{2}))$ (26)slide 38 of 319 University of Toronto © D.A. Johns, 199

Sample	1	2	3	4	5	6	7	8	9	10
	14	68	42	-22	-18	26	80	-27	-57	-8
	60	-68	88	0	-72	-75	-15	-49	36	90
	-93	-57	-52	-70	13	30	-72	-73	82	27
Uniform	7	43	-64	17	-50	24	89	57	-50	-12
Distribution	0	-74	-36	69	-2	61	-18	-9	72	65
-100, 100	91	-82	77	18	-7	-50	-74	-30	-6	38
	50	-45	30	91	92	-5	77	-10	1	40
	11	-99	-70	11	-75	-22	-82	62	20	97
	78	-17	36	-70	-60	-59	-68	86	64	91
	25	-95	-23	97	-36	-94	-86	30	51	70
Average	24	-43	3	14	-22	-16	-17	4	21	50

<i>H</i>(X) =Tough to achi	- 0.1log ₂ (0).1) – 0.9 num bi	$\log_2(0.9) =$	0.47	(34)
 Tough to achi 	eve optir	num bi	ut one co		
				ding sche	me is
	2 trials	bits	likelihood		
	2,2	0	0.81		
	2,7	10	0.09		
	7,2	110	0.09		
	7,7	111	0.01		
 Average number Rate = 0.5 × 0.5 because 2 	oer of bit (0.81 × 1 + 2 trials a	:s is Rat 0.09 × 2 re dete	e = 0.645 t + 0.09 × 3 + rmined a	oits/trial - 0.01 × 3) t once.	(35)

Channel Capacity with additive Gaussian

• However, h(Y|X) = h(N) since once X is known, information left in Y is the noise and this is fixed.

$$h(Y|X) = 0.5\log_2(2\pi e\sigma_n^2)$$
 (51)

- Need to maximize *h*(*Y*) and this is done if *Y* is Gaussian which is possible if *x* is Gaussian.
- Maximum of h(Y) given by

$$h(Y) = 0.5\log_2(2\pi e(\sigma_x^2 + \sigma_n^2))$$
(52)

University of Toronto

© D.A. Johns, 1997

Capacity for Non-Flat Channels

• Maximize capacity under fixed input power constraint

$$P_s = \int_{-\infty}^{\infty} S_X^2(f) df \tag{61}$$

• Can show that $S_X^2(f)$ should be chosen such that

$$S_X^2(f) = \begin{cases} L - \frac{S_N^2(f)}{|H_C(f)|^2}, & 0 \le f \le F \\ 0, & \text{otherwise} \end{cases}$$
(62)

where *L* is chosen to meet the power constraint and *F* is the set of freq where $L > S_N^2 / |H_C|^2$

• Above known as the *water-pouring spectrum.* University of Toronto slide 71 of 319 © D.A. Johns, 1997

Steepest-Descent Algorithm

- Minimize the power of the error signal, $E[e^{2}(n)]$
- General steepest-descent for filter coefficient $p_i(n)$:

$$p_i(n+1) = p_i(n) - \mu\left(\frac{\partial E[e^2(n)]}{\partial p_i}\right)$$

• Here $\mu > 0$ and controls the adaptation rate

slide 80 of 319

Iniversity of Toronto

• Replace expected error squared with instantaneous error squared. Let adaptation time smooth out result.

$$p_i(n+1) = p_i(n) - \mu \left(\frac{\partial e^2(n)}{\partial p_i}\right)$$

$$p_i(n+1) = p_i(n) - 2\mu e(n) \left(\frac{\partial e(n)}{\partial p_i}\right)$$

• and since $e(n) = \delta(n) - y(n)$, we have

$$p_i(n+1) = p_i(n) + 2\mu e(n)\phi_i(n)$$
 where $\phi_i = \partial y(n)/\partial p_i$

e(n) and \$\ophi_i(n)\$ are uncorrelated after convergence.
 University of Toronto

