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Intermediate-Function Synthesis
Abstract

A vector-space approach to the design of active circuits imple-
menting filters is presented and developed. Principles of synthesis
and analysis are given together with formulae and algorithms suit-
able for incorporation into computer-aided design systems. The
technique is shown by example to provide tools for both practical
and theoretical work.
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This thesis proposes a novel technique for synthesizing circuits realizing given

transfer functions. This method provides new insight into the problem of how

best to interconnect a number of identical “operators”, e.g. integrators or

delays, with a feedback/feedforward network so as to produce the given

transfer function (e.g. filter response). It does so by concentrating the

designer’s attention on a set of transfer functions related to that to be realized

rather than on a network: thus the problem of realizing a transfer function is

stated in terms of transfer functions rather than in terms of networks. We call

the technique intemediate- function synthesis because this set of transfer

functions describes behaviour at internal states of the filter.

Electronic technology is changing very rapidly, continually producing new dev-

ices and circuits with which to synthesize electronic systems. A collection of

theoretical techniques, changing somewhat less rapidly, gives design engineers

the power and insight to solve the new problems and variants on old problems

that result.

At present the primary driving force is the continuing development of

integrated circuit technology: process advances continue to increase the

number of functions that can be integrated, while computer-aided design

advances are simultaneously reducing the design cost overhead associated with

ICs. Both of these types of change, generally grouped under the banner of

“VLSI” (Very Large Scale Integration), have the effect of “fragmenting” the

problem of integrated circuit design: as density increases it becomes steadily

harder to choose general-purpose “building blocks” to implement as chips, and

so more specialized ones are needed; and as the cost of design is reduced by



CAD the need for very large markets to amortize front-end (design) cost is

reduced. As the complexity available in a single chip approaches and passes

the complexity required for many complete systems it becomes vital to give the

problem of circuit design, in integrated form, to the “end-user” circuit designer

rather than to an IC specialist.

In this fluid kind of situation any theoretical technique that promises insight

into the design of some class of circuit, and most especially one naturally

suited to CAD, may hope to contribute to the current (r)evolution of microelec-

tronics.

The filter design problem is a fundamental one because it is basically the

problem of designing a “difficult” linear system to perform well in the real

world: linear systems in turn appear often enough in the world to make the cir-

cuits that best deal with them inherently important. Filters are, of course, a

specialization of the class of linear systems that pays special attention to

“bands” of frequencies: but many techniques developed for this particularly

difficult case may readily be applied to others.

Much of the network theory that was originally developed for filter design

was tuned to deal with constraints that are now less important (at least at audio

frequencies), Stability tests designed to reduce the computation needed to

determine whether a function is stable, at the cost of making filter theory more

complicated, may be ignored when computers are available to do the tedious

work of searching. Theory designed to use passive elements as much as possi-

ble in order to save on vacuum tubes is out of place in a world in which transis-

tors are cheaper than resistors and capacitors, and inductors often impracti-

cal. An odd relic of LC technology) the simulation of doubly-terminated ladders

to obtain their excellent passband behaviour, [I] is working hard: the number

of design techniques seeking to somehow simulate a ladder is enormous. Some-

thing created for the new problems could help to shore up design in the places

where those techniques falter.

Classical circuit theory gives all the tools required for the task of circuit

analysis, and one may use analysis together with the brute power of numerical

IF Synthesis - (?) page 2 mmGe d I 982/3,/‘18 IUS



search and optimization to provide some power for synthesis (which is inverse

to analysis). If circuit applications continue to head in the direction of increas-

ing complexity, however, this kind of approach seems bound to founder on the

rocks of computational complexity: the problem of optimizing a circuit or sys-

tem in the total absence of insight into its inherent structure appears to be

exponential in the complexity of the system.

The state-variable approach to system description still applies, however, and

should be expected to continue to apply as long as we are interested in inter-

connecting numbers of identical linear operators (like integrators or delays) to

perform functions more complicated than a single one could.

This thesis attempts to contribute a theoretical tool with which to do design

of linear systems, and particularly of filters, to an industry in which design cost

is coming to be the principal concern.

to the thesis

The central idea of this thesis, our new intermediate-function (IF) synthesis

technique, is described in chapter 2 of this document, and the remaining

material is intended to demonstrate that it is a good tool for filter design.

The technique uses the state-space formulation as an intermediary between

abstract structure and circuits: chapter 3 shows some types of circuit that may

reasonably be derived this way.

Chapter 4 shows how the practical problems of circuits, such as noise gen-

eration and sensitivity to component errors, can be measured in terms of the

new method.

Chapter 5 discusses the utility of “redundancy” in linear systems in terms of

the synthesis technique, and shows how “good” circuits use this effect. The

principle of redundancy is shown to be an important one for high-performance

circuits, and appears in several apparently different forms. Chapter 5 shows up



the relationship among these forms, thus yielding a better understanding of

high-performance filters.

An important property of IF synthesis is that it unifies many apparently

quite different synthesis techniques, so that a computer program may be writ-

ten as a design aid with enough generality to cover many different types of

problem. Chapter 6 shows how the synthesis method may be formulated in

terms of matrix computations for such a program. A side-effect of this work is

that the matrix formulae clearly show the relationships among quantities of

interest: some interesting results are derived from this.

The methods developed in the preceding chapters are used in chapter 7 to

investigate filters whose sensitivity approaches a lower bound.

Chapter 8 is a design example for an eighth-order problem, and shows how

the synthesis method may be applied to a non-trivial filter problem. Some

well-known types of design are described in terms of IF synthesis so as to firmly

connect the technique with prior art, and some quite new designs are presented

to show how easy it is to use the synthesis technique to invent and modify

structures to solve particular problems.

As another application of the technique, and also for its own sake, some

theory regarding “complex filters” is developed in Chapter 9. These have appli-

cation in single-sideband modulation and other signal-processing applications.

Our synthesis method is used as a tool in investigating inherent properties of

these structures as well as to obtain realizations.

One final idea is sketched in Chapter 10: a variation on the conventional

approximation problem is suggested that takes sensitivity and dynamic range

problems into account at the initial approximation stage of filter design. This

technique is incidentally shown to give a new solution to the difficult problem of

simultaneously meeting specifications on attenuation and group delay. The

relationship between transfer function and realization required for this method

is best understood by reference to the work of chapter 7.



Chapter 11 summarizes the earlier results and draws some conclusions on

the synthesis technique itself and on some of the problems we have attacked

with it. It also outlines areas that warrant further investigation.

[I] H.J. Orchard, 1n&xi!orless FiZieTs Electron. Lett. vol. 2, pp.224-225, June

1966



This chapter states the intermediate-function synthesis technique and demon-

strates it with an example. Later chapters will show examples that motivate

the technique, while this one is simply concerned with showing what it is.

The notation used here is fairly conventional except that we use a subscript “s”

or “t” to distinguish between functions and their Laplace transforms, rather

than the conventional technique of using lower-case to denote the time function

and upper-case to denote the transform. This is made necessary by the fact

that we also have matrices that represent some of the same functions, and wish

to reserve upper-case to denote them. It is a convenient effect of this notation

that we may simply elide subscripts in any formulae that apply equally to func-

tions and to their various transforms.

As an example, we will use ZQ to denote the input signal as a function of time

and z+, to denote its transform. A formula like IJ==c~x+~*u means as special

cases that yt =cTxt +&u~ and that ~S=cTxS+cP~S.

We use lower-case italic letters to denote scalar quantities (e.g. “JI”

etcetera); lower-case bold-face quantities for vectors (e.g. “x”); and upper-case

bold-face for matrices (e.g. “A”). The ii’ element of a vector x will be written q

instead of the more conventional z$ in order that quantities appear everywhere

in the same typeface (again in order to avoid conflicts of names). The fact that

it is subscripted serves to show that the result is scalar Similarly, we use Aij to

denote an element of A.

?L?S



Our abstraction of filters as composed     a number of integrators connected

together by some structure of feedback and feedforward paths is the one

described by the conventional state-space system equations:

where “u ” is the input signal; “x” is a vector of n “states”, which are just the

outputs of integrators; “y” is the output signal; and “A”, “b”, “c” and "d" are

coefficient.s relating these variables.

The transfer function of this kind of system is simply

(2-2)

We can find the values of the states “x” from the vector of transfer functions

f&I-A)*'b=$ wo

Calculation of (2-3) is never actually needed in our syntheses: it just serves  as a

handy definition.

“f” gives us the effect at intermediate states in a filter of the system input.

Later we will also be interested in the effect of each state on the system output.

The vector of functions

g.j$T(s I--A)-' @-4

measures transfer functions to the system output from the inputs of the

integrators.

Again, while (2-4) is a useful definition, it is not actually used for synthesis: a

formula giving g directly from f is presented in chapter 6.

WS



A signal-flow graph analogue of the state equations (2-1) appears in figure

2.1*;
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Figure 2.1: SFG of general system of state equations

it shows a network of feedbacks interconnecting n integrators, and indicates

the significance of ifi j and fg& This is a fully “dense” topology: “sparse” practi-

cal topologies are special cases of it that eliminate many SFG edges.

* -We use broken lines in signal-flow graphs to represent transfer functions between nodes

rather than actual links.

revised 7 981,/‘72/25 WS



The fundamental synthesis method of this thesis is an inversion of the conven-

tional analysis described in section 2.2 above. Rather than choosing a structure

and hence {A,b,c,d }, and then evaluating lfij and tgi{ to see how the design per-

forms, we choose a “good” vector f (or, dually, g) and derive {A,b,c,d} from that.

Our design effort may now be concentrated on choosing desirable tf$], which

measure performance directly, rather than on analyzing arbitrary structures to

find their tfi{.

The observation which

canonic system realizing a

originally motivated this approach was that every

transfer function of degree n (which must contain n

integrators) must necessarily have intermediate transfer functions (from the

system input to the outputs of each of its n integrators) that are linearly

independent. This follows from the fact that n integrators are known to be

necessary by a simple argument: if an integrator’s output were linearly depen-

dent on the outputs of the other integrators in a system, that integrator could

be replaced by a weighted sum of other integrator voltages without disturbing

the behaviour of the rest of the circuit; but then we would have a realization of

an nth order function with only n-1 integrators, which is impossible. The sys-

tem input, u, must also be independent of the states x or one could similarly

eliminate states and reduce order.

We may also observe that the {A,b,c,d} coefficients are uniquely determined

by the tfij (for a canonic system) exactly because the {fJ must be independent:

there can only be one way to form the required input signal to each integrator

and to the output summer in figure 2.1 as a linear combination of an indepen-

dent set of signals.

The n [fij have to have a common denominator - eS=det(sI-A)-’ - and must

all have numerators of order less than n. Within these constraints any n

independent tfi ] will produce a system realising Q.

Because any canonic iA,b,c,d] system must have some [fi j set of the form we

have described, and because ~A,b,c,d] are uniquely defined by ifi{, our method

can produce any canonic realization of kS.



0ne might be led by the need for independence to think that a system in

which linear dependencies “almost” existed would be in some way impractical,

and later chapters will show that this is the case: in particular, sensitivity and

dynamic range behaviour become worse as the system approaches linear

dependencies. On the other hand it turns out that a limited amount of correla-

tion among integrators is useful.

The exampIe we will use here is a second-order Butterworth filter synthesis,

which we will take from an arbitrary choice of a set of intermediate functions to

a circuit realization. Many other, more familiar, techniques would produce

exactly the same circuit. The point here is to give an overview of the technique

on a very simple problem.

The function to be realized is:

ts = 1

s2+v5s+l

APS- -
- =s

we may, for instance, arbitrarily choose intermediate functions

1
f1.s = -es

to be the n (i.e. 2) required linearly independent transfer functions from the

system input to the outputs of the two integrators.

Now if we convert the first row of the system equation for xi (2-1) to Laplace

form and substitute fl,s-us and fz,sas for states xI and+xz respectively, we get:



Sfl&Us--Allfl,~.u~+Al2f2,~~u~ -+-m-h

Substituting for fl,s and f2,=, and multiplying both sides of the equation by

e/us,

s =A~~-!-A~~s +bles

=A~~+A~~~+b~(~2+~~+l)

And now, comparing coefficients, we get

Similarly, the second row yields

s~=A~~+A~~s + b2(s2+& + 1)

=>b2= 1

A21=- 1

Now we solve for “CC and ‘W’ by a similar scheme:

ws



So that the system we need is

which may be recognized as a companion-form realization.

We could work out [gi] for this system in the conventional way f rom

definition above (although better ways are discussed in chapter 6):

its

=[1 o] 1 s+& 11 Is2+dzs+l -I s

We could also have derived the system from these [gi] in the same kind of

way as from ift {.

Many circuits may be regarded as implementations of (2-7) but some have

structures that correspond to the system of equations more directly than do

others. When there is a close correspondence between the structure of the cir-

cuit and the system equations we will be able to model performance of the



circuit directly by investigating the system {f${, The most general approach

which maintains a close correspondence is that conventional in analog comput-

ing: a network of operational-amplifier integrators and summers, having inter-

connecting conductances proportional to matrix entries, Figure (2.2) is a

schematic for such an implementation of (2-7).

Chapter 3 will show

some of the other kinds AlU

of circuit possible, but 1 V I
note that this one is

simply the well known

Tow-Thomas three-

amplifier biquad .PI
One may conclude that

the method proposed is- -

capable of generating a

well-known (and good)

solution to a simple

filter-design problem. Figure 2.2: Circuit simulating system (2-7’)

We show in chapter 3 how to imple-

ment ‘Ye sky” integrators with RC

networks like those of figure 2.3: ~,

state x2 in (ZY?) is a candidate for ‘“‘I
0

such implementation, but (using the

formulae of chapter 3) can be found ‘Y O
to vimal ground

to require negative resistors. By

p e r f o r m i n g  a  simple g ain-

adjustment on f2,s we can get a new T-
system (with ifi] and jgi] different

only by scale factors from the Tow- Figure 2.3: Simple Lea- Integrator

Thomas design) that may be implemented with only positive resistors. This

results in the well-known single-amplifier biquad (SAB) design of Figure 2.4.

More details will be given in chapter 3.

ws



In this way we can use the state-space for-
mulation not only to derive another popu-
lar circuit, but also to show that the essen-
tial difference between t h e  (high-
performance) Tow-Thomas design and the

low-performance SAB is in signal scaling.

T-

The intermediate-function synthesis exam-

ple above chose iftj arbitrarily: the idea

was just to show that one can produce a

system and then a circuit from a set of

intermediate functions. The more dscult Figure 2.4: SAB Derived by IF Syn-

task is to show that this synthesis thesis

procedure provides a good way to do filter design and filter theory. An intuitive

reason to believe that it does is that it states the problem of realizing a transfer

function as one of designing a set of transfer functions - realizing an object

with a collection of objects of the same type.

This document does not present a single way to choose [fi{ because the prob-

lem of filter design is too broad to permit a single scheme to be optimum for

every case: choosing ffij is still a design problem. We have, however, developed

some new design techniques to go with IF synthesis. Several complete designs

are done in chapter 8 (on a representative filter problem) using these tech-

nique s, and chapters 3 to 7 provide background for statements and decisions

made in these designs. Of these, chapter 3 is needed only to show that a state-

variable system can readily be converted to a practical circuit, and chapter 6 is

needed only to show that IF synthesis is easy to mechanize. Chapter 4 is impor-

tant to design because it shows how we measure various important types of per-

formance to compare and study designs, chapter 5 presents an important

design trade-off, and chapter 7 investigates designs with low sensitivity to their

integrators.

The types of design developed in chapter 8 are by no means the only ones

possible with IF synthesis, just the only ones developed in this thesis.



Interesting new ideas have “spun off” this work on design. Some of these

ideas are developed in passing in chapters 3 to 8, and others are developed

separately in chapters 9 and 10. The latter chapters can almost stand alone,

but assume that design of the style developed in chapter 8 is possible.

L! set of n independent “intermediate transfer functions” jfij uniquely defines

any canonic system realizing a given transfer function. Any canonic system

may be derived in this way. Thus one may do design of linear systems by choos-

ing 1 rather than topologies.

If tfij turn out to be related to measures of “goodness” for [A,b,c& systems

more closely than are the [A,b,c,dj coefficients themselves then IF synthesis will

offer a good way of designing systems of state equations. If systems of state

equations may be used in a systematic way to derive circuits whose practical

properties are closely related to “goodness" measures for the lA,b,c,d] systems

then design of systems of state equations will offer a good way of designing a

certain class of circuits.

2.7 References

[l] J. Tow, “Actiwe RC Filters - a Stute- Space Realkution”, Froc. IEEE, vol.

56, pp. 11374139, 1968
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By “state-variable circuits” we mean those which may be designed in a straight-

forward way from an arbitrary state-space description. These are the types of

circuit which can be designed by intermediate-function synthesis.

We exclude such things as passive ladders from the class of state-variable

circuits because, although they are easily analyzed to give a state-variable

description? they are not so readily synthesized from a given description. This

chapter shows that several important types of circuit may be generated sys-

tematically from an fA,b,c,cl{ description, although some efficient ones require

simple manipulations of the system description before they become practical.

The problem of simulating an arbitrary system of states can be solved with the

summing integrators (Miller integrators) and op-amp inverters widely used in

analog computation [ l,Z]. Tow-Thomas biquads are of this type.

The basic building block for this kind of circuit is shown in figure 3.1* and

produces both positive and negative integrals of the input signal.

The input current at the ith integrator’s virtual ground represents x; and the

two op-amps produce q and -q from this. Coefficient &j, for instance, is

implemented simply by connecting a conductance GQ=-$ i&j/ from OUtpUt Xj o r
1

-q (according to whether 4,. is positive or negative) to the input of integrator

i. "b( are simulated by connections from the system input “IL” to the input of

* The combination shown is nut exactly that used in analog computers, but contains an

improvement suggested by Brackett and Sedra [3] that cancels phase errors in the inverter.



Figure 3.1: Integrator-inverter Combination

integrator “if’ (for a completely general system, with some negative bf, straight-

forward simulation would require that an inverter be used to generate -zQ(~)).

The output can be formed with an inverting summer, having input conduc-

tances proportional to |1 ci |1 driven from *q (according to the sign of (c~)) and a

feedforward from ~zL&) proportional to 1 d I.

The impedance levels of conductances implementing all of these coefficients

may be set arbitrarily by choosing the values of the feedback resistors or capa-

citors in the summers and summing integrators. Thus if Ci is chosen to be the

kj
capacitor for integrator “i”, then Gij=-R

where R o,iCi=l. One may choose to
0 ,i

frequency-denormalize a filter design by a factor GJ~ at this point by choosing

instead Ro,iCi=-&.

While this kind of circuit is totally general it is also rather inefficient. Both

q and -q are needed only if A contains elements of both signs in its it’ column.

One can usually reduce the number of inverters needed in a practical circuit by

about 50% by simply choosing signs of tfij so as to make as many columns of A

as possible have only negative signs: this may be done fairly easily by appropri-

ate manipulations of the A matrix, as will be discussed below. Since the

inverter in Figure 3.1 is needed only to produce +q it may then be eliminated.

ws



Phase-Lead Integrators

The integrator of figure 3.29 [4] may be used instead of that of figure 3.1 when

non-inverting integrators are needed.

An analys is  [3] of the effects of finite

amplifier gain-bandwidth product (usually

a dominant problem) shows that this

integrator’s phase error is equal and oppo-

site to that of a Miller integrator. Good

systems containing equal numbers of posi-

tive and negative integrators may, to a

first approximation, cancel the deleterious

effects of finite amplifier bandwidth.

These circuits may be unstable with

high-performance op-amps, which have

gains with significantly second-order char-

acter near Us. A compensation scheme is

suggested in [Q

r-h
-Xh+ I’

l-
c

r

Figure 3.2: Akerberg-Mossberg

Integrator

DeBoo Integrators

The circuit of figure 3.3 [6] 1a so implements a positive integrator, with only one

op-amp where both earlier circuits needed two.

Unlike the previous circuits, however, this one can have a phase error induced

by mismatching between passive elements. Since filter transfer functions are

generally much more sensitive to integrator phase than to gain errors this cir-

cuit is not often suitable.

This circuit only provides one output, q, and so cannot be used where any %i

or C~ are negative.



Figure 3.3: DeBoo Integrator

RC Leaky Integrators

One often needs “leaky” integrators, i.e. those implementing ( S+14t } rather

than $-, because a diagonal term in A is non-zero (and usually negative for

syntheses of stable transfer functions with low sensitivity to integrators at low

frequencies).

The circuit of figure 3.4 drives a vir-

tual ground with the current OUIWI curren t

I‘J s =Go

f G ks
i=O

sG+$Gi
i=o l

into virtual ground

The conductance GO may if neces- Figure 3.4: RC ‘Integrator’

sary be “split”  to drive several

virtual grounds; thus several non-zero entries (which must be positive, since

-q is not produced) are possible in the corresponding column of A.