© D.A. Johns, 199

Variants of the LMS Algorithm

- To reduce implementation complexity, variants are taking the sign of *e*(*n*) and/or φ_i(*n*).
- **LMS** $p_i(n+1) = p_i(n) + 2\mu e(n) \times \phi_i(n)$
- Sign-data LMS $p_i(n+1) = p_i(n) + 2\mu e(n) \times \text{sgn}(\phi_i(n))$
- Sign-error LMS $p_i(n+1) = p_i(n) + 2\mu \operatorname{sgn}(e(n)) \times \phi_i(n)$
- Sign-sign LMS $_i(n+1) = p_i(n) + 2\mu \operatorname{sgn}(e(n)) \times \operatorname{sgn}(\phi_i(n))$
- However, the sign-data and sign-sign algorithms have gradient misadjustment — may not converge!
- These LMS algorithms have different dc offset implications in analog realizations.

University of Toronto

slide 84 of 319

Adaptation Rate

 Quantify performance surface — state-correlation matrix

$$R = \begin{bmatrix} E[x_1x_1] & E[x_1x_2] & E[x_1x_3] \\ E[x_2x_1] & E[x_2x_2] & E[x_2x_3] \\ E[x_3x_1] & E[x_3x_2] & E[x_3x_3] \end{bmatrix}$$

- Eigenvalues, λ_i, of *R* are all positive real indicate curvature along the principle axes.
- For adaptation stability, $0 < \mu < \frac{1}{\lambda_{max}}$ but adaptation rate is determined by least steepest curvature, λ_{min} .
- Eigenvalue spread indicates performance surface conditioning.

University of Toronto

slide 90 of 319

Characteristic Impedance

$$Z_0 = \sqrt{\frac{R + j\omega L}{G + j\omega C}}$$
(71)

• Making use of (69) and assuming G = 0

$$Z_0 = \left(\frac{k_R \sqrt{\omega}(1+j) + j\omega L}{j\omega C}\right)^{1/2}$$
(72)

$$Z_{0} = \sqrt{\frac{L}{C}} \left(1 + \frac{k_{R}}{L\sqrt{\omega}} (1-j) \right)^{1/2}$$
(73)

Now using approx $(1 + x)^{1/2} \approx 1 + x/2$ for $x \ll 1$

$$Z_0 \approx \sqrt{\frac{L}{C}} + \frac{k_R}{2\sqrt{\omega LC}} (1-j)$$
(74)

• At high freq, Z_0 appears as constant value $\sqrt{L/C}$

University of Toronto

slide 114 of 319 © D.A. Johns, 1997

Cable Transfer-Function

• When properly terminated, a cable of length *d* has a transfer-function of

$$H(d, \omega) = e^{-d\gamma(\omega)}$$
(77)

where $\gamma(\omega)$ is given by

$$\gamma(\omega) = \sqrt{(R + j\omega L)(G + j\omega C)}$$
(78)

• Breaking $\gamma(\omega)$ into real and imaginary parts,

$$\gamma(\omega) \equiv \alpha(\omega) + j\beta(\omega) \tag{79}$$

$$H(d, \omega) = e^{-d\alpha(\omega)} e^{-jd\beta(\omega)}$$
(80)

- $\alpha(\omega)$ determines *attenuation*.
- $\beta(\omega)$ determines *phase*.