This type of “integrator ” cannot (with positive Gi) ever have x Gi=O, and so is
i=O

lus



always "leaky”, It also cannot have voltage gain, so scaling will generally be

necessary before it can be used.*

ln practice the conductances required to use this kind of “integrator” in a

system may be much larger than those for the Miller integrators in the system,

leading to problems with “element spread”.

We show a detailed design example below which illustrates the issues of ele-

ment spread, op-amp count, and sensitivity for a third-order synthesis.

Using the Non-Inverting input of a  Miller Integrator

The circuit of Figure 3.5 is a conven-

tional Miller integrator as seen from

the input at Va,

-1 1= -* -
C’Ra s

and has a transfer function from

input Vb of

Figure 3.5: Using the Non-inverting Input

Ro
This is a positive integrator with a “parasitic” gain term h +R . Some

I b

modification of synthesis would be needed to include the effects of this type of

term, but the result might be valuable: a one-op-amp integrator and summer

with both positive and negative coefficients. The main difficulty in doing this is

that it gives us two different kinds of “building blocks”: one suitable for positive

-___-

* Note that the DeBoo integrator may be derived as a case of this kind of integrator in which a

negative immittance converter [7] is used to create a negative resistor.



and one for negative coefficients. A similar situation will be encountered for

switched-C inputs in section 3.3.

This section illustrates the points made above by doing several fairly detailed

active-RC designs of a simple 3” order l3utterworth transfer function from a

given state description.

The state description we choose is:

- 1
A= -0.5

_ 0

1
0

-1

.
0

0 . 5

-1.

1
b= 0

_O

CT= 0 0 1 d=O1 I
As a matter of interest this is a description of the operation of the passive

ladder of figure 3.6 when Vcl,I~2, and Vcq are chosen to be states. The readerU

may have deduced this from the tridiagonal structure of A.

The system was chosen this way

because the passive circuit is known

to work well, and we wish to simulate

it so as to avoid using the inductor. gq:n- - -
Figure 3.6: LC circuit to be simulated

A signal-flow graph described by the {A,b,c,d} of equation (3-1) appears in figure

3.7, It shows a straightforward decomposition into inverting integrators and



l?igure 3.7: An SFG for Simulation

inverting summers. Each row ‘5” of {A,b} corresponds to an integrator-inverter

pair whose input x; is formed by summing ut (t) and the various q. All input

edge coefficients are positive (corresponding directly to feedback resistors with

positive values ). Negative A+j are handled by multiplying the inverted output

‘faXi” by 1 Afj 1 .

The system output, which would in general be formed by a weighted sum,

may be taken directly as x3 because of the simple structure of i&d{.

The corresponding circuit, which would use 2n=6 op amps, would be

inefficient for several reasons, of which the most obvious is that the inverter in

the first integrator does nothing.

Minimizing Inverters

It doesn’t really matter whether we simulate, say, x2 or -xz. By manipulating

signs of states (a special case of scaling) one may reduce the number of invert-

ers needed to one, thus obtaining a 4-op-amp circuit. One can usually reduce

the number of op-amps needed to about -$-rz this way.*

------

* 3-n is usual for cascades of three-amplifler biquads and for SFG ladder simulations, where
2

inductors require 2 op-amps and capacitors 1. It is not generally possible to reduce dense A



Scaling

Scaling manipulations may be done directly on a circuit, on the SFG from which

that circuit is derived, or on the {A,b,c,d} system that generates the SFG. The

scaling rule on an SFG is that transmittances driving a node may be multiplied

by a (thereby increasing the signal level on the node} without changing overall

behaviour as long as all transmittances leading from that node are divided by

a.? Similarly, state ‘Y of an {A,b,c,d{ description is scaled up by a factor a if

while column ‘5” of A and q are divided

scaled by -1 to yield

row ‘5” of A and b+ are multiplied by a

by CL State a of system (3-1) may be

I 7

A =

-0.5 -1 0 I -0.5 0 I b=

L

I 0 1

0 1 -II 10 1

G=[o 0 -11 d=O *lu

uo

Figure 3.8: Four-Op-amp Simulation of a Third-order Ladder

Now columns 1 and 3 of A contain only negative coefficients and column 2

3
matrices containing coefficients of arbitrary signs to -7~.

2

T Another equivalent rule is that one may change gains arbitrarily as long as the gains around

loops are left unchanged.



contains only positive ones, so that this system may be implemented with two

inverting integrators and one non-inverting integrator. If Miller and Akerberg-

Mossberg integrators are chosen the result will have 4 op-amps (cf. figure 3.8).

This is the kind of circuit obtained in [Y’] as an SFG simulation of a passive

ladder.

Using Passive Integrators

Passive RC “integrators” may be used to simulate states when the correspond-

ing columns of A have positive coefficients off the diagonal and negative

coefficients on the diagonal. Scaling states 2 and 3 of system (3-1) by -1 yields

-1 -1 0

A= 0.5 0 0-5.O -1 -1 I

$=[o 0 -11 d=O

Now states 1 and 3 may be implemented (except for scaling terms) by circuits

like those in figure 3.4. State 2 must be realized by an active inverting integra-

tor which provides at its output a voltage J+-xz.

Calculation of component values for the Miller integrator providing state 2 is

done just as before, but component values for the passive “integrators” are a

little more difficult. Since, for example, state 1 has to drive the virtual ground

of state 2 with a current (x;~)*

A21
42x2,s +Ws

=0.5
v2.s + h.s

fs -A11 s + l

ws



(cf. Fig, 3.9)

G

%

(&_- ‘, _ *I

T-

I - -c

Integrator 1I
I
I 3

Figure 3.9: Designing Integrator 1

.
This may be solved by, for instance, arbitrarily choosing G@. Comparing

coefficients then yields

(3-2)Gz=Gi=l

=>Go=2,C=4

Now in fact, although this provides the correct signal to integrator 2, the

capacitor voltage in this “integrator ” will not be xl but $. This scaling is gen-



erally necessary because of the constraint that all conductances be positive,

and will be seen to make “x~” more sensitive to errors in its op-amp than it

would otherwise have been.

A similar technique was used to find a passive simulation of state 3, and the

resulting overall circuit appears in figure 3.10. This is an interesting and novel

single-amplifier implementation of a third-order transfer function, and has

been derived systematically from a state-variable system description.

C, =4F

Figure 3.10: One-Op-Amp Simulation of Third Order    Ladder

A system description of this circuit, showing the effects of scaling xl and x3 is:

A=
-1y 0 ?A
-2 0 -1 b=O
0 $5 - 1. _o

Tc- =[o 0  -21 cl=0

We will see in the next section that Miller integrators become more sensitive as

the sum c I&!+ I+ 1 bi 1 -increases. note that this filter has a row-sum three times
j

higher than that for the same integrator in the circuit of figure 3.8. Note also

IF SynU2Qsis - (3,) page 2fY revised 7 98 Y/7 2,,,‘25 ws



that the “element spread” is larger for the single-amplifier circuit than for that

of figure 3.8, Which had all capacitors equal and a resistor spread of 2: 1.

Three- and two-op-amp designs in which only one of these two states (e.g.

state 1, because it is not an output) is scaled for a passive integrator and the

other is handled by an AM or a DeBoo integrator are also possible.

Some circuits (e.g. some notch biquads) are basically state-variable in form,

but include capacitor (as well as resistor) inputs to integrators. This kind of

circuit may be handled in several ways by intermediate-function synthesis, of

which the easiest is an “augmentation”.

Figure 3.11: Modelling Capacitor Inputs

The effect of using a capacitor from a signal IQ(~) as input to an integrator

rather than a resistor is equivalent* (cf. Fig. 3.11) to that of using a resistor

driven from a signal ZL$!) We can therefore model capacitor inputs by augment-

ing the set of signals available suitably with derivatives.

* for ideal q-amps.



This section shows how component errors in the elements of the various build-

ing block” circuits above affect the coefficients of the systems they simulate.

We will show in chapter 4 how coefficient errors in turn affect the system

transfer function. These two components of sensitivity between them suffice to

investigate circuit sensitivities in a way that clearly distinguishes problems

caused by circuit choices from the effects of the choice of feedback structure.

3Zl Effect of Op-Amp Gain on the System

A reader familiar with filter circuits might find it surprising that the single-

amplifier circuit above was so closely related to the 4 op-amp design. The same

kind of operations applied to a second-order circuit, as in the closing example

in chapter 2, yield a relation between a single-amplifier biquad (SAB) and a

Tow-Thomas biquad, of which the SAB is a much lower-performance circuit.

We show here that the probIem with single-amplifier circuits comes from the

scaling required to keep elements positive. All of the circuits in section 3.1

were equally sensitive to their “integrators”, but the high-gain (i.e. short time-

constant) integrator of figure 3.10 is more sensitive to its op-amp than are

those of figure 3.8. This is why poorly scaled circuits, of which SABs are exam-

ples, are sensitive to their op-amps.

Note that this means that even high-performance topologies with $m op-

amps can be quite poor unless care is taken with their scaling.

The dominant problem caused by an op-amp in a filter comes from its finite

gain at the frequency of interest, which in turn is often dominated by the

amplifier’s gain-bandwidth product. We will measure the performance of an

op-amp integrator by grouping all effects on its transfer function into a factor 7

such that

WS



where VO and Vi are the integrator’s input and output voltages and T is its nomi-

nal time-constant. y may often be a function of frequency and will usually be

complex. It may be used to model both gain and phase errors in integrators,

which result from non-idealities either in passive or active components.

We derive a formula giving

for the Integrators of interest. This measure may be used together with formu-

lae for % Cs I
d7

presented in chapter 4 to give the effect on a transfer function  of

op-amp gain errors. The quantity “l/A” is used because it is nominally zero

while the more obvious A is nominally -, so that A(l/A) is generally small while

AA is infinite. Thus a first-order sensitivity estimate of the effect of having a

finite op-amp @nA in the iti integrator on t=(s) may be written

Figure 3.12: Non-ideal   Miller   Integrator/Summer

Analysis of the circuit of figure 3.lZ(a) reveals

figure 3.12(b), for which

its equivalence to that o



A -1-.
= sCReq

7

The quantity of interest, y, which is nominally 1 is affected by i as follows:

at y=l

(3-5)

This-shows-clearly the effect of low CI& (i.e. high integrator gain) on sensitivity.

If the op-amp of figure 3.10 has ft=3MHz, and the filter is frequency-

denormalized t o fzB=3kHz, then at the upper passband edge

A(l/A)=O-$=-.OOlj. At this same frequency

=-(l-3j)

Using techniques developed in chapter 4, we find that

ws



so that

~s(~~~~(l-j)~{-l+j3)~(-j,001)=0.004-j.002
S

which will induce a magnitude error at the upper passband edge of

iMt(GJ)= -8,68Alni ts(j~)\ =-8.68Re(Aln(L.(jl)))~-m035dB

A well-scaled design, necessarily with more op-amps, would have a somewhat

lower Z&
A& (s )and so a smaller deviation -
k(s 1 *

These effects would be more pro-

nounced in a higher-Q example.

Scaling to Minimize ai Sensitivity

G 1 GThe critical term in (3-6) is --$-=-x~=-$ i&y I+ 1 bi [ . Thus one could minim-
S 3

ize the worst-case op-amp sensitivity by minimizing max(x I&,- I+ 1 bi I). Designs
i 1

will be “good“ in the sense of best approximating their ideal “states” if row-

sums LWijl+M are made approximately equal by scaling

3.2.2 Capacitor Sensitivities

A l l  of the types of circuit discussed above are canonic in their capacitors, and

have state values represented directly as capacitor voltages. For this reason all

of them implement integrators such that ?$%y---1. Chapter 4 shows how to

compute S:(s).



3.2.3 Feed-in Sensitivities for Miller and  AM Integrators

The conductances of the input resistors of Miller and Akerberg-Mossberg
A..

integrators directly implement A+j entries, so S$‘=-I. Chapter 4 shows how to

compute S2j(s).

3.2.4 Resistor Sensitivities for RC ‘Integrators’

The capacitor voltage xj for a leaky integrator like that of figure 3.4 is

c wi,s
V

_ i#j
S,Cj-

sC+gGi
i=O

where we want

%j
Clearly, .Sci

A.. Gi
=I (jh), and because Ajj=xGi, S&y=-. AS long as all Gi are posi-

EG

tive, S$C 1.

3.2.5 Resistor Sensitivities for the DeBoo Integrator

The op-amp in a DeBoo integrator is used to implement a negative-impedance

converter (NIC) [6,7’] that simulates a negative resistance as shown in figure

3.13.

The result is a generalization of the RC integrator that allows Ajj=Oe On the

other hand, when L$~--0, xGi=O (cf. equations (3-7) and (3-8)) and

IF SynUaesis - (‘3) pczge 3 2 Tehsed ! 98 7,/~2/25 7.m



Figure 3.13: Equivalent of DeBoo Integrator

S

Classical sensitivity is a poor way to discuss effects on coefficients that are

nominally zero, More interesting is the derivative

This just expresses the problem mentioned earlier of phase sensitivity of the

DeBoo integrator in state-space terms.

There are many dif ferent ways to implement discrete-t ime f i l ters ,  with

correspondingly many different levels of performance. The synthesis method of

this thesis may be used for discrete-time filters by discussing “delays” (z-l) or

“discrete integrators” (CZ - l)-l) rather than “integrators” (S-I). The same pro-

cedures that calculate &j etcetera for the s-plane case calculate them for the z

and ~-1 planes.

Analysis tools are also similar for the two cases, except that the various

integrals involved in computing dynamic range and sensitivity are taken around

the unit circle rather than along the imaginary axis.



3.3.1 Digital Filters

Intermediate-function synthesis works for digital filters, but the resulting

emphasis on delays seems less natural than the emphasis on integrators for

continuous-time systems, because  in  d ig i ta l  f i l t ers  de lay  i s  cheap  and

coefficients (multiplies) expensive while in active-RC circuits coefficients are

generally cheaper than integrators.

In many implementations of digital filters, however, rounding and clipping

occur at the inputs to delays because data are stored with fewer bits of preci-

sion than are available in the multiplier/accumulator that forms weighted

sums. When the data are fixed-point in this kind of scheme it does not even

matter if overflow occurs during formation of a sum [8] as long as the final

result is in range. In these practical  and important cases intermediate-

function synthesis is as natural for digital as for analog filters.

3.3.2  Filters Using Analog  Delays

When filters are to be constructed using analog charge storage to implement

z-l, intermediate-function synthesis is directly applicable. Here the emphasis

on delay elements is very natural because errors in delays dominate perfor-

mance.

Two examples of this type of system are bucket-brigade devices [14] (BBDs)

and charge-coupled devices (CCDs). In both of these technologies (for which

dynamic range is the dominant problem) dynamic range is set by the maximum

charge availabIe on storage capacitors and by noise added to the stored charge

between cycles, while problems like charge-transfer inefficiency and charge

leakage limit both transfer function accuracy and operating frequency range.

Leakage may be modelled as a simple gain error in a delay: leakage causing, for

example, 1% “droop” on stored signals just replaces z-l with ,99z? The result

is that of setting yi =0.99 for that delay, where 7 is used for delays just as it was

for integrators in section 3.2 above. Charge-transfer inefficiency produces a



frequency-dependent gain error, or a shift in x: transfer inefficiency of E causes

a delay to have gain (z+$l. These problems are exactly analogous to the gain

and phase errors that cause Miller integrators to have transfer functions of the

forms 7d and (s+E)-‘.

BBDs and CCDs have usually had transversal structures: intermediate-

function synthesis might be a useful tool in trying to find other structures for

which their performance would be better, and so increase their range of appli-

cation.

3.3.3 Switched-Capacitcr Filters

There are several types of switched-capacitor filters [9], all of which are basi-

cally state-variable circuits and so potentially amenable to intermediate-

function synthesis. Of these, the class that appears to be most practical using

present technology has the peculiar property that “integrator” transfer func-

tions with positive and negative signs are quite different. This makes the gen-

erality of IF synthesis hard to obtain: in fact we will show that it is no longer

true for this class of circuit that any arbitrary set ifi] may be obtained.

Stray-insensitive building blocks [9] for switched-C filters are shown in figure

3.14.

These blocks have the practical advantage of being insensitive to the nonlinear

stray capacitances to ground associated in integrated circuits with MOS

switches and capacitor plates [KjJ Three types of input network to the op-amp

are shown, together with the transfer functions from each to the output. For

frequencies much smaller than the sampling frequency, where z 3, the two

switched inputs are approximately equal and opposite. This is the case in which

approximation of a switched input as a resistor is fairly accurate, and the two

types simulate positive and negative resistors. At these frequencies it is rea-

sonable to expect that arbitrary ifi] are possible, or at least that for any given

choice of ffij some “nearby” tii{ will be attainable. At frequencies near the



Second-order Problem

A second-order inverting bandpass I3utterworth transfer function,

QS~+_-&+~’ after transformation to the discrete-time domain by the bil-

z- 1 .inear function s=-z+l’ ES

where LX= z-d-
- G E *

We would Iike a synthesis of this transfer function with a two-

op-amp switched-C circuit using the inputs shown in figure 3.14. We wish to use

a structure like that of the Tow-Thomas biquad, which is known to be good.

Thus the second amplifier is to be a non-inverting switched-C integrator, while

the first is to have the desired bandpass t(z) at its output. The inputs to

amplifier A l are to be determined to make this possible.

In principle three kinds of “integrator” inputs are possible (cf. figure 3.14):

V
“co-p base” 6s w i t c h e d - C  (*&&=z----);

G,* z-l c
“anti-phase” switched-C

V0.2 A I cc2 V
( V =kz

a,2
=--); and simple capacitor inputs (F&=?
z-l c

-cc ). The three
c*s

possibilities are not, however, independent because

convenience):

[12] (putting Ca=C&=Cc for

t
1

rz,z +L&,z =--
z

2-1 z-l

l-Z- -
-2-1

Thus a parallel combination of a “co-phase” input with capacitor Cb and an

“anti-phase“ one with gain Ca where, say, &,>Ca may be replaced by a combina-

tion of an unswitched input Cc=& and a co-phase one with capacitor Cb-Ca.



Figure 3.14: A General Switched-C Building Block

sampling rate, however, the situation need not be so good.

Biquadratic sections with arbitrary transfer functions may be obtained [ IO]

and specialized types of ladder simulation done [11,121 with these mismatched

integrators, but it is not certain that high-performance structures may be pro-

duced for arbitrary transfer functions. Since dynamic range is already a prob-

lem in this technology these limitations may be serious.

We will illustrate these problems by attempting to design a second-order

filter with a reasonable choice for lfij, which will turn out to be impossible. We

will show how to modify {fij so that the design is possible, and discuss the impli-

cations for system performance of these changes. This example will also illus-

trate the manipulations necessary to design for given Ifi] even when it is possi-

ble.



When CaXb an unswitched capacitor and an anti-phase input are similarly pro-

duced.

Because of this equivalence we concern ourselves only with two types of

input during synthesis, ignoring the unswitched C. The circuit equivalence may

be applied to any resulting design to save switches and minimize total capaci-

tance.

In order to obtain the desired Tow-Thomas-like structure we must have

where & is the transfer function of the “non-inverting integrator” building

block, +.
z-

Signals at integrator inputs

With the single type of integrator heretofore assumed available, synthesis pro-

ceeded by calculating, from the given ifi{, the set of signals required at the

inputs to integrators ([sf& and solving for the combination of available signals

(&I and 4 needed to produce them. When two types of “integrator” transfer

function, & and &Z are involved a slight modification is required.

For this case we deem the op-amp input signals to be (z -l)fi,z and need to

find ways to produce them from the signals of the form -~f~,~ or -2~~ (co-phase

inputs) and fi,z or q (anti-phase inputs), Twice as many types of signals are

available to choose from, but all coefficients are constrained to be positive.

While in the ordinary case there must be a unique set of coefficients that solve

the problem, in this case there may be none or many. The larger set of signals

opens up the possibility that infinitely many solutions will exist while

straint that they must all be positive makes it possible to have none.

the con-



For this particular example it turns out that no solution exists. Let us

demonstrate this by searching for a solution for the input of amplifier 1,

(where e=(Z?+fi)(z2+cx)) which must be composed of a weighted sum ‘&gt of

the six signals (which we denote ~i,~) available:

u2,2 = -zu2 =-2 3-cxz/e2

u3,2 =f1,2 ---z2+l/e2

Comparing coefficients on the various powers of z in the numerator results

in the four simultaneous equations



These are four equations in 6 unknowns, and so have infinitely many solu-

tions. None of these solutions, however, has all coefficients positive. We may

see this by systematically simplifying. Combining the second and third equa-

tions to eliminate %,

qz--*+aa-aaz-al (3-9)

Combining this with the fourth equation to eliminate as yields

q=-aaz- al- 1 (3-10)

But now this shows that no solution in positive ai is possible, because the right-

hand side must be strictly negative and the left positive.

This has shown what was promised: that it is not always possible to use the

building blocks of figure 3.14 to produce completely arbitrary {fij. In addition,

the example chosen is quite a reasonable one, so that it appears that the weak-

ness of this selection of blocks is significant.

It is possible to produce arbitrary transfer functions with these building

blocks, since a general biquad exists [lo]: they just fail to offer the kind of flexi-

bility needed to produce arbitrary structures. It is an open question whether

or not they can nonetheless always produce structures that are “good enough”.

One of the original switched-C approaches used [13], instead of the co-phase

input, an input like that in figure 3.15.

This has a transfer function exactly the negative of the “anti-phase” type, and

so is capable of generating completely arbitrary if%]. With inexact design

methods (like resistor equivalences) this exactness is no real advantage, and

even a cause of some inaccuracy [15] because the “phase errors” of co- and

anti-phase inputs approximately cancel and so lessen the errors induced by the

design method. When using 1F synthesis, of course, design is exact even with

17 building blocks.
z-



Figure 3.15: Alternate Inverting Switched-C Integrator

The switched-C input of figure 3.15 is not, however, fully stray-insensitive since

it is affected by switch capacitances. It is insensitive to “bottom-plate” parasi-

tics [9] which are the dominant kind.

We have shown that it is fairly easy to proceed from an abstract fA,b,c,ci] system

description to circuits whose structure closely corresponds with that of the sys-

tem. Under various restrictions on fA,b,c,d{ it is possible to use very simple

“building blocks”, like passive RC integrators. A new type of single-amplifier

third-order section was systematically developed in this way.

The forms that restrictions on the use of certain blocks take can suggest the

root cause of performance difficulties with some structures: thus we showed a

relationship between a Tow-Thomas

single-amplifier biquad that turn out

nal variables.

biquad and a relatively low-performance

to differ only in the scaling of their inter-

We were able to use the method to produce an unusual type of result: a proof

that no simulation of a particular ladder filter was possible using a popular

switched-C technology. This type of power is useful when one wishes to explore

the fundamental limits to a new realization technology.



The IF synthesis technique may be used to do practical design, to demon-

strate the relationships among apparently different circuits, and to investigate

theoretical properties of circuit approaches to filter implementation.

1

[8I

PI

References

G.4. Korn and T.M. Korn, fXXec~ron~c Analog Computers (dc Anolog Com-

puters)” McGraw-Hill 1956

0. Wing, “Ladder Network Analysis by Signal Flow Graph - Application to

Analog Computer Programming”, IRE Trans. CT-3, pp. 289-294, Dec. 1956

P.0. Brackett and A,S. Sedra, “Active Compensation GOT High- Frequency

Effects in op- amp circuits with Applications to Active- RC Filters" IEEE

Trans. Circuits and Systems, CAS-23, pp.68-73, Feb. 1976

D. Akerberg and K. Mossberg “A Versatite Active- RC Building Block with

Inherent Compensation for the Finite Bandwidth of the Amplifier”, IEEE

Trans. Circuits and Systems, CAS-22, pp. 407-415, May 1975

K. Martin and A. Sedra, “On the Stability of the Phase- Lead Integrator”,

IEEE Trans. Circuits and Systems, CAS-24, pp.321-324 June 19‘7’7

R.W. Newcomb, Active Integrated Circuit Synthesis Prentice-Hall, 1968

A.S. Sedra and P.0. Brackett, Fitter Theory and Design: Active and P a s -

sive Matrix Publishers, Champagne, Illinois, 1978

L.B. Jackson, “On the Interaction of Roundoft Noise and Dynamic Range

Iin Digital Filters", Bell Syst. Tech. J., v. 49, No. 2, pp. 159-184,

G-C. Temes, MOS Switched- Capacitor Filters - History and

Art”, European Conf. Circuit Theory and Design, The Hague,

lands, August 1981, pp.l76-185

1970

dSt&e of the

The Nether-

‘US



[lo] K. Martin and A . S .  Sedra, “Exact Design of Switched- Capacitor Bandpass

Filters Using Coupled- Biquad Structures”, IEEE Trans. Circuits and Sys-

tems, CAS-27, pp. 469-475, June 1980

[11] P.E. FIeischer and K.R. Laker “A Family of Switched- Capacitor Biquad

Building Blocks” BelI Syst. Tech. J., VOI 58, pp. 2235-2269, Dec. 1979

[12] M.S. Ghausii and K.R. Laker, Modem Filter Design, Active RC and Switched

Capacitor, Prentice-HalI, 198 1

[13] D.L. Fried, ‘Analog Sampled- data Filters”, IEEE JSSC, SC-7, pp.302-304,

Aug. 1972

[14] C.H. Sequin and M.F. Tompsett, Charge Transfer Devices, Academic Press,

NY, 1975

[15] R.W. Brodersen, P.R. Gray and D.A. Hodges, “MOS Switched- Capacitor

Filters”, Proc. IEEE, vol. 67, pp. 61-75, Jan. 1979



This chapter shows how some important measures of the “practicality” of a

filter design may be related to intermediate functions. We do this so that a

designer can compare different approache s easily, without having to investigate

them on the component level.

We will concentrate on simple formulae that measure dominant problems.

Thus, for mstance, sensitivity to time-constant variation will be discussed more

fully than sensitivity to iA,b,c,d ] coefficient mismatch. Two general perfor-

mance areas are addressed in some detail: sensitivity and dynamic range.

Several other areas of interest (e.g. tuning, propagation of non-linear distor-

tion and minimization of the range of component values required) will be men-

tioned in relation to these dominant concerns.

The two interesting vectors of functions fs and gs were defined in terms of

tA,b,c,d { in chapter 2. They could be interpreted as

and

YS
i%sZ-

&i,S

(4-0

(4-2)

where zi,s is the Laplace transform of a disturbance signal injected at the input,

of integrator “i”, according to a version of the standard state equations includ-

ing disturbance terms as follows:



Q2,f
x;=Axf + but + I

.: I

(4-3)

These functions, when combined in various ways, may be used to predict

many of the important indicators of filter performance and practicality.

4.2 Derivative Sensitivity

The vectors fs and gS combine in various ways to measure sensitivities.

The formuIa we use to relate f and g to

sensitivity is (cf. Fig 4.1)

dtab
(4-5) /

/
-= tam* t?.&
Wnn

a

where tarn, e.g., is the transfer function

from point “a” to point “m”.
1

This formula appeared originally in [1,2] -7-
,*

and was derived in terms of Tellegen’s

theorem, but we give a simpler derivation Figure 4.1: Investigating one arm of

of it here that will help to show the close an SFG

relationship between the sensitivity and dynamic range problems.

Figure 4.2 shows a system like that of Fig. 4.1 with a gain perturbation At,,,,,

added to the transmittance of interest. The signals appearing at various nodes

when the system input is uS are marked.

ws



Figure 4.2: Perturbed SFG

Now one may compare this with the SFG of figure 4.3, which has (instead of a

gain perturbation in L&,) an extra signal injected at node N identical to that
injected by the arm modelling gain error in Fig. 4.2.

Now signals reaching

the rest of the system

are unchanged between k”
the two SFG’s, and all m - ”

other signals and gains

are unchanged, so the /
la

\

two systems must (to a “\ t~*.~+t~*(At~“)(u./~)

first-order approxima- \ 6 1

tion) have the same out- ‘ \
put Ys. Comparing the .y-

two expressions for ys

gives equation 4-5. Figure 4.3: SFG with two sources

‘The relationship between figures 4.2 and 4.3 illustrates the close relationship

between sensitivity problems (in which gain errors like that of Fig. 4.2 are con-

sidered) and dynamic range and distortion problems (in which unwanted signals
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are injected at various nodes as in Fig. 4.3).

4.3 Sensitivity Measures

Simple derivative measure like -& are not often the most natural ones to

choose to measure the significance of component errors. Component tolerance

is more often expressed as fractional change .& , so that the classical sensi-
P

tivity measure

is more useful. In filter stopbands, where & +O, a hybrid of the two common

forms is more easily interpreted:

(4-7)

If, for instance, S:= 1 and p is changed by l%, signal feedthrough of AfsZ.Ol is

induced, which corresponds to only 40dB of attenuation.

Note that (4-7) is almost equal in magnitude to (4-6} in passbands (where

[~~(j~)~E~), so that if iS[ is the quantity of interest (4-7) might as well be used

both for pass- and stop-bands.

S> is a complex function of frequency, and so contains information about

sensitivity of magnitude CLTZ~T phase of fs to magnitude CZTLC~ phase of /_L Because

Wr&)
we can interpret the real and imaginary parts of s:= a(lnPJ as follows:
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-Although phase errors in ts are often unimportant, note that both Re(s) and

ln&) measure sensitivity of 1 ts 1 to some type of error in the value p: magni-

tude and phase respectively. For some components (e.g. resistors at audio fre-

quency) Ap(p) is negligible in comparison to Aln 1~1; but for others (like Miller

integrators), the two terms are of comparable importance. In the latter case

1 S> 1 takes both types of effect into account in a balanced way.

4.4 Sensitivity Formulae

This section uses the derivative sensitivity formula of section 4.2 to find St8 for

various system components in terms of the design vector fs and the related gs.

These sensitivities of ts to system coefficients may be used together with the

sensitivities of system coefficients to circuit components developed in Chapter

3 to analyze the performance of circuits.

Sensitivity formulae are also useful in tuning filters: by correlating the meas-

ured transfer function error with first-order sensitivities one may obtain stra-

tegies for adjusting a selected set of coefficients to minimize error.
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Figure 4.4: A-matrix sensitivity

Let us start with Skj, the system sensitivity to the &j coefficient. In the system

this coefficient interconnects the output of integrator “j” and input of integra-

tor ‘Ii”, as shown in Figure (4.4). According to equation (4-5):

But tam,s=fj,s and td,s=gi,s. It follows that

Table 4.1 summarizes &,&, and Sk for the other system coefficients.

Table 4.1: Coefficient Sensitivities
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One other interesting sensitivity measure is S;y, the sensitivity of ts to a gain

(or time-constant) error in an integrator (cf. section 3.2.1).

This may be computed by finding the sen-

sitivity of ts to errors in an SFG edge of

gain 7i (nominally equal to 1) inserted in

cascade with integrator 1 as shown in Fig-

ure 4.5. This edge  corresponds  to  the

extra factor 7 introduced in chapter 3 into

the expression for integrator gain: -&.7.

We use it as a convenient tool for model-

ling integrator errors.

Figure 4.5: Integrator Sensitivity

For this case ta,,,s=fi,s and tnb,S=sgi.S (where the factor s appears because gieS

is the gain from the &~zc!, not output, of integrator i). Thus

(no term in 7i appears because it was defined to have nominal value l}.

Example (4.1)

- - -  - - -

The third-order Butterworth filter of section 3.1 was designed by choosing

the transfer functions from the input to each state (capacitor

current) of the circuit of figure 3.6. These functions are

VCf sfiss =e=(s+0.5+j0.5)*(~+0.5-j0.5)
in ,s es

4 2 s s + lf2,s ===0.5* -
es

voltage or

(4-11)

ffi] to be

inductor
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where

t A?!&=
SZ es (s+l~(s+O.5+jO.~~~(s+O.5-jO.866)

From the formulae for f and g ( 2-3 and 2-4 ) or by the methods of chapter 6 one may

find that

s+l
gz.z=- 1.7

g3.z =
(s+o.5+jo.5)(s+o.5-jO.5)

es

We can therefore use (4-10) to find that, e.g.,

A plot showing 1 Sky”’ 1 and Re(S~l)=S~~~uu” appears in figure 4.6. Inspection of the

curve for S Its I
in reveals a maximum value of about 0.75 near s =j 1, the passband edge.

jkj 61This may be interpreted according to the formula A4tt (a)z8.681 y 1 s8.68ski1 ‘- to
All

find that a 1% error in AlI causes a 0.065dB error in attenuation at the passband edge.

It is interesting that, because of the special nature of this system, fl=g3 and f3=gl.

It foIIows that fl,Sgl,S =fa,Sgs,S and so that S&=Sk3: i.e. that errors in the terminations

have identical (to first order) effects.

IIJS



Sensitivity

t

Figure 4.6~ Sensitivity to AlI

Figure 4.7 shows plots of the real and imaginary parts of integrator

scnsilivity

lm

1 8 *ul
1 2 3 4

Figure 4.7: Magnitude Sensitivity to Integrator Gain and Phase

sensitivities for integrators 1 and 2. Again, because of the symmetry

that makes ks as =b ms I s&s;. Notice (equations 4-6 and 4-9) that the real and
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imaginary parts measure, respectively, the sensitivity of lfS 1 to gain and phase errors

in integrators.

Summary

We have shown that extremely simple formulae connect fs and gS with sensitivi-

ties to coefficients and integrator gains in the system description; the circuits

in chapter 3 had simple relationships between component sensitivities (e.g. sen-

sitivities to op-amps) and coefficient sensitivity. Thus fs and gS are the essen-

tial functions for describing sensitivity of state-variable circuits.

ct.5 Aggregate Measures

One is usually interested in sensitivity functions in order to know the overall (or

“aggregate”) effect of random component errors on system performance

There are several ways of measuring the aggregate effect.

The two most common forms of aggregate are worst-case and statistical

types. A worst-case measure might be, e.g.,

Note that we use the subscript = here to indicate that we have defined a type of

“infinity norm”, which takes a maximum over the items of interest. This type of

notation will appear in more detail when we discuss dynamic range.

Measures like this frequently appear in the literature, but lack rigorous

justification. The best that can be said for them is that they are easy to evalu-

ate and that the resulting figures are often larger for bad filters than for good

ones.

A statistically based aggregate measure might look like

ws



The “2” subscript here denotes a “squared” norm just as the ‘I=” earlier denoted

a “maximum” norm.

This type of measure lets one relate the statistics of a filter’s overall perfor-

mance to the statistics of its components: if, for instance, all &j have indepen-

dent Gaussian statistics and standard deviations 1% of nominal values, we could

deduce from a curve showing that S[i’ was equal to 3 at some frequency CJ that

the standard deviation of 1 tsf resulting from variations in &j would be 3% of

IiS I -

An extensive literature is available on “multi-parameter sensitivity meas-

ures” [3], which are variations on these Sz measures that suitably weight con-

tributions of several effects. If one knows the statistical properties of the vari-

ous components of a filter (e.g. resistors and integrators) one may construct a

weighted measure of the general sum-of-squares type that predicts the variabil-

ity of & due to variations in all its components.

An important point raised in chapter ? is that systems that are nearly

optimum in performance under any of these measures are good for any other

measure of this general type. For this reason the concept of a “good” filter is

reasonable? because “goodness” is not a strong function of the details of a figure

of merit.

Exurnple (4.2)

For the third-order running example we can find, say,
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1 2 3

Figure 4.8: An Aggregate Sensitivity Measure

which is plotted in F’igure 4.8 together with a lower bound (derived in chapter 7}
on this quantity. A scalar value could be derived (as a figure of merit) as some
suitably weighted integral of this curve.

From the curve we may deduce, for instance, that if all three integrators
have complex gain factors yi (cf. section 4.4) with standard deviations of 1%
then the overall transfer function will have an error with a standard deviation of
about 2% near the upper end of the passband.

46 Dynamic Range: Analysis

By “dynamic range” we mean the ratio between the largest and smallest signals
that a system can accommodate. The “largest” signal for which the system
works properly is usually determined by amplifier saturation or arithmetic
overflow, while the “smallest” useful signal is determined by electrical noise or
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arithmetic quantization effects.

Note that the term “dynamic range” is occasionally used in the literature to

refer to what we call “signal swing”, the largest possible signal value. Our usage

is consistent with [4].

The reason that the dynamic range problem is particularly difficult in filter

design (as compared to amplifier design) is that internal components can limit

signal swing and generate noise? and all of these intermediate signal values and

noise gains are related to the input signal and system gain by different #‘

order transfer functions.

Dynamic range has been fairly thoroughly studied for digital filters [5,6,7].

This section shows the results as they relate to our synthesis method and for
the less thoroughly studied continuous-time case.

There are two kinds of things that we must be able to do about dynamic

range in filter design: analyze a design to find its dynamic range, and synthesize

designs that have good dynamic range. This section discusses the analysis

problem, and sections 4.7 and 4.8 discuss two synthesis approaches.

4.6.1 Mathematical Measures of Signal and Noise

There are infinitely many ways of measuring the magnitude of a signal in order

to evaluate dynamic range, and the most appropriate choice will generally

depend on details of how the filter is to be used - what kinds of signal and noise

it will be subject to and how its performance will be measured.

The situation is analogous to that for measuring aggregate sensitivity (cf.

section 4.5): several mathematical measures are possible for the collection of

functions representing integrator output signals and noise gains. Some meas-

ures will be appropriate in some situations and some in others. Even the types

of measures reasonable in different situations are strongly analogous to those

needed for analogous sensitivity problems, because the basic mathematical

problem is to measure the lengths of vectors in both cases.



Most of the important types of signal and noise discussed below fit reason-

ably well into the category of signals with known spectrum and Gaussian statis-

tics. For this class of signals it is natural to use “root-mean-square” (or “Ls”,

see below) magnitude measures, which are the ones that we prefer. The natur-

alness comes from the fact that root-mean-square measures for intermediate

functions allow us to compute output signal statistics from input statistics. We

will, however, briefly discuss the alternatives.

A whole class of “norms” or measures for intermediate-function magnitudes

exists. In the digital-filter case the l+ measures of functional analysis [6]

llf lip d
1
y~f(u)~~du VP

I

have been studied. This class of norms includes Ls, which measures

mean-square” values; L_, which measures maximum value; and L1, which

“root-

meas-

ures average absolute value. The one we emphasize is Lz, which is the best

model to use for noise-like signals because it is concerned with noise power.

The issue of choosing “p” in the definition of an b measure was touched on

in section 4,5 where we were concerned with aggregate measures of sensitivity

performance, which are also types of norm. We will often meet with situations

in which this choice comes up, and will therefore often use the concepts of

“infinity norms” (those involving maxima) “2-norms” (involving rms values) and

“l-norms” (involving sums of magnitudes).

As an application to digital filters, Jackson [6] showed for the digital-filter

case that estimates of the magnitude of a product q,s=fi,sus could be made

according to

1

This means that if we know an L* norm on a signal u, and wish to avoid clipping

by forcing 1 q,i 1 df (where A8 is the clipping level), we should use scaling to



4.6.2 Limits to Signal Swing

We will pay most attention to signal Ievels at integrator outputs q, because in

the type of circuit in which we are most interested [cf. section 3.11 all amplifier

outputs are either q or -q, and “clipping” of signals is the dominant limiting

mechanism.

Another important type of amplifier overload is “slew-rate limiting”, [9]. This

mechanism may be regarded as limiting derivatives xi’*.

We are therefore interested in the magnitudes of xS=fS*uS (to investigate

“clipping”) and perhaps in the magnitudes of sxS=fS*s*uS (for slew-rate limiting).

4.6.3 Properties of the Input Signal

The signal appearing at the output of an integrator depends on two things: the

input signal u and the appropriate “intermediate transfer function” fi . In

order to “scale” a filter to avoid clipping we must regulate the magnitudes of

integrator output signals by suitable choice of [fij: in order to know the best

way to choose magnitudes of ifi] we must use whatever information we can find

about the input signal u.

What we know about u at the time a filter is designed depends strongly on

the application. Some examples are:

1. swept-frequency systems: V_Q is known to consist primarily of a sinusoid of

known amplitude occuring somewhere in a band of frequencies. The natural

measure is U2zzclfi.S(jtz), which is just the highest gain for a sinusoid in the
,

appropriate range. This is an La measure on the frequency response. This

type of measure, which is easy to evaluate, is suggested for analog filters in

POl*

ii. pulse-shaping: 7~~ is known in advance. The most appropriate measure of q

is ll~ll&$n~x an L_ measure on the time-domain



response which lets us stop the intermediate signals from clipping. This

may also be regarded as a norm on ifi{,

iii. bounded input: a magnitude bound (and nothing more useful) is known for
Us, e.g. because it is known to be the output of an op-amp or a digital-to-

analog converter. Thus, if we know a bound, [ut /z&W, we can say that

1~ 1 SMli fi,t(i) 1 dt . This maximum magnitude for 1 ZLT$,~ \ is attained for the

special case when the input signal is a clipped, time-reversed, version of the

intermediate-function impulse response, i.e. ZQ =_Msgn(f~,t (-t )). This means

that if we scale so that Jlft,t(t)\df 51 we can guarantee, e.g., that no input

from an o&amp (i.e. bounded by the power supplies of a circuit) can “clip”

the outputs of op-amp integrators, i.e. demand q,t outside the supplies.