Cable Atten uation

• Equating (79) and (84)

$$\alpha(\omega) \approx \frac{k_R}{2} \sqrt{\frac{C}{L}} \times \sqrt{\omega}$$
(85)

• Therefore gain in dB is

$$H_{dB}(d, \omega) \approx -8.68 d \times \frac{k_R}{2} \sqrt{\frac{C}{L}} \times \sqrt{\omega}$$

(86)

- Note that attenuation in dB is proportional to cable length (i.e. 2x distance doubles attenuation in dB)
- Can reduce attenuation by using a larger diameter cable
- Attenuation proportional to root-frequency

University of Toronto

slide 118 of 319 © D.A. Johns, 1997

% also find pole-zero model [Z,p,k]=tf2zp(num,den); % PLOT RESULTS clf; figure(1); subplot(211); semilogx(f,20*log10(abs(cable)),'r'); hold on; semilogx(f,20*log10(abs(cable_approx)),'b'); title('Cable Magnitude Response'); xlabel('Freq (Hz)'); ylabel('Gain (dB)'); grid; hold off; subplot(212); semilogx(f,angle(cable)*180/pi,'r'); hold on: semilogx(f,angle(cable_approx)*180/pi,'b'); title('Cable Phase Response'); xlabel('Freq (Hz)'); ÷ University of Toronto

slide 123 of 319

© D.A. Johns, 1997

Inductive Timing (MMSE)

• MMSE adjusts τ_k to minimize

$$E[E_{k}^{2}(\tau_{k})] = E[(Q_{k}(\tau_{k}) - A_{k})^{2}]$$
(88)

where $E[\bullet]$ denotes expectation, $Q_k(\tau_k)$ is the sampled signal (it is a function of τ_k) and A_k is the ideal symbol.

• Stochastic gradient (as in LMS algorithm) leads to

$$\mathbf{\tau}_{k+1} = \mathbf{\tau}_k - \mu \left(E_k(\mathbf{\tau}_k) \times \frac{\partial Q_k(\mathbf{\tau}_k)}{\partial \mathbf{\tau}_k} \right)$$
(89)

University of Toronto

Quadrature Amplitude Modulation (QAM)

• Start with two independent real signals

$$u(t) = a(t) + jb(t)$$
 (113)

- In general, they will form a complex baseband signal
- Modulate as in single-sideband case

$$y(t) = \sqrt{2}a(t)\cos(\omega_c t) - \sqrt{2}b(t)\sin(\omega_c t)$$
(114)

- For data communications let *a*(*t*) and *b*(*t*) be the output of two pulse shaping filters with multilevel inputs, *A_k* and *B_k*
- While QAM and single sideband have same spectrum efficiency, QAM does not need a phase splitter
- Typically, spectrum is symmetrical around carrier but information is twice that of double-side band.

University of Toronto

slide 184 of 319 © D.A. Johns, 1997

Delay Length	Feedback Taps	Delay Length	Feedback Taps	Delay Length	Feedback Taps
2	1,2	13	1,3,4,13	24	1,2,7,24
3	1,3	14	1,6,10,14	25	3,25
4	1,4	15	1,15	26	1,2,6,26
5	2,5	16	1,3,12,16	27	1,2,5,27
6	1,6	17	3,17	28	3,28
7	3,7	18	8,18	29	2,29
8	2,3,4,8	19	1,2,5,19	30	1,2,23,30
9	4,9	20	3,20	31	3,31
10	3,10	21	2,21	32	1,2,22,32
11	2,11	22	1,22	33	13,33
12	1,4,6,12	23	5,23	34	1,2,27,34

Adaptive Linear Combiner • The gradient signals are simply the state signals • If coeff are updated in discrete-time $p_i(n+1) = p_i(n) + 2\mu e(n)x_i(n)$ (120) • If coeff are updated in cont-time $p_i(t) = \int_{0}^{\infty} 2\mu e(t)x_i(t)dt$ (121) • Only the zeros of the filter are being adjusted. • There is no need to check that for filter stability (though the adaptive algorithm could go unstable if μ is too large).