This is probably an overly conservative type of scaling, but is an example of

the use of an Ll measure.

iv. known spectrum: an average power spectrum is known for u, which is

“wide-sense stationary” [ 111. Speech and music signals may reasonably be

treated this way. This is the case for which some type of L2 measure is most

appropriate. If we denote the power spectrum of a signal u as SU, then we

can write

to deduce the spectral properties of q from those for u.

4.6.4 Noise Sources

Analog signals are corrupted by various sources of noise within a filter. These

sources may arise from several types of effect and are accordingly character-
ized in different ways, and may be injected at various points within a filter.

Digital signals are not usually considered to be affected by noise in this same

way, but the rounding operations usually necessary in implementing digital
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filters are often modelled as noise sources.

Where Noise is Injected

In a continuous-time analog system thermal, shot and flicker noise are contri-

buted by all active devices and resistors and interfering signals are coupled

into the circuit in various ways [12]. We can usually treat the overall effect as

equivalent to that of injecting noise only at the inputs of integrators. It is also

usually, but not always, reasonable to assume that these noise sources are

independent: thermal noise sources are quite independent of each other, but

interference effects can be highly correlated.

The effects of noise signals injected at integrator inputs may be modelled by

equation (4-3), which added a noise vector E to the system equations. The igi{

functions give the gain to the system output for each Q, so that we may write

the system’s output signal as a sum of a signal and noise:

How Noise Affects the Output

The total effect of all of the intermediate noise sources in a filter will be to add

a certain noise signal to the system output. One might be interested in the

variance of the noise signal (as it represents a measurement error), its subjec-

tive effects on a signal to be interpreted by people, or even the maximum possi-

ble value of error. Subjective effects are often modelled by the signal/noise

ratio at the output of a frequency-weighting network that models human sensi-

tivity, and so can be regarded as a mean-square type of measure.

If, for instance, rms noise level at the output (noise variance) is of interest

I

l/z

then an appropriate way to measure c0 is to take I~c,,~~~= I c~,~(~GI) 1 %LJ . If,



on the other hand, we wish to measure the subjective effect of the output noise

we should include a suitable frequency-weighting function W(U) into the norm,
f- 1 I/4

producing ll~oll2=p- I ~o,sW I 2wJwJ
- - I

* “A’‘-weighting and “c-message”-

weighting are practical examples of this kind of measure.

Types of Noise

We can distinguish two important types of noise as mathematically distinct:

1.

ii.

noise of known power spectrum (e.g. Johnson and shot noise). L2 measures

are appropriate for noise gains {gi]. If, for instance, &i are all white with

power spectral density SCi =l, then the output noise power will have spectral

density SeO=x 1 gi,s Ga) 1 2. This in turn will have rms value x? 1 gi,s(ju) 1 2d~~,
i 1 -m

so that the natural choice of measure for lgi{ is l[giilz= j 1 gt,s (_jc~) 1 ‘d GJ
I I

m
. We

-m

can then simply say that white integrator noise of unit power spectral den-

sity results in an output noise level of xjigi[\22.
i

noise of bounded amplitude (e.g. “roundoff noise” and some types of “flicker

noise”). An L1 measure ( J 1 gt (f ) 1 dt ) could be used here to predict the larg-

est possible error in the output. Thus, e.g., if we know (only) that 1 ci,t 151,
m

we can say that the output noise signal &*,~(~)=~~~i,~(~-T)gi,~(~)~~ cannot
d 0

exceed ~lld~
i

where lIgill~~~lgi,~(~)l~~. We could in principle use this kind

of scaling to design so that we could guarantee that the output signal was

never in error by more than a stated amount, so long as the input noise

remained bounded by a given figure.

Even with input noise known to be bounded in magnitude, L2 measures

may be used to predict output noise variance from a noise power spectrum.

1 We use a two-sided definition for consistency with the material of chapters 8 and 9.
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This information may well be more useful than the conservative type of

bound implied by the use of an Ll measure.

These types of noise are analogous to two of the types of signal discussed ear-

lier. It is also possible to use “infinity norms” like \jgil@rnfx(gi,s (j u)), but there

is no obvious justification except that the figure is easy to compute and visual-

ize.

4.7 Dynamic Range: Scaling

One is generally free to set the signal level at the output of an amplifier arbi-

trarily by scaling operations (cf. Chapter 3). If too high a level is chosen the

amplifier will occasionally clip or slew-rate limit, while if too low a level is

chosen the ratio of signal to amplifier noise will be low. Thus a trade-off

between clipping and noise exists at every amplifier.

By “scaling” a set of {ftj we mean producing from them a new set lit 1 that

differ only by constant factors, i.e.

so that the magnitudes of [zi] are what we want. Our usual reason for doing this

is to avoid “clipping” the integrator outputs fk{. In the terms of section 4.6,

this means forcing /&/j&V for some suitable norm on iq] and a clipping limit M.

We will show one way to choose a good M later in this section.

Section 4.6 discussed how to get II&/[ from information about the input signal

u and the lfd{ in different situations. Using this information, one may do scaling

by putting
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Further, because we are generally free to define norms on tfi{ etcetera to suit

ourselves, we can usually simply say

so that for a properly scaled filter ~~&~~=l Pi. Note that this simple expression

for the magnitudes of ifi{ in a properly scaled filter assumes that a careful job

has been done of choosing a suitable norm for intermediate functions: one that
includes all information known about the input signal and about the “clipping”

behaviour of integrators.

The widely-used [ 13,101 technique of scaling filters to have equal maxima of

fi,=(ju), for instance, is the special case of this in which a type of “infinity norm”

is chosen on the s-domain representation representation of fi. We suggested

above that this was properly justifiable only for swept-frequency type input sig-
nals: it tends to be used in other situations just because it is easy to compute.

We would next like to know what effect scaling has on filter performance
figures other than probability of clipping: how it affects output noise, sensi-

tivity, system structure and fA,b,c,ri j coefficients. It is easy to show (as we do in

section 6.8) that the effect of scaling fft] by an arbitrary set of factors ai is to

scale the fgi{ by the reciprocal factors l/ai. It also turns out that scaling tfi]

has no effect on the general structure of the system {A,b,c,d} or on sensitivities

to lA,b,c,dj coefficients or to sensitivities to yi. Sensitivities to yi, for instance,

are unchanged because they are proportional to ft,sgi,s, and one term is

increased by scaling while the other is decreased an equal amount. Scaling

does, however, affect the sensitivities of integrator gains yi to operational
amplifier non-idealities; it therefore has an important effect on the sensitivity

of the overall filter to the op-amps used in implementing its integrators. This

effect was mentioned in section 3.2.1 to explain why a realization using passive

“integrators” should be expected to be sensitive to its op-amps.
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Because it leaves the system structure unchanged, scaling is a particularly

harmless operation (except as regards op-amp sensitivities), and in fact should

be performed on any filter design before it is realized. It minimizes the output

noise level obtained from any given structure with given characteristics of the

input signal u because it makes ffij as large as possible before clipping sets in,

which in turn makes lgi] as small as possible because of the reciprocal relation-

ship between scaling effects on tfi] and fgij. This means that it maximizes the

dynamic range of the structure. Well-scaled structures tend to have low

integrator gains, and so improve op-amp sensitivity performance as well as

dynamic range. We show results in chapter I that imply that systems with good

dynamic range tend to have good sensitivity performance.

Example (4.3)

Let us say, for the third-order Butterworth running example, that we expect the

input signal to have a constant (white) spectral density of lV/w. If we choose

an & norm for [ft] functions

we will be able to say that the rms signal levei at the output of each integrator is sim-

ply i\fi\l2. For the three ffi] taken directly as simulations of capacitor voltages and

inductor currents, we can compute (by the methods of chapter 6)

If we decide, for instance, that a 1.5V rms level is acceptable at the output of each

integrator,* we may scale ifij accordingly, getting e.g.

l we show how to choose this number in section 4.7.1



ia= 1.5
0.7236 ‘a

This scaling reduces output noise gains {gi] by the same factors by which it increases
signal Level, so that for this exampIe we could expect scaling to reduce the output noise
contribution of, e.g., integrator 3 by a factor of almost 2.

This scaling makes the fgi] as small as alIowable for this structure and type of input

signal, and so minimizes the noise output. Because our scaling took the magnitude of
the signal into account, this in turn maximizes the dynamic range of the structure.

Note that this approach to scaling is more general (since it is applicable to arbitrary
structures), more exact (because it uses a realistic statistical model for the input sig-

nal rather than a swept-frequency type of model), and easier to understand than that

presented in [10].

4.7.1 Choosing Signal Levels

When scaling is to be done using LI or L_ measures to guarantee that clipping

never occurs, the question of how large a signal to permit at each integrator

output can be precisely answered. Signals are more often, however, only known

statistically so that it may not be possible to set the probability of clipping to

zero; further, even when it is possible to do so the resulting scaling may be so

conservative with respect to clipping that its noise is unacceptable. When the

probability of clipping is to be permitted to be non-zero the question of what

value to choose for it lacks a precise answer.

This section shows a way to choose acceptable rms signal levels. Because

noise and clipping are quite different phenomena, it is by no means obvious how

to manage the trade-off between the two. One approach is to model the effects

of clipping as a type of noise, and choose the signal level that maximizes the
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resulting signaI-to-noise ratio. This kind of approach seems natural enough in
digital signal processing, where “noise” is already simply a way of modelling a
non-linear effect - quantization - but is considerably less obvious in analog sys-
tems where the physics of noise are very different from those of clipping.

The “noise” source that models clipping (cf. figure 4.Q) is one that injects a
noise voltage ~~,~(t) equal to the difference between an ideal system’s signal
level qVt * and the clipping level Vc whenever 1 q,f (t ) 1 >Vc.

ideal

ClipQed
xltput
vo!tage k

ideal
OUtQUt
voltage 7

VC

-VCbr

1

Figure 4.9: Modelling Clipping as Noise

Thus the probability distribution for ec,t (f ) can be computed from the “tail” of
that for qet(t) (cf. figure 4.10).

If the signal qSt(t) desired at an amplifier output has gaussian statistics and
an rms level u (which we can set by scaling), the probability that 1q.i 1 exceeds
Vc is

P(\xiJ(f)~>Vc)=Z 1-(l/J%&= e+dv)
E
a

The Lz norm of ~~.~(i) is the rms clipping noise voltage at the amplifier output.

* that is, the signal level which would have been attained if clipping were not to occur.
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Figure 4.10: The Probability Distribution of Clipping Noise

It may be computed from

We can use this formula to predict the variation of “clipping noise” with scal-

ing (i.e. changing v). By simultaneously looking at the effect of scaling on lg*],

we can get two curves for “output noise” as a function of scaling. Figure 4.11

shows a typical pair of curves for the output effect of clipping noise Ed and

integrator noise C~ as a function of scaling of the output signal level, which is

VCmeasured as 7 - the ratio of maximum allowable signal to the rms level. Note

that the total resulting noise is at a minimum when the two contributions to it

are approximately equal. A curve like this was used in [5], where it suggested

that the rms level be a factor of 3 below overload.



output noise
contribution

1

clipping noise

S II&c It II&II

integ+ator noise

Figure 4.11: Noise versus Scaling Level

In general the right choice of + will depend on the noise characteristics of the

integrator to be used: if integrators generate 1rr~V of noise in the passband we

should choose a lower (less conservative) i.e. higher signal levels) than if

they generate only 1pV of noise. As long as the two “noise” curves have the gen-

eral shape shown in figure 4.11, a good policy will be one that equalizes the

effects of cC and &i .f

Table 4.2 may be used to choose nominal signal levels in this way. It shows

for a number of choices of + both the probability of clipping and the

equivalent “clipping noise” level, assuming VC =lOV. This equivalent noise voltage

is compared in some cases to typical quantization and thermal noise contribu-

tions Q for various integrator noise mechanisms. Thus, for instance, setting

the rms level of q to 1.25 volts when the clipping level is 10 volts results in a

t Note that, properly speaking, one should not use integrator noise referred to the input of

each integrator, which is how we have described &i up to EOW, but to the output, because that

is where &C is applied in figure 4.9.
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VCrms voltage 7 P (clipping ) clipping noise equivalents

at output (eq. 4-12) voltage (rms) see text

10 1 .37731 3.06V

5 2 45.5.10-3 537mV

3.i 3 2.7.10-3 67mV ~5bits

2.5 4 63,3.10-' 6.2mV s9bits

2 5 573,lo-Q 393/_Lv E 13bits

1.6 6 1.9 lo-g 16.4@

1.43 7 2.56.10~" 440nV ~lk!J,lOkHz

1.25 8 1.2442. lo-” 7.5nV slk i-I,4Hz
7

Table 4.2: Choice of Scaling Level

clipping noise level approximately equivalent to that produced by Johnson

noise in a lkfl resistor over a bandwidth of 4Hz. The table suggests that choos-

VCing 7 in the range 3-5 makes the contributions of clipping and quantization

noise similar for a digital filter with inputs to delays (i.e. outputs of
VCmultiplier/accumulators) quantized to 5-13 bits, and that ~s7 looks like a

sensible choice for an analogue filter, because it makes “clipping noise” similar
in level to the kinds of thermal noise likely to be found in an active filter

(depending on its bandwidth and the components used). These figures

correspond to rules requiring that the rms level in digital filters be about 2 bits

below overload and that analogue filters have 15-20dB of “headroom” (a term

used in audio engineering for the ratio between clipping level and rms signal

level).
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4.8 Optimum Dynamic Range

Scaling optimizes the dynamic range of a given structure, but some structures

are inherently better for dynamic range than others. This section adapts to

analog systems the results of [5], which show how to construct two types of

state-space digital filter with “optimum” dynamic range in two different senses.

One type produces a structure with the lowest possible zijgi/[# over all Lz scaled

filters, and so (if the optional frequency-weighting function in the norm ligi[jz is

chosen properly for the problem and if L2 measures make sense) produces

structures with the highest dynamic range possible. The other type optimizes

the rather less useful aggregate measure njjgilj$.
i

The results follow from analysis of the behaviour of two matrices, K and

which give correlation among ifdj and tgij respectively. They are defined by

K+j ifitij (4-13)

Wij 4&%j (4-14)

Where the symbol . denotes an “inner product”. The work in [5] referred

specifically to a particular inner product, defined for discrete-time filters in

terms of impulse response sequences

where T is the sampling interval. In fact a n y  inner product may be used in

definitions (4-13) and (4-14) without affecting their results or methods, so we

can apply their work directly to analog filters as soon as we decide on suitable

inner products.

The reason that inner products are relevant is that they are related directly

to norms: from an inner product one may produce a norm by
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so that the diagonal elements of K and W are squared norms for fi and gt. We

have already seen that under some reasonable assumptions these norms may

be related directly to the limiting and noise generation problems of dynamic

range. We therefore wish to choose the definition of l in such a way as to

automatically produce the kind of norm we need on {fi] or Igil: in fact the work

of [5] applies even if we choose different definitions of inner product for tfi] and

M*

Whenever we have a norm of the general IQ type we may obtain an inner pro-

duct that degenerates to that norm when both vectors in the product are the

same. In particular, an inner product may be defined as a weighted integral

where V(U) is any (positive, real) weighting function. This degenerates directly

to an & norm when fi=f, and satisfies the requirements for a functional to be an

inner product [l4]. This means that we can use the results of [5] to minimize

output noise power for a scaled filter whenever b norms are appropriate for

both ifi] and igil.

4.8.1 Linear Transformations

We have explained the relevance to our work of the diagonal entries I& and Wfi:

the reason that the off-diagonal elements matter is that they enable one to

predict what will happen to the diagonals if different ifi{ are chosen.

Because a canonic system is determined by its f vector, and because the ifi]

must be independent, the relationship between two systems may be studied in

terms of the relationships between their ffi] vectors. A linear transformation



i=Tf

may be used to transform one system into any other.

Mullis and Roberts [5] showed how to derive a transformation T that would
optimize dynamic range as measured by K and W. Under transformation
and W change as follows:

It follows from the above that (KW)=T(KW)T-I, which is a similarity transform.
One may deduce from this that the eigenvalues of KW are invariant under
transformation, i.e. are the same for every canonic filter structure realizing a
given transfer function. We will use the notation of [5] and denote these eigen-
values id{.* Mullis and Roberts referred to the {A { (which we will take to be the
positive square roots for convenience) as “second-order modes”, and they are
called “singular values” elsewhere (e.g. [ 15].

The operation of “scaling” a filter is, in these terms, just a very simple choice
of T: a diagonal matrix. This makes it easy to discount the effects of scaling and
search for structures with inherently good dynamic range.

Conditions for Optimality

Mullis and Roberts [5] investigated the dynamic range of structures by looking
at products ~~W~~=~~f~~~2~~g~~~2. This product is not affected by scaling, because f*

and gi change by opposite amounts when scaling is done, but it does change
from structure to structure. If one scales a structure with a given x&Wti in

i

order to get kh[itji2=l Vi, then the output noise of the b-scaled system is

~&&+~&wti. The figure x&Wit therefore shows the inherent dynamic
i i i i

range of a structure.

l These eigenvalues are always positive. K and W are positive definite, but it is not automatic
that (m) also is. In this case, though it it possible to construct a T such that K=I, in which

case (%)=W but any % is positive definite, so % is too. If one (&) has positive
eigenvalues then they all do because the eigenvalues are invariant.
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Mullis and Roberts [5] gave a procedure (which we show in more detai1 in sec-
tion 5.2.2) to minimize the rather odd aggregate nKiWii, and another to modify

the resulting system to get a minimum xKtWii. These procedures based their
$

operation on the invariance of “second-order modes” ,L$.

Both techniques may be replicated for analog filters just by choosing inner
products for ifi{ and fgtj that suit the analog problem.

The structure minimizing n&iWii has a particularly interesting property: K
i

and W are simultaneously diagonal. In fact, by scaling suitably, this structure
may be made to satisfy the equations

This structure was called a “principa1 axis realization” (or, in  [I5], a “bal-
anced” realization) because one could interpret the simultaneous diagonaliza-
tion to mean that the filter’s state variables are aligned with the principal axes
(in state space) of an ellipsoid describing the most probable system states,
while its tgi{ are aligned with the axes of another ellipsoid that may be used to
describe the effects of each state on total output noise.

The structure minimizing x&iWii also has interesting properties. By suitable
i

scaling it may be made to satisfy two conditions,

K=W (4-21a)

and

&=Kj, Vi,j (4-21b)

The condition K=W which applies to both of these types of optimum implies a
sort of self-duality, because it says that the interrelationships among tf4{ are

ws



the same as those among {gij. This kind of symmetry appears again in some of

the minimum-sensitivity structures of chapter i’, and bears a thought-

provoking resemblance to a reciprocity condition.

When an le measure of dynamic range is applicable, the work of [5] provides

the best possible structure for filter dynamic range. It is, however, in general

fully dense (i.e. has nonzero values for every {A,b,c,d}  coefficient) and one might

therefore wish .to find a relatively sparse sub-optimum system as long as the

dynamic range performance sacrificed by so doing is not excessive.

4.9 Orthogonality and Angles

The concept of an inner product introduced in section 4.8 may be used to define
“angles” among ifi { vectors. As a particularly interesting case, two (nonzero)

vectors fi and fj are said to be orthogonal when fpf,=O. In general, the angle

between two vectors is given by 3 where

7J=cos-* ,,f$,,1. 1
This definition of angle has the natural geometric properties for angles: in

particular if the angle between two vectors is 0, then they are aligned (i.e. one

is just a scalar multiple of the other).

The concept of angle permits us to quantify the concept of “near-

dependence” introduced in chapter 2: we can say that a system “almost” has a

linear dependency among its {fi] if the angle between two {fi{ is very small (or,

better, if the angle

very small).

between some fi and the subspace spanned by the others is

As an example if one investigates companion form filters, for which

one finds that the angles between vectors ft and fi+2 are small (often

less than lo}, This pinpoints the problem with companion form, as well as
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suggesting why it is not too bad at orders 1 and 2 (where all ffi{ are orthogonal).

4.10 Distortion Propagation

When the internal devices of a filter are known to generate distortion products

of signals, one is interested in knowing how these propagate to the system out-

put. The fgi] functions provide the answer: signals appearing at integrator

inputs because of distortion “see” gains igi] to the system output. Thus filters

that tend to keep igi{ as small as possible propagate distortion-induced signals

as little as possible. The situation here is completely analogous to that for

noise, so it suffices to design filters for low noise to obtain a minimum of distor-

tion at the output.

4.11 Element Spread

“Element spread”, the ratio between the Iargest and smallest vaIues of a given

type of element in a filter circuit, is often mentioned as a figure of merit. In

some technologies it is difficult or expensive to obtain large ratios, while in

other cases the element spread is held to reflect sensitivity performance. This

issue is confused by the fact that element spreads are affected both by scaling

and by the structure chosen.

When there is a direct correspondence between A matrix entries and element

values it suffices to investigate coefficient spread in tA,b,c,ci] to investigate ele-

ment spread.

Some experimental investigation of the behaviour of coefficient spread in

filter designs by the author has suggested the following:

1. That good structures of frequency-normalized filters tend not to have A

coefficients greater than 1 in magnitude after L2 scaling, but may have some

quite small elements. This observation may be interpreted as implying that
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good filters do not obtain internal inputs [sfi] by the ill-conditioned tech-

nique of subtracting nearly equal [fi j. When a lowpass or bandpass filter is

normalized to its upper passband edge, the bulk of the power in tf4j will be

at frequencies less than 1 rad/sec (i.e. in the passband): it follows that the

norms of the inputs {sf*{ will generally be less than 1 because \jfijj is 1 (we

said the filter was scaled) and s<l for the band in which 1 sQ1 is large. The A

matrix is therefore usually trying to add n vectors ifi] of length 1 in order

to obtain each lsfij, and will only need to use coefficients larger than 1 to do

so if it is required to subtract correlated Ifi].

2. Because, in good systems, products of the form gifj are all fairly similar in
at

magnitude, the simple derivative sensitivity -akj
is approximately the same

both for large and small &j (cf. equation (4-lo}). Thus classical (fractional)

sensitivity is proportional to i&j 1 and small entries need not be simulated

as accurately as large ones.

3. That inherently poor structures, like companion form, can have large A

entries even when scaled (but need not). They can also have wildly varying

afj products.

4.12 Tuning and Debugging

High-performance filter designs tend to have strong coupling among their com-

ponents, and are therefore fundamentally hard to tune [16]. First-order sensi-

tivity information, together with measured data for transfer-function error,

may be used to alleviate this difficulty [li’]. It is also hard to locate a faulty

component in a good filter circuit [l8], and a coarse version of a tuning pro-

cedure would make it easier.

This section simply relates our existing formulae for first-order sensitivity of

filters to the well-known [ 14] problem of least-squares optimization.
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We can use first-order sensitivity to a selected set of circuit elements ai to

model a transfer function error as

(4-22)

If we wish to correct a measured error At* towards zero, equation (4-20) tells us

to make changes (-Aai). Since we can readily find -$ from the formulae in
*

section 4.4, the first-order tuning problem just reduces to solving a set of linear

equations (4-20) for Aai.

Each of the {A,b,c,d} coefficients involved in a system (potentially o(7x’) of

them) can be in error, and there are only 2N+l degrees of freedom for error in

ts (one for each coefficient in p and e). Because there are usually more

coefficients that may be adjusted than there are degrees of freedom for error,

there are generally several circuit changes that would solve a problem. When

the correspondence between circuit elements and {A,b,c,d] coefficients is not

one-to-one, there will usually be an even larger surplus of ways to tune out an

1
error. Thus, e.g., if a MilIer integrator’s gain -

CR
is too low one could correct

the problem by reducing either C or R. This surplus of choice means that in

general there will be infinitely many solutions to (4-20). The problem of design-

ing a tuning strategy therefore includes that of choosing a good set of ai, a

problem that depends both on technological considerations (e.g. which types of

components are most easily trimmed) and on how well any given selection

allows the tuning system to remove important or common types of error,

One can think of the error function A& and first-order sensitivities -$ as
i

vectors in a 2N+l-dimensional space of possible errors. The problem of locating

a fault may be addressed by looking for the sensitivity vector most closely

-aligned with Ats, the problem of choosing a good set of coefficients to use in

trimming a filter is the problem of choosing a set of sensitivity vectors that ~

span the error space (or a subspace of “plausible” errors): the problem of trim-

ming as few components as possible while improving & a given amount is that of
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finding a subspace spanned by as few sensitivity vectors as possible that is close

enough to At=.

If a least-mean-square error criterion is used to measure iiAt/i tuning prob-

lems may be solved in a straightforward way with a few matrix operations. The

problem is the statistical one of making a least-squares estimate of Ats in terms

of given sensitivity functions, and is solved by an equation in the Gram matrix

IW c
calling the derivative sensitivities -aai of the components to be trimmed

si, the Gram matrix is defined as

and the

the SQ is

problem of best approximating an error vector At by a weighted sum of

solved by choosing a vector of weights i,

64-33)

When test data are available for a set of frequencies G+, one may use the

inner product

It would also be possible to weight measurements

weighted inner product

at different ~j differently in a
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These formulae need not involve a great dea1 of computing for each filter

built, as most of the work can be done in advance for the design. One may

precompute G-l for a design and also write the vector of inner products in (4-

23) as a multiplication of a vector At of measured errors by a fixed matrix.

Thus one need only do mn multiplications to tune each individual filter towards

the nominal design.

Because the first-order functional tuning problem is concerned with sensi-

tivity functions that are readily derived from ifi{ and igij, filter design in terms

of these sets of functions makes it possible to look at the implications for tuna-

bility of a particular design strategy. as a concrete example, we show in

chapter 7 that good filter designs tend to have nearly equal sensitivities to all of

their integrators: it follows that it is generally a poor idea to include more than

one integrator gain 7i in a set of parameters to use for tuning.

4.13 Summary and Conclusions

We have shown how important intermediate functions are in studying filter per-

formance: they combine in simple ways to provide expressions allowing one to

study the dominant problems of filter design.

These simple expressions make the task of designing in terms of a set of lfij

easier than that of more conventional topology-based design.
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We show that the problem of choosing a good set of system states is subject to

two mildly conflicting requirements: that the states must be “independent

enough” to keep internal gains low, but that there should usually be some simi-

larity - or “redundancy” - to get the best possible performance.

5.1 Introduction

We know that the ffij functions of a canonic system have to be independent, and

can demonstrate that various practical problems afflict filters more seriously

as their ifi{ functions come closer to having linear dependencies. Some

configurations which are known to be much too sensitive to component errors

(e.g. companion form) can also be shown to behave badly because they have

pairs of f vectors almost collinear.

It might therefore seem that the way to design good filters would be to

choose ffi] orthogonal, but this chapter shows why this is not the case. A lim-

ited amount of correlation between intermediate transfer functions can serve

to improve performance by redundantly representing important vectors. This

chapter discusses the struggle between independence and redundancy.

We will show two extreme cases: a type of transfer function for which an

orthogonal realization is best; and another for which a realization redundant to

the point of degeneracy is optimum. Transfer functions encountered in prac-

tice will fall between these two extremes. We will also discuss the significance

of redundancy in practical situations and show some of the ways in which it can

be advantageously used. An understanding of the effects of redundancy is also

helpful in analyzing the filter literature, because there are situations where

“hidden” redundancies serve to make a topology look better than it really is.
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Study of the use of redundancy also has bearing on investigation of the use

of non-canonic realizations. One reason to expect that these might be interest-

ing is that ladder realizations are not in general canonic.

Of the two extreme cases, the one illustrating the use of redundancy is the

more fertile. Let us leave it till last, and now look at a case in which orthonor-

ma1 (fi] leads t.o a structure that is in some significant sense optimum.

5.2 When orthogonal realizations are good

This section shows that a second-order bandpass transfer function can be real-

ized with orthogonal ffi] in such a way that it has the best possible dynamic

range (in the h2 sense) when equal amounts of noise are injected at the inputs

of the two integrators. This is only one of a class of transfer functions which

seem to be realizable this way: arbitrary-order all-pass functions also appear to

be of this type. This case is particularly interesting for two reasons: one is that

there is a relationship with LC ladders, and the other is that in this case there

turn out to be many realizations with optimum dynamic range, only one of

which also has optimum integrator sensitivity. This last point suggests that

optimum integrator sensitivity is related to optimum dynamic range, but is a

somewhat stronger constraint.

This section also looks at the “principal axis realization” of [l], which is a

special type of orthogonal filter. It is optimum when some states may be

represented more accurately than others and the “cost” of a state is loga-

rithmic in accuracy. We will later treat. redundancy as a different way of attain-

ing the same objective: concentration of effort on important states.

The measure we use for inner product (and therefore our definition of ortho-

gonality, cf. section 4.9) - a correlation as described in chapter 4 - has an

important physical meaning. If two fi functions are orthogonal and the input

signal has a uniform (white) power spectrum, then there will be zero correlation

between the two corresponding output signals, which implies that no
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information about one signal is present in

be good, since individual integrators are

things about the history of the input signal.

the other. One might expect this to

then recording completely different

“Orthonormal“ systems are those which are both orthogonal (i.e. have all &j

mutually orthogonal) and scaled (i.e. ~~ft~[~=l).

5.2.1 Second-OrderOrthonormalBandpass

The functions ~~~=~~~/e*(s),s/e~(s)~ are orthogonal (for an integral measure

like that of equation 4.17 one may show that functions with even numerators are

uncorrelated with those with odd numerators). The system that they generate

for the bandpass &(s)h ’ is
SE+%+Uee

8

I .

0 % 0
A=

a0
b= 1

-uo -- II

Q_

A[0 l] d=O

and

gT&cT(sI-A)-l=+&,-$],
s s

Now we see that the if+] and igij sets are identical module sign: this, together

with the fact that f&=O, gives K=W, which is the first condition of section 4.8 for

optimum dynamic range. Furthermore, computing norms (either by integra-

tion or by the method to be presented in chapter 6) reveals that Kll=&, which

is the second part of the condition.

Thus this system has optimum dynamic range, and also has orthogonal

states. This system w-ill be encountered again later, in section 7.3, when we
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investigate biquadratic structures. It turns out that this Ifi] set models induc-

tor current and capacitor voltage in a bandpass LC ladder. As a peculiarity of

the second-order bandpass case, the singly and doubly-terminated ladders are

equivalent, as will be discussed in section 7.3.

As a matter of interest, this is just a special case of a phenomenon that

applies for arbitrary order. Choosing a set tfij by using Gram-Schmidt orthogo-

nalization on the Ifi] for companion form, ~l/e~(s),s/e~(s), * * n sN-‘/es(s){, turns
out to give an orthonormal system with a symmetry that produces K=W=I when

the output is taken to be tS(s)=fn(s). In this special case, which unfortunately

doesn’t appear to generate anything very useful except allpass &(.s), we again

have orthogonal {fi] and optimum dynamic range (cf. section 4.8, equation

4.21}. Since the result is of only passing interest and a proof would be fairly

involved, none is attempted. These syntheses appear to have the structure of

singly-terminated all-pole LC ladders. A medium-order system with this feed-

back structure is presented in chapter 8.

5.2.2 The Principal-Axis Realization

Mullis and Roberts [1] proposed a type of system that would have minimum

round-off noise contributed by quantization at delay inputs for a given average

word-length: a biquad might have one 8-bit and one 12-bit delay  (t), for an average

of 10 bits. While this type of system is not particularly practical (cost is not

often dictated by average word-length, and the systems are generally fully

dense and thus need (?~+l)~ multiplies), it will help show why orthogonal sys-

tems are not generally the best ones. We will deal with analogies in continuous-

time systems later.

TT An “8-bit delay” stores 8 bits of signal data from one cycle to the next. As discussed in

section 3.3.1, it is natural to worry about resolution at delays, not because memory is

expensive but because a multiplier-accumulator of the same resolution precedes the delay’s

input.
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The optimum of [1] is obtained when K and W are simultaneously diagonal.

The ‘originators call this a “principal axis realization” because it has the pro-

perty that its states are aligned with the principal axes of an ellipsoid in state-

space that represents the volume in which the state is most likely to be found.

One can simultaneously diagonalize K and W by “rotating” appropriately any

system in which K=I. A system with K=I, i.e. with orthonormal [fi], may be

obtained from any starting set by using the Gram-Schmidt procedure. The next

step is to find the eigenvalue-eigenvector decomposition of W, where

w=uDuT,

D is diagonal, and U is unitary (i.e. IJel=U* ). Transforming states according to

results in

where the new K and W are simultaneousy diagonal, as required.

N o w ,  in order for this system to have minimum noise, one must represent

each state with a number of bits dependent on the corresponding element of

W=D. The overall effect is that some states need to be represented more accu-

rately than others because they are fundamentally more important. We show in

the next section how this difference in importance is handled in the more prac-

tical case, when an “equal amount of effort” (i.e. one integrator) must be

devoted to each state.

For comparison, the second-order special case discussed in section 5.2.1

above is one in which this algorithm would anyway assign an equal number of



bits to each state: the “ellipsoids” of [1] degenerate into spheres because of the
choice of transfer function.

Analogies with the continuous-time case are possible: the manipulations of X
and W required to simultaneously diagonalize them are identical for the
discrete-time and continuous-time case, and one could use relatively expensive
(low-noise) integrators for the states to which the algorithm above assigns
many bits of precision. Because the principal-axis realization minimizes
n&*Wii it minimizes ~ln(W~~) over all scaled realizations &=l). This means

that it is an optimum ii the “cost” of reducing noise from an integrator depends
logarithmically on the performance required. Even if the relationship between
noise power and cost in an integrator is not logarithmic, it is possible that the
principal-axis realization would provide good performance for an analog filter
on which tolerance assignment is to be performed.

This realization was also found by Moore [4], who dealt with three versions of

it that differ only in scaling. The version with K=I he called “input normal”.

5.3 Why Highly Correlated ifi j are Generally Bad

The “companion-form” for system realization is known to be very poor for high-
order filters: it has high sensitivities and low dynamic range. Investigation
reveals that, for practical high-order transfer functions, some of its ffi] can be
very highly correlated: in fact it is not unusual to find pairs of vectors less than
I0 apart (cf. section 4.9). An example of a companion-form design of an 8&
order filter that appears in chapter 7 will illustrate this point.

In section 0.5 we will develop a formula that relates fgij to {f&J, which will
show that igi] are related to the inverse of F, a matrix representation of the ifi].
As ifij become more highly correlated, the inverse of this matrix will contain
larger entries, and so fgij will grow.

Since the sensitivity and dynamic range measures given in chapter 4 are all
worsened by increasing igil, we should expect them to be bad. The formulae in
chapter 6 also show a relationship between system matrix coefficients (lA,b,c,cij
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elements, or internal gains) and this F1 matrix: thus systems with strong

dependencies among their tftj have large internal gains, from which come their

poor performance.

This section shows an extreme example of a transfer function best realized by a

system whose [fi$ are highly correlated. We can either think of this as an exam-

ple of the use of non-canonic structures or as a study of the effect of pole-zero

cancellation. In the latter way of discussing the issue, the function used in the

example is second-order but has a pole-zero cancellation so that it is essentially

first-order. Thus one of the natural modes is much more “important” than the

other: as long as the cancelling zero follows it, it can move anywhere at all

without disturbing t=(s) at all. For this reason the best realization has both

“states” concentrating on the non-cancelled pole - it completely ignores the

cancelled one.

While this example is certainly degenerate, it is not unimportant. In general

transfer functions will be more sensitive to some poles than to others, and we

would expect a similar “concentration” on important poles to be useful. The

insight gained by studying the straightforward degenerate case may be applied

to more practical ones.

Non-canonic structures are often

concept of redundant representation

significance.

encountered in the filter literature: the

of states is useful in understanding their

This discussion will also show up a strong relationship between high-

performance filter topologies and the tolerance assignment technique [2] of

using high-quality components in critical places (which in its simplest form is a

common circuit design “trick”). We have already discussed the principal-axis

realization as a case of optimality after a particular type of tolerance assign-

ment.
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Let the transfer function to be realized be

i&)**_=5
=(s+l)(s+2) s+l

54.1 First-order Function Implemented with Two Integrators

The SFGs of figure 5. 1 a

and  5.1b both imple-

ment the transfer func-

tion is(s)=-&, but the

n
UO A

=I -Y

-ii?

second one has only half

as much output noise as

the first (if we count

only integrator noise)

because the state xl=y

is redundantly

represented: i.e.

appears at two outputs.
This appears paradoxi-

cal, because the second

circuit  has twice  as

Figure 5.1: Two Realizations of is(s)=&

many integrators and so is subjected to twice as much noise power as the first.
Each noise source, however, “sees” a lower voltage gain to the output:

iI=&=gI/2: This represents a factor 4 less power gain for the redundant circuit

than for the canonic, so that (if the noise sources are uncorrelated) the overall

noise power at the output of the redundant circuit is lower by a factor of two

than that for the canonic circuit.

This effect is familiar from elementary statistics: by averaging several “Sam-

ples” of the signal u(s)/s+l,  each corrupted by noise, we can obtain a more
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accurate estimate than by taking only a single sample.

The same principle applies to sensitivity, although again only when com-
ponent errors may be assumed to be uncorrelated. For the canonic circuit,

while for that of Figure 5.lb,

and a sum-of-squares sensitivity measure for the redundant circuit is better by

a factor of 2 than that for the canonic one.

It is tempting to argue that this way of reducing sensitivity and noise is

somehow “cheating”. A more extreme example is offered by Figure 5.2, in

which the passive elements for the canonic realization are replaced by parallel

combinations. This circuit has the same capacitor (and resistor) sensitivities as

the redundant circuit, and for the exact same reason. Depending on the

mechanism of noise generation in the integrator, it may also have lower output

noise.

As long as capacitor errors are uncorrelated, both kinds of “redundancy”

could seriously be expected to improve performance.

One can advance arguments (depending heavily on the details of the implemen-

tation technoIogy) to suggest that the two capacitors in Figure 5.2b might have

correlated errors, thus avoiding having to admit that it is a better circuit than

that of Fig. 5.1a; but then to be consistent the same suspicions must be applied

to other “low-sensitivity” structures. It may be that these structures do some-

thing that is no better than a disguised version of the “trick” of Fig. 5.2. Note,

in particular, that low-sensitivity structures are often quite complicated (as will

be seen for the large design example of chapter 8) and thus have many com-

ponents and noise sources over which to take averages.
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Figure 5.2: A degenerate Kind of Redundancy

When to use more accurate components

The “principal-axis realization ” shown above had no use for redundancy because

it could weight some states more heavily than others. The particular result

obtained there is not particularly applicable to analog technology (or perhaps

even to digital), but the nature of the optimum is interesting.

In order to use the results of [1] to produce a second-order system we will

have to introduce the pole-zero cancellation mentioned at the beginning of this

section. Choose a design such that:
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which are orthogonal (because of the second term in (5-3)). This means that K
is diagonal, the first requirement for a principal-axis realization. Now the
corresponding system takes its output from f 1, and fz is not involved in any way
in the output signal. It follows that g2--0, which means that only the (1,l) ele-
ment of W is non-zero; W is therefore certainly diagonal. But the fact that K and
W are simultaneously diagonal means that this is a principal-axis realization
(sections 4.8 and 5.2.2).

We can now use the results of [ 1] to calculate the number of bits to assign to
each state and the theoretical minimum output noise, but the result is just as
degenerate as the problem. The optimum output noise figure turns out to be
zero (the geometric average of the eigenvalues of KW, one of which is zero) and
the optimum bit assignment is: = bits to fl and -= to f2 (which means that the
average number of bits assigned can be quite finite and still give zero noise).

Apart from the humour implicit in negative bit assignments, this demon-
strates what we want: that the principal-axis realization has no use for non-
canonic or redundant structures because it obtains good performance by con-
centrating its efforts on important states. There may often be other ways to do
this: thus in analog circuits one can choose to minimize cost for given perfor-
mance by using cheaper but noisier or less accurate components in some

places than others.

We have seen extreme examples above, in one of which states were required to

be completely independent and in the other of which they were required to be

identical, in order to get optimum dynamic range. We can use a simple
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second-order lowpass example to demonstrate the value of adding controlled

amounts of redundancy in implementing a transfer function: this case is inter-

mediate between the extremes above.

If we wish to synthesize

t&)= l 1

s2+v5s + 1 %Jq
we could try choosing an orthonormal pair of ifi{:

fl=0.67094/es(s)

f2=0.67094.s/es{s)

where the multiplying constant O.E’O94 is chosen to do scaling. Because tftj are

orthogonal this system makes no attempt to use “redundancy”. The resulting

system has

A= [:I -hj 0094

A[ 1.49045 o] d=O

and noise gains

g~=l.49045(s+dT)/eS (s)

g2= l.49045/es (s )

For this system
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g2=-. 665161(s-0.51763t3)/~s(s)

Note the peculiar symmetry: functions tgij are identical (within scaling) to

corresponding if*{. K and W for this system are

18.417 0I 0 1.32227 I

which simply means that state fl is much more important than state f2 in deter-

mining the system output. Thus a good realization must somehow determine

the first state more carefully than the second. Redundant representation of fl

provides a way to do this.

Let us construct a new system with

&=(2KF)/& =0.00937{s+71.4)

This choice (which is the type of rotation described in [1]) has the property of

increasing the number of states associated with the important fi by a factor of

almost 2, since it is now the dominant signal in two outputs, which increases

the power associated with it by a factor of about 2. In exchange, it reduces the

signal power used for estimating f2 by a factor of about 2. The factors of &are

introduced to maintain scaling.