Experimental Results Summary

Transconductor (T.) size	0.14mm x 0.05mm	
T. power dissipation	10mW @ 5V	
Biquad size	0.36mm x 0.164mm	
Biquad worst case CMRR	20dB	
Biquad f_{o} tuning range	10MHz-230MHz @ 5V, 9MHz-135MHz @ 3V	
Biquad Q tuning range	1-Infinity	
Bq. inpt. ref. noise dens.	$0.21\iota V_{rms}/\sqrt{H_{c}}$	
Biquad PSRR+	28dB	
Biquad PSRR-	21dB	
Filter Setting	Output 3rd Order Intercept Point	SFDR
100MHz, <i>Q</i> = 2, Gain = 10.6dB	23dBm	35dB
20MHz, $Q = 2$, Gain = 30dB	20dBm	26dB
100MHz, <i>Q</i> = 15, Gain = 29.3dB	18dBm	26dB
	10dDm	204P

University of Toronto

slide 311 of 319

© D.A. Johns, 1997

S. Haykin, Digital Communications, Wiley, NY, NY.

J.G. Proakis, Digital Communications, McGraw Hill, 1995.

J.W.M. Bergmans, *Digital Baseband Transmission and Recording*, Kluwer Academic Publishers, Boston, 1996

Information Theory and Capacity

R.E. Blahut, Digital Transmission of Information, Addison-Wesley, NY, 1990

T.M. Cover and J.A. Thomas, *Elements of Information Theory*, Wiley-Interscience, NY, 1991.

Adaptive Filters and Equalization

B. Widrow and S.D. Stearns, Adaptive Signal Processing, Prentice Hall Inc., 1985.

- C.S.H. Wong, et al, "A 50 MHz eight-tap adaptive equalizer for partial-response channels," *IEEE Journal of Solid-State Circuits*, vol. 30, pp. 228-234, March 1995.
- A.J. Baker, "An adaptive cable equalizer for serial digital video rates to 400Mb/s," IEEE ISSCC, pp. 174-175, San Francisco, Feb. 1996.
- J.E.C. Brown, et al, "A comparison of analog DFE architectures for disk-drive applications," IEEE Int. Symp. Circuits and Systems, pp. 99-102, May 1994.

D.A. Johns, W.M. Snelgrove and A.S. Sedra, "Orthonormal ladder filters," *IEEE Trans. on*

University of Toronto

slide 316 of 319

Timing Recovery

K.H. Mueller and M. Muller, "Timing recovery in digital synchronous data receivers," *IEEE Trans.* on Communications, vol. 24, pp. 516-531, May 1976.

A. Buchwald and K. Martin, Integrated Fibre-Optic Receivers, Kluwer, 1995.

Partial-Response and Viterbi Detection

- P. Kabal and S. Pasupathy, "Partial-Response Signaling," *IEEE Trans. Commun.*, vol. 23, pp. 921-934, Sept. 1975.
- T. W. Matthews and R. R. Spencer, "An Integrated Analog CMOS Viterbi Detector for Digital Magnetic Recording," *IEEE Journal of Solid-State Circuits*, vol. 28, No. 12, pp. 1294-1302, Dec. 1993.
- R. G. Yamasaki, T. Pan, M. Palmer, and D. Browning, "A 72Mb/S PRML Disk-Drive Channel Chip with an Analog Sampled-Data Signal Processor," *IEEE Int. Solid-State Circ. Conf.*, pp. 278-279, Feb. 1994.
- R. W. Wood and D. A. Petersen, "Viterbi Detection of Class IV Partial Response on a Magnetic Recording Channel," *IEEE Trans. Commun.*, vol. 34, pp. 454-461, May 1986.
- M.H. Shakiba, D.A. Johns and K.W. Martin, "A 200MHz 3.3V BiCMOS class-IV partial-response analog Viterbi decoder," *Custom Integrated Circuits Conference*, pp. 567-570, Santa Clara, California, May, 1995.
- M.H. Shakiba, D.A. Johns and K.W. Martin, "General approach for implementing analogue Viterbi decoders," *Electronic Letters*, vol. 30, pp. 1823-1824, Oct. 1994.

slide 318 of 319