The net effect is a system very close to the optimum (shown in [ I] to be

+[?A]~) for the dynamicc range figure xX&Wii, because this is exactly the kind
i

of “rotation” of states used to produce the optimum [l]. This system may also

be produced by the technique described in [3] and by a technique to be

described in chapter i’, where it is shown to have minimum sensitivity to its

integrators. The point here has been to relate these “optimum systems” to the

general concept of redundancy, so that a designer may investigate (for a
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particular technology) whether the resulting performance improvement over a

simpler design is or is not just a disguised version of the trick shown in figure

5.2.

When this kind of rotation is applied to the principal-axis realization of the

degenerate transfer function investigated in section 5.4 the effect is to make

fI=fz=l/(s +1) and to ignore completely the cancelled pole at s=-2. Thus in the

degenerate pole-zero cancellation case we see that the “optimum topology”

really is just equivalent to the statistical-averaging kind of circuit.

5.6 Redundancy Improves Performance by At Most n

If we use zK*Wti as a performance measure, we can note from the extreme
i

second-order example in section 5.4 that a factor 2 (=n) improvement was

attained by redundantly representing the important state l/(s+l). In fact it is

easy to show that this is always the largest improvement possible.

Because the principal vaIues ,u$, the eigenvalues of m, are invariant we can

say that ~r(KW)=~~2 is  invar iant .  For  any orthonormal  f i l ter  (K=I),

~&~w&=tT(lw}=~w+ F o r m u l a  (32} of [l] may be  manipulated to  g ive

~&&+&]2, and [&]2&!? ( recall that ik{ are positive, section 4.8.1) so

we can write

Note that equality can be obtained only when 2, which in turn can

only happen when all but one of the k are zero. This is exactly the type of

degenerate case we already encountered in section 5.4.
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We have investigated the use of two related properties of the set of tf<] for a

filter: the extent to which states are independent of each other, and the extent

to which one may average estimates of important signaIs over several states to

reduce sensitivity to errors in those states. We have shown a relationship

between the rather subtle phenomenon of coupling between states in a good

filter and the relatively straightforward “trick” of tolerance assignment to

match component sensitivities.

This work suggests that a good way to design filters might be to start from an

orthunormal design (e.g a principal-axis design) and add redundancy wherever

it is most useful while using other degrees of freedom to, for example, obtain a

sparse A matrix.
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The synthesis example presented in chapter 2 is simple to understand, but by

no means offers a good way to compute coefficients from a given set of inter-

mediate transfer functions tfij. This chapter presents some matrix formulae

that are numerically better and that show clearly the relationships among vari-

ous aspects of filter designs.

The algorithms discussed here are those implemented in “dot”, a FILTOR2-

compatible [l] program developed to test the ideas of this thesis. They have

therefore been quite thoroughly tested in designing a wide range of filters over

a two-year period. No claim is made as to “optimality” of these computational

methods, but they have certainly proven adequate.

We start by discussing vector spaces and a particular “choice of basis” we

make in this chapter.

Sections 6.4 to 6.7 of this chapter show how to compute {A,b,c,d} system ele-
ments, {gi], K and W from tfij and give some useful invariants.

Section 6.8 shows, by way of a summary of the purpose of these formulae,
some features of the current version of “dot”. It shows how these features, and

thus the synthesis method of this thesis, may be used in filter design.



6.2 Bases in general and the residue basis

It is natural to use the concepts of vector-space theory to deal with filter syn-

thesis because the freedom available in choosing functions for ff$j is exactly the

freedom to choose n-dimensional vectors. All of the synthesis methods dis-

cussed here either explicitly or implicitly choose a “basis” of n independent

possible f functions and express particular fi in terms of that basis. Thus all of

these methods choose a set {v~{ and express any possible function as a sum

f&p~. The example given in chapter 2 dealt with numerators expressed as
1

n - l
polynomials fi,s= x aisi, which simply takes v~,~=$ as basis vectors. The

i=o

method we prefer, that used in “dot”, uses a residue expansion fi,s= 2
~ i
- and

izl s-ei

thus chooses ~i,~=&- as a basis.
-i

We do not use the obvious basis f.si/eSj because coefficient-form expansions

of filter transfer functions are known to be numerically poor [2,3]: for practical

filter transfer functions the basis vectors $ can be very strongly correlated, so

that small errors in coefficient values have a large effect on transfer functions.

One technique used in the literature to solve the conditioning problem for

coefficients involves a change of variable [2] which “expands” the complex plane

near passband edges. This kind of technique could, if necessary, be formulated

as a selection of basis vectors and used for synthesis, but it is not clear that it

would offer advantage over the simpler and more general residue expansion we

use.

There are, of course, many ways to represent intermediate transfer func-

tions other than in the form 2 aivi: for instance the product-form for polynomi-
.i=l

als cin(s-si)> [3] which is used for numerical reasons elsewhere in FILTOR2.

This kind of formulation does not lead to linear equations in the So, and is there-

fore not a candidate for use in synthesis.
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As will be seen, many important matrices have simple forms when the resi-

due basis is chosen: this gives a “naturalness” to our choice.

Notation

An n-vector representing a function fi,S will be written Fi. Its jib element will be

written Fi,j. Thus

where vj is a basis vector.

A matrix of R rows, each an F% corresponding to a different fi4 will simply be

written F, and is a matrix representation of the set #fi].

Similarly, we define a matrix G to correspond to igt{, so that

We will call the space of allowable intermediate transfer functions F, and a

vector made of the n basis functions uS. We will also use a vector fs composed

of the n fi.s functions and a vector gS composed of gia functions. In matrix

terms these may be written:

fs =FvS

The net effect of this process of expressing functions in terms of a basis is to

leave us dealing with a matrix of scalars F instead of a vector of functions fS.
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This makes the formulae we develop easy to implement as programs.

Example ( 6 1 )

We use vi=---& in “dot”. If, say, es=sz+&s+l, and
i

then

j-l
f2,= =-+

-j-l
s-e1 s-e2

-
where e l=e 2=

_I_.

-+2
and the et are roots of es.

Now we have chosen v,=&, and have
1

F=
&is
z2

As usual, Fe1 denotes the inverse of a matrix and FT its transpose. We use F*

to denote the conjugate of the transpose of F.
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6.3 CompIex Vectors

Since natural modes et are generally complex, our basis functions 1 wills-et

generally have complex coefficients. This in turn means that the coefficients at

will be complex.

If we were only interested in transfer functions with real coefficients this

would represent a minor inefficiency, since one could easily select a basis with
real coefficients and make operations like matrix inversion quicker. This res-

triction does not seem to be either necessary or justifiable in terms of applica-

tion: one of the major areas of application we explore later in this thesis

involves transfer functions with complex coefficients. We show how to use these

functions and how to make “complex systems” in chapter 9. All of the.

mathematical operations we. are interested in on vectors are perfectly well-

defined on vectors with complex coefficients.

6.4 Getting system coefficients from f functions

This section sketches the development of matrix formulae for intermediate-

function synthesis. It gives results only for the “residue basis”, although they

are easily adapted to other bases. The required equations are

by manipulating state equations. Taking the frequency-domain

system equations and substituting fSuS for the vector of states:

s fS uS = A fS us + buS (6-3)

There are several

choose to emphasize

thesis technique.

ways to go about solving these equations for {A,b,c,d}: we

vector-space methods to clarify the structure of the syn-

derived simply
versions of the
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The equation

sfS=AfS+blST (6-5)

obtained by dividing (6-3) by uS could be seen as an equation in our vector

space P except for two things: that the function lS is not in F and that products

sfS may not be in F.

Augmenting F by adding the function lS produces a new space F’ of dimen-

sion n+l of which all functions in (6-5) are members.

In terms of coefficients we can understand this augmentation as giving us a

way to deal with rational functions whose numerator order is n, while P only

included numerators of order 0 to n-l.

Taking the portion of (6-5) corresponding to any row 4 of A yields

which expresses a vector of F’ in terms of n independent elements of F and the

“extra” vector lS. This may be converted readily to the form of an equation in

matrices (of scaIars). In doing so we will find the operation of “multiplying by s”

to be very important.

Taking the projection of (6-5) onto F:

sp (f)=Af (6-7)

where S’LJI is an operator that takes the projection onto P of the result of multi-

plying its operand by " s "  Because Sp(*) is a bounded linear operator mapping

P onto itself, a matrix expression exists for it:

1 we use 1’1~” to denote the function of s that is equal to “1” everywhere, while “1” is just a

scalar. This distinction is introduced so that (6-5) may be seen as an equation in functions of

S .
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We also need to know components on the vector ls of the product of s and

arbitrary functions. A vector sop may be used to compute these just as S,p

gives components on F.

Writing (6-6) in terms of the augmented basis {~~,l~{

zz FSG V+ FSH~ n ls

so that, comparing coefficients on the vk

FSLp =AF 0349

and comparing coefficients for the vector ls

Fs~p = b (6-9)

Thus if we can just construct SLp and sHp, we will have “b” from (6-9) and

A=F&,pF’ (640)

from (6-8) (assuming that F is invertible, which follows from mdependence of

the Vii).
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In order to compute $p and SHp we will look at the effects of multiplying a

basis function by “s”:

1 ei
svi=s ‘-zl+-zl+q~v.z

s -ei s-ei

This expresses ova in terms of the augmented basis FIJI,&.{. It follows that (for

this particular choice of basis)

and

(6-11)

aHp=(l, l,.. I} (6-12)

We still have to compute cT and d, but they are even easier than A and b.

When & is expressed as a vector in F’,

=xcjFj,ivi,s+d 1s
jai

It follows that

(from 6-4)

d=G,+l (6-13}

and

(6-14)



Since we have formulae in terms of F for fA,b,c,d j we could obviously compute

g%cT(sI-A)-‘,

but in fact a simple formula gives G directly from F, and so lays bare the rela-

tionship between them.

This formula, which we derive below, is simply:

GT=HF1 (6-15)

where H iS a diagonal matrix formed from the residues of the desired & such

that

This equation shows (as we might expect) that G is inversely related to F and

directly to &. We would expect to see this because it just shows that decreasing

signal levels increases output noise, and increasing the required gain level also
increases noise. It also shows that allowing rows of F to approach linear depen-

dencies will increase noise levels and sensitivities by increasing the norm of F1

and hence of G.

Derivation

This section derives (6-11).

Let us investigate:

gr=y,?GT=cT(sI-A)-’

Now
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SO

=c~F(sI-S~~)-‘F-~ (6-17)

Now, expressing these things in terms of matrices that we already know,

gT =vsGT and cTF=t, where &= vTt. The interesting term is (sI-S~,)-~, (a matrix

of functions) which turns out to be very easy to express in the residue basis

f~ij, for which we have seen that S~=cEczg(e~, * * n ,en). Substituting this Sp

gives

so that we can re-write (6-12) as

from which we can eliminate references to f~tj to get (6-15).

6.6 Inner Product

We will often need to take inner products between fi functions, e.g. to calculate

correlations between functions or to do scaling. It is straightforward to define

inner products for vectors, and we do so in such a way as to give physical

significance to the result. Chapter 4 discussed the issue of choosing a “norm”
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or measure of magnitude for signals. When an “rms” type of norm is chosen it

can be made a special case of the inner product: /[fi[/‘=fiafi.

In general one may compute inner products among vectors by using a bil-

inear form in an hermitian matrix Q:

fi*fj =E’i l QFj (648)

All we need to do is find an expression for the matrix Q from a physically

significant definition of inner-product and our basis {vi].

The most natural definition of inner product to use is the correlation

between functions

(6-19)

because this inner-product then produces a “norm” or measure of magnitude

that is proportional to the mean-square signal level at the output of a transfer

function when its input is white noise. It may sometimes be useful, as when the

spectrum of the signal exciting a filter is known and non-white, to modify this

definition by a weighting function. We will first look at the simple case (6-19).

One may compute elements of Q by deriving values for the inner products

among basis vectors. The (i,j) element of Q is just Fi*vj. We can compute gen-

eral inner products among l~i] from the definition (6-13).
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(6-19}

Assuming stability, both ei and e$ are in the left half-plane, so that (6-19) has
one pole in each half-plane. We can use Cauchy’s integral formula [6] to com-

pute this integral from the left half-plane residues ai of the integrand:

(6-20)

Note (as a useful check) that one can deduce from (6-20) that diagonal entries

QiSi are real and positive: i.e. that the inner product of a basis vector with itself

(its squared norm) is real and positive.

One may include the effects of non-white spectra in (6-18) by including a
rational weighting function VS (bounded on s =jc~) without much difficulty

Chapter 4 discussed reasons for doing this, and use of the Cauchy integral for-
mula as above allows one to compute a suitable Q matrix.

In general one might want different weighting functions for {ftj and {gi{, so

that two inner product matrices Qf and Qg might be needed.

Computing K and W

Using Q as derived above, one may compute the K and W matrices of [Mull76] as

K= FQFr (6-22)

W=GQGT (6-23)



Inner products with IS

It might be useful to be able to compute norms in the augmented space 3”.

Under the definition (6-19) for inner product, however, the “norm” of lS is =J!

This simply states that the energy in a delta function is infinite.

Qn+lSn+l is therefore not finite for (6-19), but for a weighted measure like (6-

20) where FVS tends to zero as .s+m (like A-weighting and the spectra of practical

signals) all inner products are perfectly well-defined.

We do not pursue this further because we are primarily interested in tfi] and

tgi {, which are in F.

Other Frequency Variables

The inner-product formulae above are good for use in the “s’‘-plane, but

incorrect for, e.g., the discrete-time case.

A matrix Q may still be defined, however, so that (6-16) applies.

If we choose

we will have a correlation measure for the “z’‘-plane.

6.7 An Important Invariant

A formula derived from (6-15) yields an important invariant quantity which we

use later to study optimization of sensitivity. Muhiplying (6-15) by F yields

GTF=H (6-24)

We can interpret this formula in terms of functions {fi { and [gi{ rather than

matrices by inserting vS as follows:
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(6-25)

(6-26)

The sum over all products fissgi,s is independent of the realization!

Now in fact this identity (which is used heavily in Chapter 7’) may be related

to a cIassica1 sensitivity result. Because (cf. section 4.3)

we can combine (4-11) and (6-22) to get

(4-11)

(6-27’)

This last result can be obtained in general for active-RC networks: because

terms in "s" can only derive from capacitor admittances SC,

(6-26)

The form (6-26), however, is interesting because it allows us to relate a

minimum sensitivity condition to our synthesis method (cf. section 7.3)
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6.8 Transformations

Several authors [4,5] discuss “equivalent” systems in terms of similarity

transformations. Any
as a canonic system

(invertible) matrix T:

j=Tf

canonic system fi,i,c,d{ with the same transfer function

iA,b,c,d] may be derived by transforming states by an

(6-29)

(6-29)

This affects other quantities as follows:

This way of looking at changes in a system design can be very useful. In par-

ticular, it makes it easy to study the effects of some simple special cases.
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Scaling

One may “scale” a system to control the magnitudes of states Z~ by choosing a

diagonal ‘I’. In this case ‘l-l is trivially computed and the effects on other quan-

tities are obtained from (6-29).

Scaling does not affect the sensitivity of a system to the gains of its integra-

tors or {A,b,c,d} coefficients, but does control overflow and noise and affects the

sensitivity of Miller integrators to their amplifiers (cf. section 3.2.1).

Transforming Subsystems

If one chooses to change
W

only a few ifi], and to change them so that the changed

tf*] span the same subspace of P as the originals, a simple kind

This T is different from the identity matrix only in rows

corresponding to changed lft 1.

of T emerges.

and columns

In particular, changing two particular tfii, say fi,s and fj,~, so that

gives

This kind of transformation does affect some system sensitivities, and so could

be used for introducing controlled amounts of redundancy. This kind of

transformation is used in [S] to iteratively improve the dynamic range of a sys-

tem.
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6.9 Overview of 'dot' 

“Dot” is a computer program, compatible with the FILTOR2 package [1] which

has been developed in parallel with work on this thesis. Because it is a design

tool, and because the purpose here is to show that intermediate-function syn-

thesis is a useful design aid, a description of “dot” is a good way of demonstrat-

ing the thesis.

The major function of “dot” is to implement the algorithms of this chapter.

It allows one to design and (to some extent) analyze state-variable systems by

intermediate-function synthesis. Many of the features required for design have

been implemented together with some others that are useful for studying a

design before implementation. This section discusses implemented features

together with some others that might be useful additions in the general context

of design.

Setting Functions - “dot” allows the user to type in polynomials (pS, eS,

numerators of ifi] ) or will read their values from a file created by any

other FILTORZ program. In particular, pS and es may be produced by

“remez” and “polman”, which handle various phases of approximation.

Ladders may be simulated by having “ladman” define [fij on the design

file in such a way that integrator outputs simulate arbitrary voltages,

currents, or even wave variables in a ladder.

Polynomials are usually defined by giving a list of their roots

together with a Ieading coefficient. “Dot” also allows ifij and pS to be

defined as lists of residues.

One may set & and tf*j, investigate the resulting system, and then

change one or more [ft] and try again.

Getting System Coefficients - “dot” has a “get-system” command which (if ps,

es and [fij have been defined) computes iA,b,c,dj system entries using

formulae (6-lo}, (6-9}, (6-14) and (6-13).
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Getting g - the fgi] functions may be computed from ffi] and & using equation

(6-15) with a “get-g” command.

Displaying Functions, Matrices, and vectors - “dot” has a “show” command to

allow the user to inspect {A,b,c,d} coefficients, K and W matrices, the

inner product matrix Q, and the various polynomials.

tfij, [gi{ and tS may be displayed either in residue form or as lists of

roots. Q, K and W are computed when needed by formulae (6-20), (6-

22) and (6-23).

scaling - a “scale” command allows the user to scale one or more ifi{ to have

unit norm. Other quantities (lA,b,c,d{,K,FY,{gi]) are scaled simultane-

ousIy.

Analyzing Performance - a reverse-polish notation “calculator” is included,

which is capable of computing and printing or plotting arbitrary func-

tions of the ifi{, igil, ps and eS. This powerful feature may be used

with the formulae of chapter 4 to calculate sensitivities, expected

transfer function deviations from ideal, signal and noise levels, and so

forth.

Getting Explanations - the "?" command of FILTOR2 is included, so that an on-

line tutorial on filter design can be made available to the user. Little

text specifically on “dot” is included as yet, but it seems that a sophis-

ticated tool like intermediate-function synthesis will only be widely

usable if help is available.

6.10 Summary and Conclusions

We have presented a set of matrix formulae by means of which intermediate-

function synthesis may be done. Computer programs using these formulae

have been used for many designs during the course of this work, and have pro-

ven to be powerful design tools.
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This chapter presents new results in filter design that have been obtained at

least partly by means of intermediate-function synthesis. It concentrates in

particular on the problem of designing filters with optimum or near-optimum

sensitivity to their integrators.

7.1 Importance of Integrator Sensitivity

Optimizing sensitivity to integrators addresses only part of the general problem

of designing a good filter, but it appears to be an important part for two rea-

sons: that integrators are often the “weak link”: and that designs insensitive to

their integrators appear to have good dynamic range, low component spreads,

and low sensitivities to system coefficients in general. This section discusses

these points,

7.1.1 Relationship to Dynamic Range

It was shown in [ 1,2]] that there is a close relationship in digital filters between

noise performance and coefficient sensitivities. Holder’s inequality was used in

[1] to derive a lower bound on roundoff noise from the sensitivity to multipliers.

The same relationship holds in continuous-time systems between integrator

sensitivities and dynamic range.

The best possible (after scaling) dynamic range at integrator i is propor-

tional to ll~~~Sllllg~.Sll, while 1 d a)-1 is proportional to j~f~ssg~ssj[. It is clear thatd7
i

“large” fi,s and gi,S worsen both types of measure. A precise statement of the

relationship is provided here, just as for the digital case, by Holder’s inequality
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We will demonstrate in section 7.3 that, for second-order filters, optimum

integrator sensitivity implies optimum dynamic range.

We thus do not expect the goals of minimizing integrator sensitivity and

maximizing dynamic range to conflict, but rather that improving sensitivity wiI1

improve dynamic range.

Integrator Sensitivity in Ladders

The good sensitivity behaviour of ladders with respect to their reactive com-

ponents at reflection zeros can be seen as guaranteeing good performance with

respect to their “integrators”, namely their LC components. Design by ladder

simulation seeks to obtain the same low sensitivities to active-RC integrators.

Thus a good solution to the problem of minimizing integrator sensitivities

should be at least as good as an LC simulation.

7.2 A Condition for Optimum Integrator Sensitivity

It was shown in section 6.7 that the sum of all integrator sensitivities is invari-

ant with realization. The reason some designs are better than others is that the
t*(s)

performance of the overall system is determined, not by the sum xSyi but by

some more complicated aggregate measure, like x 1 S~“‘j~. We show in [3]

that the resulting problem of optimizing the aggregate function under the con-

straint of a constant sensitivity sum is solved, for a wide variety of reasonable

aggregate measures, by forcing all integrator sensitivities to be equal.

In general, a constraint of the form

ws



where k is a constant, results in the choice xl=xz= * - - =k/n minimizing any

function of the form

as well as functions such as

In our case, where the xi are various sensitivities, this means that forcing sensi-

tivities to be equal simultaneously optimizes most reasonable sensitivity meas-

ures! We therefore seek systems in which, for all Z,

For convenience, we will call any lower bound on an aggregate sensitivity

measure implied by the constant sensitivity sum (6-27) a “Frequency-Scaling

Lower Bound” (FSLB)) and call the filter (if any) that attains this bound an FSLB

filter. The name is chosen because the lower bound derives from the simple

fact that changing all integrator gains together just results in frequency scal-

ing ,

We will use IF synthesis to derive a construction for FSLB systems when they

exist, and produce as a side-effect several new and interesting results concern-

ing their existence.

When equal sensitivities cannot be obtained one is forced to accept approxi-

mate equality. Systems may approximate equality in several different senses,

so that “almost FSLB” systems need not be optimum for the wide range of

different sensitivity aggregates that FSLB systems simultaneously optimize.
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7.3 Equalizing Sensitivities

Combining the formula for optimum sensitivity (7-l) with that for integrator

sensitivity in terms of Ifi] and lgi{ (4-11) yields

Unfortunately we don’t have any way to select fisgis, but IF synthesis does

allow us to pick arbitrary f,S (or g,i,~). Inspection of (7-2) reveals that all {&j

must be factors of d&(s )/ds, and because there are only a few factors to

choose from we can simply try all of the various possibilities to see if any of

them produce the appropriate i& j.

Example: Optimum Biquadric  Filters

. To see how all of this works we shall consider the case of a second-order low-

pass filter,

The derivative is easily found:

c%(s) u(2s+
z-

ds e (s )2

Now we know from (?-2) that fIS{.s) and f2,S(s) must divide [dtS(s)/ds 1, and we

also know that they must be linearly independent. Choosing

and
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satisfies both conditions. In fact (apart from trivial changes such as scaling and

interchange of fls and fz,s) this is the only choice possible.

Using IF synthesis we

can now obtain the

signal-flow graph reali-

zation of Fig. 7.1 and

evaluate the g functions

as

Figure 7.1: Optimum LP Biquad

ttz1.s =a (s +%)/es(s)

g2.s =a/es ts J

We thus see that

which is the condition for optimum sensitivity. Thus the realization of Fig. 7.1

is the optimum sensitivity realization of the second-order low-pass function.

Note that for this structure

and

This can

to have

f2.s = fz ls1.s

be shown to give the condition derived in [4] for a second-order system

optimum dynamic range (after L2 scaling, which does not affect
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integrator sensitivities). In fact biquads with. this “reciprocity” property always

have equal integrator sensitivities, If (for any a)

~1,s = af2,s

and

then

fl,* cs =f2.s lir2.s

We thus conclude that optimum integrator sensitivity produces optimum

dynamic range in biquads.

The same procedure can be applied to bandpass, high-pass, all-pass and

notch biquad transfer functions, and so produces optimum integrator sensi-

tivity structures for most of the interesting biquads. It should be mentioned,

however, that for certain transfer functions (primarily those with very low-Q

poles) it is not possible to find two suitable factors of [c&(s)/&] for fl,S and fz,s.

Table 7.1 lists FSLB choices for lfij for some important types of biquad.

es(sgs2+%+cd2
Q ’

Type ~6) ks~~~~44  f2,sWdS)

LP 1 1
CJO

s+z -

BP S s+cJ* S-U0

HP S2 S s +2Q rzo

Table 7.1: Optimum Biquads
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7.4 Relationship to LC Ladders

In general an ntA order filter with equal integrator sensitivities is insensitive to

integrator gain errors at the reflection zeros (i.e. frequencies of maximum

transmission) CJ,. because

Expressing &(j~) as

dlnl k(ju) IBut since do
I
ueu7=0 it folIows that

This is the same properly that LC ladders which are designed for maximum

W.S



power transfer between resistive terminations have. In the following we show

that our optimum biquads either simulate the corresponding LC ladders (in

which case they have the same sensitivity performance) or are new structures

that exhibit lower sensitivities than ladders.

In the signal flow graph of Fig. 7.1 it turns out that the signals at the two

nodes labelled fls and fzs simulate the capacitor voltage and inductor current

of the doubly terminated low-pass ladder in Fig. 7.2 which has maximum power

transfer at its reflection zeros.

On the other hand, the signal flow graph of

the optimum bandpass biquad, shown in

Fig. 7.3, does not simulate  a  doubly-

terminated bandpass ladder. To further

investigate this point we demonstrate in

Fig. 7.4, through a Thevinin equivalence,

that for the bandpass case a  doubly-

terminated realization is no better than a

singly-terminated one. The optimum

structure of Fig. 7.3 may be compared as

Figure 7.2: Insensitive Lowpass

Ladder

to sensitivity with one simulating one of the ladder of Fig. 7.4: the integrator

sensitivity products (fi,Sgi,S) are as shown in Table 7.2.

Figure 7.3: Bandpass FSLB Filter
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R/2

Figure 7.4: Equivalent BP Ladders

Circuit

Fig. 7.3 (s2-~W2es (s I2 (AaW2eS (s 1’

Fig. 7.4 - 6$/es (s )* s2/eS (s I2
7

Table 7.2: Sensitivity Comparison: Ladder vs. Optimum.

It is interesting to note that the two structures have equal sensitivity at the

reflection zero .s*jc~~, which is where the doubly terminated structure is known

to be good. Our new structure becomes superior away from jcJO (according to
any aggregate sensitivity measure of the types discussed earlier).
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The second-order case investigated above was quite special, in that for most
interesting functions an FSLB realization was found to exist. In fact, while one

may concoct higher-order transfer functions for which FSLB realizations are

possible, they appear not to exist for most transfer functions. We will show

some interesting results in this area.

As a matter of passing interest, there is only one canonic state-space realiza-

tion for a first-order transfer function, and it is FSLB.

7.5.1 Low-Q Second-order

We mentioned above that some second-order transfer functions with very low

pole-Q’s did not admit of FSLB realization. Since they illustrate one of two ways

in which FSLB filters can fail to exist, we will explore an example in detail.

The simplest example is the function is(s)&&-; it is an unusual kind of

function to choose to synthesize because it is unstable, but this has no effect on

synthesis. The IF synthesis procedure does not contain assumptions about the

detailed behaviour of the “operators” s-l which it combines to form given func-

tions. It is therefore better to choose a physically uninteresting example that

will make our development clear than to choose a stable one that involves mes-
sier algebra.

The derivative t;(s)=- “+I
{SZ- I)2

must be factored two different ways to provide

two independent tfi 1. Only two factors with real coefficients exist however,

l/es(s) and .sz/es(s), and one of them is improper (i.e. does not have a numera-

tor of lower order than its denominator) and so not a possible {fi]. There is
therefore no FSLB realization of this transfer function.

This result is novel in that it clearly shows that no FSLB realization of a par-

ticular transfer function can exist. It is also interesting in that an FSLB

IF Synhhsis - (7) page ?26 reksed Y 98 i/f f/Z’% ws



realization is obtained if complex coefficients are permitted, in which case

1x] is FSLB. The physical meaning of transfer functions with
44 ’ fdd

complex coefficients is discussed in chapter 9.

7.5.2 OrderAbove 2

At second order, the majority of useful transfer functions were capable of FSLB

realizations and a few special ones were not. At higher order, unfortunately,

the situation appears to be reversed. For some cases (e.g. 3& order LP Butter-

worth, Us)= ~a+3s~+3s+1 ) the problem is like that shown for is(s)=-&- above:

that there simply do not exist n independent factors of &(s) with real

coefficients. For most transfer functions investigated by the author, however,

the problem is different: that the {gt{ resulting from choosing Ifi] as factors of

i’(s) are not the complementary factors, so that ffi,sgis] are not all equal. A

design illustrating this point for an at’ order transfer function appears in

chapter 8. The tgi] that are obtained there are close to, but not equal to, the

complementary factors of i;(s).

7.6 On FSLB-Realizability

We have presented a result that tells us how to synthesize a filter that attains

the frequency-scaling lower bound on integrator sensitivity for an arbitrary

transfer function if it is possible. We know of second-order cases where it does

exist, but also know that it doesn’t always exist. Further, we don’t know too

much about the topology of the resulting system, and so cannot tell whether to

expect “dense” systems or not. We also have little insight into the reasons for

the fact that some transfer functions “work” while others don’t.

This section tries to solve these problems. It shows how to generate all FSLB

systems known to the author, both showing what transfer functions “work” and
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what topoIogies optimalIy realize them. While the resulting transfer functions

do not include all interesting ones (or perhaps even any) they are often “simi-

lar”. This may mean that the topologies that we derive here, which are often

quite sparse, will provide respectable performance for general filters.

The section starts by showing a way of “coupling” identical sub-filters to

maintain optimum integrator sensitivity. It then sketches a number of “build-

ing blocks” that may be coupled in this way, and presents a way of recognising
functions of the form that may be derived this way.

Theorem: A transfer function ik has a realization attaining FSLB if it may be

written in the form

L*2
hs= (l+c(fk_lJn) 7z’O

where there is an FSLB realization of &_I.

Proof: An implementation of & is depicted in Figure 7.5

I identical FSLB sub-networks

$i=rk-I

Figure 7.5: An FSLB Topology

To prove that this is an FSLB realization, we have to show that all capacitor sen-

sitivities are equal. The circuit is composed of a number of identical FSLB sec-

tions (FSLB realizations of 1 k_1, which exist by hypothesis). The interconnection
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topology arranges that the sensitivity of the overall transfer function & to each

section is the same, and this together with the fact that all sections are identi-

cal and FSLB makes & FSLB.

More formally,

where ql is the transfer function of the lti section in the circuit, and CL.~ is the

mt” capacitor in the FSLB realization of that section.

Now we may investigate the second term of (7-3).

9 =s&%n

i.e. all sections have

sections are realized

equal sensitivity to corresponding

the same way. Also

capacitors, because all

i.e. all capacitor sensitivities within sections are equal because the realizations

are FSLB. Thus all sensitivities of sections to all of their capacitors are equal.

This means that the second term in (7-3) is the same for every integrator in the

overall circuit.

Now we may investigate the first term: but all of the component $l are sim-

ply cascaded,

tk = 1

So that

W.S



Thus the first term in (7-1) is the same for all capacitors, and the overall

transfer function & has equal sensitivity to all integrators and must attain

FSLB.

Consequences

We will show a few transfer functions and corresponding topologies that may be

generated using this construction.

First note that the

has equal sensitivities

the theorem with n=l

canonic realization of iO,s(s )A$-, an integrator, certainly

to all of its integrators, since there is only one. Applying

must have an FSLB realization as shown in figure 7.6. Again, since there is only

one integrator, this is obviously FSLB.

Applying the theorem again with

n=2 yields a function of the form

~2&)= l
(s +q)2+c2

which is the general second-order I

lowpass transfer function. Thus the

topology of Figure 7.1 is an FSLB 2nd

order Iowpass biquad.
Figure 7.6: FSLB Realization of 1

s+ct

Figure 7.7 shows some FSLB topologies generated in this way together with

s-plane diagrams showing possible resulting pole locations. in this way together

with s-plane diagrams showing possible resulting pole locations.

There are a couple of special cases of the interconnection scheme above that

are important enough to be worth mentioning. They are:
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1.

2.

Cascade: functions of the form ik,s=(&_I.s)n are FSLB when realized by a cas-

cade of FSLB sections. Thus functions with multiple roots are best realized

by cascade connection of good realizations of sub-filters with single roots,

and no coupling is required. When the sub-functions are similar, rather

than exactly identical, as is often true of the biquadratic sections making

up a good cascade filter design, then we might expect a (sub-optimum) good

filter.

Overall Feedback: functions of the form tk(s)= tk_I(s)_I are generated by

the case n=l of the theorem. This feedback may be used to split multiple

poles, as in the example above that generated second-order lowpass filters.

There are also several other interesting manipulations of FSLB sections that

produce FSLB results. Two simple ones are:

1. Gain: changing the required gain, ik=c&_I does not affect integrator sensi-

tivity.

2. Adding a highpass component:

functions of the form &=&_I+d

have the FSLB realization shown u

in figure 7.8 when an FSLB &_I

exists. Thus the f irst-order
1highpass f u n c t i o n  --&-= l - -<

s+l d

is an FSLB building block.
Figure 7.8: FSLB circuit with Highpass

Component

Many other ways of combining FSLB sections into an FSLB structure may exist:
the only other one known to the author is that shown in figure 7.9. Signal-flow

graph analysis reveals that the transfer function of the overall circuit is
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Figure 7.9: FSLB Two-input Two-output Loop

where @1=+2=&_1 are FSLB-realizable functions so that

It is the fact that ql and & appear symmetrically in expression (‘7-4) that

makes the topology retain the FSLB character of its components. It does not

seem to be possible to extend this interconnection to three or more sections,

although the tk_l may of course be of arbitrary order. When first-order sections

are used for $$ and a highpass component

second-order sections may be obtained.

is added, bandpass and notch

7.6.1 Sub-functions in FSLB Filters

As a contribution to understanding these FSLB filters, we will investigate their

intermediate functions. There are really two distinct cases above: the cascade

arrangement with feedback and the two-input two-output loop. We will show

how the intermediate functions for each may be related to their component

filters.
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Let us define numerators and denominators of the transfer functions used to

build up FSLB systems:

Figure 7.10: FSLB Topology with Intermediate Functions

Now the topology of Figure 7.11 has TI+ 1 internal nodes, with transfer functions

to these nodes which we shall call f~.~,s,f~,~,s * * * fkmn,s by analogy to intermediate

functions using integrators as building blocks. Straightforward signal-flow

graph analysis shows that all of these functions have denominator

and that

fk .O,s =eih.s/ek,S

fk,l.s = ei?.spk ,siek .S

and, in general

with the last function forming the output:
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The second major topology has two intermediate transfer functions (cf. Fig-

ure 7.11)

Figure ‘7.11: FSLB Structure with Intermediate Functions

with denominator

and numerators:

fk,l,S=Pk-l,Sek-l~-cP~-~,s/ek .S

with output

tk=fs.k.l+fs.k,2

We have presented these results for completeness, since they characterize

structures originally developed in terms of intermdediate function synthesis by

their intermediate functions. Inquiry into the relationships among ifi] gen-

erated as shown above is an obvious area for further research.



7.6.2 Composition of FSLB-realizable functions

The importance of these results on generation of FSLB systems is that they

show two inherently very good filter topologies, and show how to combine good

building blocks to get good systems. The resulting systems are inherently quite

sparse and so practical.

The essential point about these systems is that they are obtained by compo-

sition of functions. One way of describing this result (where for convenience we

use loss functions &(s)*=-&) is this:
s

Theorem: A loss function hs(s) has an FSLB realization if it may be written in

the form

where ha and hb both have FSLB realizations. Furthermore, the loss functions

and

s2+
b,s b I= S

are FSLB-realizable.

Proof Outline:

1. A system implementing b(s) may be constructed by replacing integrators

in an FSLB system realizing ha by FSLB sub-sections implementing hb.

2. We have already shown FSLB implementations of hi and h2.
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7.6.3 Testing for FSLB-Realizability

We have a way of generating some FSLB-realizable functions: it would be useful

to have some simple test that characterizes FSLB-realizable functions so that

we could tell whether it was worth trying to “decompose” a given function into

its FSLB constituents. This section presents an unusual-looking result that has

some bearing on this ideal and may be a useful seed for a stronger result.

Theorem: Any function b(s) of the class generated by arbitrary composition
of

and

(i.e. by composition of any two functions already in the class) is pure real at
h&)zeros of its derivative d7.

Notes:

1.

2.

This is exactly the class of FSLB-realizable functions that our composition

theorem generated.

Notice the recurrence of the derivative d7: we know that it is of interest

in FSLB synthesis from our earlier result that the intermediate functions of

an FSLB filter must be factors of the derivative. This suggestive re-

appearance of the frequency derivative partly motivates presentation o f

this result.

Proof: The proof is an induction: first we verify that the condition holds for his

and ?z~~; then that it holds for any composition of two functions for each of

which it holds.
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dhl
l* -z- has n-l zeros at s=- c2, where IzI(-c2)=0, which is certainly pure real.

When n=l there are no zeros of the derivative at all, and the condition is

still satisfied.

a2 9-1-- has derivative zeros at s =kl, and hS (s) has real coefficients-Z- S2
and so is real at both those locations.

2. Now assuming

and

and that ha,S and hbS have real coefficients, we need to show that

and that haSS(hbSS(s)) has real coefficients. It is straightforward that compo-

sitions of rational functions with real coefficients are rational functions with

real coefficients, so the trick is to show the first part.

Applying the chain rule:

So that the fact that the LHS is zero implies that one or other of the terms

in (7-7) must be zero.

If the first term is zero, f~~~‘(hb,~(q,))=O, substituting hb,S(sO) for the Vari-

able in (7-5) gives that
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If the second term is zero, hb,s’(so)=O, we have by (7-3) that

Application: We can use this result for three types of thing: to scan functions to

see whether they might be FSLB (though the test is neither necessary nor

sufficient); in the hope that FSLB functions other than those generated by our

present set of rules (if any) might obey this condition; and in investigating non-

FSLB functions.

As an interesting example, let us look again at the function &(s)=--$-,

which we investigated in section 7.3.2 above because it was not FSLB-realizable

(at least with real-valued integrators, cf. chapter 9). The zeros of the derivative
.

h; occur at s=&j, at which points &{*j)=&=$ is pure imaginary. This suggests

that we could extend the class of FSLB-realizable functions by using the

complex-vaIued integrators of chapter 9.

7.7 Summary and Conclusions

We have presented a variety of results concerning "FSLB" realizations of

transfer functions, which have (when they exist) minimum sensitivities to their

integrators. The sensitivity condition may be interpreted as meaning that

these filters tend to average errors in any of their integrators over the entire

system, a phenomenon that we use to derive a new approximation technique in



chapter 10.

FSLB filters are important because they minimize a critical sensitivity and

because they do so without compromising other sensitivities or dynamic range.

We have also shown, in several different ways, that there are FSLB structures.

This is important because these structures are quite sparse.
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This chapter presents a design problem and its solution by means of IF syn-

thesis. It does a detailed example several different ways, including both new

types of design and several well-known topologies. Inclusion of the older topolo-

gies both permits comparison with the new designs and shows how one may use

IF synthesis to generate known topologies, and so strengthens links between IF

synthesis and prior art.

The problem is an 8th order one taken from the technical Iiterature [1]

whereas our previous examples have been of low order for purposes of clarity.

Since filter design problems are often trivial at low orders a medium-order

filter is more Iikely to interest a filter designer.

The filter to be investigated meets an arithmetically symmetric set of

specifications: it has a passband from 1kHz to 1.4kHz with 0.4dB of ripple and

stopbands with 5OdB of attenuation below ‘7OOHz and above 17OOHz. We will

work throughout the chapter with a frequency-normalized version of the filter

in which the upper passband edge is scaled to 1 rad/sec. Table 8.1 lists the

roots and leading coefficients of the various polynomials describing the transfer

function. The list includes natural modes, transmission zeros, reflection zeros,

and the numerator of the derivative of the transfer function (which we will use

in a novel type of design).
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polynomial:

leading

coefficient:

% PS fs e'sps-w's

1210.19 5.31436 3896.135 12862.8

list of -.0681354kj.916348 0 *j.909524 -0.0357517kj.741621
roots: -.06388*j.788556 0 kj.96919467 -.0611769kj.851543

-.0232675*j.710193 &j 1.25008 kj.796951 -.039556*j.9669114

-.0262875kj 1.00448 kj.399736 *j.723907 .030664*jl.42125
.0057*j.3135

-. 937406
.9556&3

0

Table 8.1: Transfer Function for Example

Figure 8.1: LC Ladder to be Simulated

Figure 8.1 shows a doubIy-terminated lossless ladder, designed for maximum

power-transfer between input and output, realizing the desired transfer func-

tion. It is the circuit given in [l]. This circuit contains ten reactive elements,
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two more than the canonic n. The simulation technique of [l] had an integrator

for each of these eIements so as to maintain a one-to-one correspondence

between circuit and simulation; it needed also to simulate some “parasitic” cir-

cuit elements with “reciprocators”, which were approximations to reactances of

nominal value zero. The performance of these circuits was compromised by the

reciprocators, which had poor high-frequency performance because of their

short (nominally zero) time-constants.

We can simulate this circuit, as suggested in chapter 3, by choosing to simu-

late any independent set of eight of the natural “state variables”: inductor

currents and capacitor voltages. Many ladder simulation strategies appear in

the literature, some of which simulate other functions related to the ladder

(e.g. wave variables) [2,3,4,5,6]. We could easily use IF synthesis to investigate

any of the canonic techniques. This example will clearly show that it is impor-

tant to simulate the right set of variables in a ladder, or all the advantages of

ladder simulation will be lost. In particular, we will first choose to simulate a

pIausible-looking set of states and will analyze the resulting system for its noise

and integrator-sensitivity performance: they will both turn out to be quite poor,

whereas the same figures for a differently-chosen set of states will be good.

By analyzing the ladder of figure 8.1 on FILTOR2 we may find its “intermedi-

ate transfer functions” (in terms of their poles and zeros), i.e. the transfer

functions from ladder input to capacitor voltages and inductor currents. Table

8.2 lists the roots of the numerators of these functions: an interested reader

might notice that many of the roots of these polynomials are quite close to

roots of the derivative of & (which we list again in the table for convenience), an

interesting observation in view of the results we obtained for FSLB filters in

chapter ‘7. The leading coefficients are of no real interest, since we will be scal-

ing lft] for good dynamic range.
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state

vcz
IL3

vc3

vc4

numerator roots of numerator roots of

intermediate function derivative of fs(s)

-.022528*j.73095 -0.0357517kj.741621

-.04425&j.854146 -0.0611769kj.651543

-.02402*j.9829337 -0.039556kj.9689114

0 0

IL l/S

-.0467423kj.7641159

-.04381265&j.957335

0

ILdS

*j.39974

-.046742+j.76412

-.043613*j.95733

0.0057*j.3135

OS 0
*j.39974

-.095866kj.86193

0 . 9 5 5 6 8

vcs/s

ij.399736

-.095666+j.86193

*jL25006 0.030864&jl.42125

0, 0
*j.39974

*il.25008

kb)
S

-0.9375

Table 6.2: Transmission Zeros From Input to States for Ladder
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Selecting States to Simuiate

It is not possible to choose states to simulate arbitrarily: not all choices pro-

duce independent tfi], and some choices simulate “extra” unwanted natural

modes of the ladder.

In general, we will select R suitable independent states out of those available

so long as we do not simulate all of the voltages or currents in any one-

reactance-kind cutsets or tiesets.

The internal structure of a ladder can contain natural modes (usually at DC)

that are cancelled by transmission zeros in the input-output transfer function:

this section explains their physical meaning.

The “extra” elements of an LC ladder can be thought of as providing redun-

dancy, and thereby potentially improving performance (or at least performance

measures), just as the simple example in section 5.4 obtained improved perfor-

mance by introducing an extra state. Since the utility of extra states is contr-

oversial we shall avoid them in this chapter.

If we were to choose all of the capacitors in a capacitative loop (tieset), for

instance lCd,Cs,Ce,CJ in figure 8.1, Kirchoff’s voltage law would give a linear

dependence among states, VC~+ Vce+Vc&+ Vcy=O. Dually, choosing to simulate all

of the currents in a cutset consisting wholly of inductors would produce a

dependency among ffij by Kirchoff’s current law.

It would also be a mistake to simulate all of the voltages in a capacitative

cutset, for instance [Cz,Cs,Cd,Cc{ in figure 8.1, because by doing so we wouId be

simulating an uncontrollable and unobservable state of the system. Notice, for

example, that the central section of the ladder in figure 8.1 is not connected to

ground at D C  so that the charge on that section of circuit is in principle arbi-

trary. This charge cannot be changed by any input signal (i.e. is uncontroll-

able) and cannot be measured from the output (i.e. is unobservable). A com-

plete simulation of this ladder would include a natural mode at DC (to model

this charge) cancelled by a transmission zero (so that it has no effect on the

input-output transfer function). We would prefer simply not to simulate this

state, and thus eliminate the possibility of internal DC instability.



The dual of the capacitative-cutset problem is that the DC value of a current

circulating in an inductive tieset is uncontrollable and unobservable.

To get a canonic system simulating only the useful (i.e. observable) part of

this ladder we must throw away one state for each of these constraints. Thus,

for instance, one cannot solve both problems in the ladder of figure 8.1 just by

removing Cd from the simulation even though its removal breaks both the sets

causing trouble, because any resulting simulation would still have enough infor-

mation to reconstruct the unobservable state (charge on the capacitative

cutset) because Vcd may be computed as Vca=-Vc5-Vce-VcV.

A First Choice

As a first attempt at simulating this filter, let us choose to simulate everything

except VcJ and Vcs: this obeys the rules above. Transfer functions from the

input to the remaining 6 states may then be chosen as tfi], and the methods of

chapter 6 may then be used to scale tfij to have equal Ls norms (so that rms

signal levels at integrator outputs will be equal, cf. section 4.7).

“Dot”(cf. section 6.9} was used to do this, assuming that the input signal was

white noise with a spectral power density of lV2/(rud/sec)t. Intermediate-

function synthesis by the methods of chapter 6 yields:

1 “dot” uses the two-sided norm definition iifii\& Jrn 1 ft,s (j IS) 1 ‘CI! cd
1-W I

IA
for consistency with

the “complex filters” of chapter 9. For this reason we consider both positive and negative

frequencies when computing noise band-width and spectral density. The filter designs of this

section are therefore all scaled to give 1V rms outputs with this two-sided deflnition of input

signal spectral density set to lV2/(rc&/sec), which would correspond in the more

conventional one-sided approach to 2V2/(?-ud/sec).
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A=

-O.ltm 0 2.41 5.718 0 6 . 1 0 9  2.012 0

0 0 -0.202 1.552 0 I.512 0.5463 0

0 0 . 7 9 1 1 0 0 0 0 0 0

-0.oi315 -0.1675 0 0 -0.9235 0 0.0313 0.1459

0 0 0 0.9065 0 0 0 0

-0.05Q4 -0.1618 0 0 0.7734 0 0.0303 0.1409

-0.0199 -0.5417 0 0 0.2589 0 -0.1616 -0.a4.54

0 0 0 0 0 0 oA3420 0

b=

-0.2814

0

0

0

0

0

0

0

cT=[O 0 0 0 0 0 .7848 O] o!=O

There is already evidence that this is not a very good design: rows 1 and 2 of

the A-matrix contain fairly large (i.e. larger than 1 in magnitude) elements in

columns 4 and 6. The arguments of section 4.11 suggest that a subtraction of

nearly equal fd and fe may be being used to form inputs sfl and sf2.

We may compute fgij functions from our (fi]: together these two sets of func-

tions tell us about noise and sensitivity. In particular, we can look at (figure

8.2) x 1 gims(ju) 12, the total output noise power that we should expect at the out-
i

put for white noise at integrator inputs. The resulting passband noise level may

be seen to be about 6OdB above integrator input noise.

We can use the W matrix described in section 4.8 to look at the total noise

contributions of individual integrators: defining

gives us a definition of an inner product . on {gi] that degenerates to a useful

norm (cf. section 4.8). The diagonal elements of W are the rms noise levels that

we should expect each integrator to contribute to the output if integrators have

independent white input noise with a (two-sided, cf. footnote for ijft/i2 above)

spectral density lV2/(Tud/sec).

Investigation of the K and W matrices casts further suspicion on states 4 and

6: in particular,
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Figure 8.2: Total Output Noise for First Ladder Simulation

Wti=[ 7.76 9.76 66.2 345.4 9.76 406.5 49.7 7.6 ]

and so the total output noise for this L2 scaled filter is about xWiiS902.9. This

total may also be evaluated as the area under the curve of figure 6.2 (extended

to negative frequency and converted from decibels). We will soon see that this

is more than 1OdB above the optimum. Note that states 4 and 6 generate a lot

of noise: we might suspect from this and the large magnitudes of AId and AI6

that states f4 and fe are too similar. Using our inner product to evaluate an

angle between these functions gives
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This suggests that there may be excessive correlation between these states

(which correspond to Vcs and VCB in figure 8.1).

We can also look at the sensitivity performance of this f i l t e r  in keeping with

our emphasis on integrators we will plot some functions related to S:.

Figure 8.3 shows eight plots, one for each integrator, of the function

which is proportional to the sensitivity magnitude 1 S:“w’t normalized to the

optimum given by (7-2). This measure of integrator sensitivity has the advan-

tage of enabling one to see how close a design is to being FSLB. Because of (7-2)

we know that an FSLB filter, if it existed, would have sT<(w)=$=i V i,~. Figure

8.3 clearly shows that this particular ladder simulation is nowhere near to hav-

ing optimum performance: in fact the sensitivities to y4 and ye (of which we

have already been made suspicious by inspection of A, K and W) are between 10

and 15 times worse than this optimum in the passband.

Section 8.5 below will show how this normalized measure relates to more

conventional ones for this problem.

Inspection of figure 8.3 allows a designer to understand the behaviour and

meaning of some of the different aggregate measures of integrator sensitivity

discussed in chapter 4, all of which are just means of summarizing all eight

sYt(w) in a single curve or number. A fairly obvious approach is to pick the

worst case over i at each frequency, which leads to
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relative

sensitiviIy

2

Figure 8.3: Normalized Sensitivity Plots for First Ladder Simulation

For simplicity, this is the kind of curve we will plot for all the other designs to

be done for this filter.
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A statistical aggregate, like

measures the variability of is under random perturbations of 7i. Its shape will

often be similar to that of the S7,_, since when a single integrator dominates

overall sensitivity at each frequency the two measures converge.

An average magnitude measure, like

1 l/n

distinguishes between filters for which the sensitivity functions are different

only in magnitude, but highly correlated, and those in which these functions are

very different (or opposite in sign}. For an FSLB filter,

i.e. all ST< fLs&,s
G ’

are exactly equal, which we believe to be optimum. A design in

which the ft,sgi,s all lie in the same direction (when seen as a vector in the vec-
1

tor space of possible fi,sgi,s} has S7_i=$ and is a reasonable suboptimum. Note,

for instance, that figure 8.3 shows that at high frequencies the system has

1 q4 I = I S&J) I = L4 and all other SyiZO. W e  can deduce that

f1.s 493
- 1

%*s g7,s S--g-k ’ at these frequencies: at least there we are not adding

large, nearly equal and opposite, terms together to get the invariant sum

~%.s&.s.
i



This particular ladder simulation is a long way from the optimum 1=. 125 forn
a n y  of these aggregate figures over the passband and most of the stopband.

We conclude that the filter, despite the fact that it is a ladder simulation, is a

long way from lower-bound performance in the passband. Further, it looks as if

its problem is that q (simulating VC5) and a (simulating Vc6) are too similar.

One does not necessarily get good filters by blindly simulating ladders.

8.3 An Improved Ladder Simulation

It seems that the way to improve this simulation would be to replace one or

both of the overly-similar f4 and f6 with something else (while still obeying the

basic rules of section 8.2).

Several of the rows in our first A matrix appeared to be forming weighted

sums of f4, fe, and fp This suggests that they might be trying to form

Vcs+Vce+ Vc,=- Vc4 by summation, which is one of the states that we threw out in

order to get a canonic system. If we therefore replace the troublesome f6 (Vc6)

with VC4 we might expect a better filter.

The result is somewhat better: it has total output noise (after Lz scaling) of

xWiiS200, which is about 7dB better than our first design. The largest element
i
of A in this design is A16=2.62, and the next worst is Ai3=2.4. Since these are

both greater than 1, we may suspect (cf. section 4.11) that now our new f3 and fs

are too similar: in fact the angle between them is only No.* States 3 and 6 also

contribute most of the total noise:

l This is even worse than before, but the filter is a little better because the worst states are

now slightly further away from the rest of the states.
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Wg=[7.?8 9.76 66.24 15.378 9.76 74.84 8.63 7.8]

Rather than continuing on and looking at sensitivity, Iet us simply replace fs

with something more useful.

8-4 A Good Ladder Simulation

Choosing to have f3 simulate V& rather than Vcs gives a system with

Wti=[7.78 9.766 7.83 10.75 9.76 10.86 8.17 7.8]

and zWtiEi’2.?. This is 5dB better than our second design, and in fact the tech-
i ’

nique of [Mull’761 states that the best possible output noise level for this prob-

lem is about 67.4 (cf. section 8.6 below) : this ladder simulation is within 0.4dB

of theoretically optimum dynamic range!

The system description required to get this set of l&j is:

A=

-0.1816 0 -0.02aa 0 0 0~1801

cl 0 0.0695 -0.0455 0 0.8533

0.8445 0 0 0 0 0

-0.0615 -0.1075 0 0 -0.9235 0

0 0 0 0.9005 0 0

-0.3023 -0.8235 0 0 -0.1893 0

-0.0199 -0.0542 0 0 0.2509 0

0 0 0 0 0 0

c*= 01 0 0 0 0 0 0.7846 0 1 d=O

0 0

-0.0164 0

0 0

0.0313 0.1459

0 0

-0.00744 -0*03&

-0.1816 yO.8454

0.3426 0

b=

-0.26$4

0

0

0

0

0

0

0

now all &j are less than 1 in magnitude, which we believe to be good.

Figure 8.4 plots t jgi(j~) I2 for this ladder, and may be interpreted to mean
1

that passband output noise for this filter will be about 4OdB above the level of

input noise. Thus if we used integrators with lZnV/m of input noise to
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Figure 8.4: TotaI Output Noise for Good Ladder Simulation

implement this filter we could expect about 1.2j.~v/~ at the output.

Figure 8.5 plots ,S7.,,,(~) for this filter. Notice that it is near minimum (l/a)

over the passband and that it is %1/2 over much of the stopband. We may

interpret these features as meaning that the function is approximately equally

sensitive to each of its integrators in the passband and usually dominated by a

pair of integrators in the stopband (because a good second-order system would

have S7,_--0.5, which is what we have over most of the stopband).
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Figure 8.5 Worst-case Integrator Sensitivity for Good Ladder Simulation

There are, however, high peaks (which actually go off this graph): one at

~3.314 where S7,--=5.7 and the upper-stopband one at uZl.43 where Sy,_=Z.74.

These sensitivity maxima turn out to occur at local minima of the attenuation

function for the filter, i.e. where there is the smallest amount of stopband mar-

gin to protect the design from breaking specifications. Thus it seems that

ladder simulations reserve their worst performance for the most sensitive part

of the stopband, an unfortunate problem that we shall shortly see that cascade

designs share.
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It is a feature of the type of sensitivity plot that we have chosen to use, one

normalized to the theoretical lower bound on performance, that sensitivity

peaks appear at stopband attenuation minima for these filters. The classical
t

sensitivity figure S71 does not peak at these points, but the lower bound dips

(because the derivative &’ is small at a stopband minimum). It would be wrong,
however, to treat the peaks as an artifice of the measure because there are

some structures which do not exhibit them, and are therefore much better

than ladder and cascade structures at the most critical stopband frequencies.

Structure of the Simulation

The system implementing the tf$] for our good ladder simulation has several

desirable properties: we have already seen that it has near-minimum noise and

passband integrator sensitivity and that no large coefficients appear in A (i.e.
no integrators have very short time-constants). It also does not need a zero-

forming network (corresponding to the cr vector) because only one element of

I? is non-zero, so that we may simply take the system output as state XT; this

useful saving happened because we chose fT=&. It also happens that of the b

vector only bl is non-zero, which makes the input easy to apply; this happened

because only fl was of order n-1=7. This kind of saving is usually easy to

arrange when choosing ffi].

The system simulating the ladder is fairly sparse, with only 27 of the 81 ele-

ments non-zero. This comes about because of the structure of the original

ladder, and in particular because one element of each ‘Yank” (LC resonator)
simply integrates the output of the other (if a capacitor and an inductor are in

parallel, the inductor current is the integral of capacitor voltage), and there-

fore only has a single entry in its row (i.e. does not have to perform a summa-

tion as well as integration). The functions fa, fs and fa in this structure may be

seen to be derived in this way from fi, f4 and f7, respectively. In general it is
fairly safe to make about half the jfi] simply integrals of the other half, because

fi and its integral are orthogonal (under any inner product of the same form as

the one we chose for this example). The weakness of companion form will be



shown to result from the fact that it goes too far and integrates a single func-

tion n -1 times, and that the result of integrating an fi twice is very strongly

correlated with the original fi, especialIy in a narrow-band case.

Summary

We have demonstrated a c a n o n i c  simulation of an LC ladder with near-optimum

performance in the passband; we have also shown that it is fairly easy to diag-

nose and correct structural faults in filter designs by means of the vector-space

approach offered by intermediate-function synthesis.

8.5 Sensitivities to Magnitude and Phase

This chapter has been (and will continue) comparing filters on the basis of the

magnitude of a complex-valued sensitivity measure normalized to the lower

bound on performance (which we called the “frequency scaling lower bound”)

discussed in chapter 7’.

ItsI
Filter designers are generally accustomed to investigating Size = a1rlj t&k) 1ah, 5,

%&I ’
the sensitivity of filter magnitude response to magnitude and

phase errors in transmittances. * To illustrate the relationship between this

approach and the one we take we show in figure 6.6 three functions of S:,
which is the (complex) sensitivity of tS to an integrator’s gain, for our best

ladder design. The magnitude IS:\ is shown, and is the kind of function our

measure S,,I(~) investigates, except that ,S7 normalizes this sensitivity to its

frequency-scaling lower bound; The real part me is shown, which may be

* It has been customary to deal with phase errors in terms of sensitivity to component “Q-

factors” or “dissipation factors”, but it is easy enough to relate this older work to phase,

which is naturally related to the logarithmic definition usually used for sensitivity.
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Figure 8.6: Classical Sensitivity for Ladder Simulation

interpreted (cf. section 4.3) as S[:/; and the imaginary part hn(S:j is shown,

which is a ~~~~~~ ’ (equation 4-9).

Note that Sj’k/ g oes to zero at the four reflection zeros, just as the sensi-

tivity of a doubly terminated ladder to a reactive element must, and that it is

also zero at another passband frequency (a local maximum of 1 ts 1). Note also
that throughout the passband sensitivity to phase is relatively large.
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The large magnitude of
c3h I k I I $ I

+tYA
relative to that of S iTI1 appears at first to

suggest that the argument for ladder structures might contain a fallacy: if

filters existed with lower ahIts
aP(YiI

they might be preferable to these even if S/:/

magnitude sensitivity. We can see from the normalized

that phase sensitivity cannot be improved very much:

lowest possible sensitivity to phase (because equalizing

i%oti equalizes sensitivity to phase) and this filter is

passband.

were somewhat higher, since a practical ladder simulation looks likely to have

its sensitivity performance dominated by its phase sensitivity rather than by its
measure SyI, however,

an FSLB filter has the

the sensitivities a for-
close to FSLB in the

Our earlier figure 8.5 showed that this ladder was close to FSLB (cf. chapter

‘7’) in the passband, and the argument of chapter 7’ is that this necessarily

implies features like low magnitude sensitivity in the passband, and that the

phase-sensitivity performance of almost-FSLB filters is almost as good as is pos-

sible. The filter designer should therefore expect to see curves Iike those of

figure 8.6 in any “good” filter, i.e. in any filter for which s,.<E$.

It appears that the justification for thinking that this ladder simulation is

good is more clearly deducible from our S,, measures than from the more con-

ventional magnitude and phase sensitivities.

8.6 Noise Bound

The derivation in [12] for optimum xI&Wii (i.e. minimum noise for a scaled

filter) relied on the invariance of the eigenvalues of KW (cf. section 4.8.1). We

can take KW for any of our filters and find these eigenvalues (or “principal

values” or “second order modes”); they are

/$=[0.1605 0.17029 2.6562 2.6945 15.125 15.279 32.232 32.0591

From these we can use the formulae in [12] to find out that
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TI&Wii2+{&)2=67.4
i

Our best ladder filter (x&Wti=72.7) clearly came quite close.
i

8.7 A Cascade Design

The next popular type of design to try, in order to demonstrate IF synthesis, is

a cascade type.

A cascade contains sections with individual transfer functions rIJ2, etc., con-

nected one after another so that iS=nri. In principle the structure of each
j

section could be arbitrary, but for this example we will assume that a two-

integrator loop is to be used with zeros to be formed by summing the two out-

puts, either at a dedicated summer or (more economically) directly at the

inputs to integrators in later stages. The manner of summation does not affect

sensitivity to integrators (our dominant concern).

The ffi{ appearing in the kfh section are of the form

where 6?k ,S is the denominator of the ke section, which (if it is second order}

contains two integrators. A first-order ek only needs the first of these two ifi{.

Note that in the second-order case one of the two intermediate functions is just

the integral of the other, so that half of the system’s integrators clearly need

only one input: we suggested at the end of section 8.4 that this was usually safe

enough.

ws



Figure 8.7 is a sketch of the s-plane, and shows a particular

l?j for &, i.e. a “pairing and ordering” [8,13]: each singularity is

index number of the section (p) which realizes it.

This design, following the rule of

thumb developed in [8,10,13] has

natural modes paired with their

nearest transmission zeros, with

high-Q natural modes taking prior-

ity, and orders the sections to have

successively higher Q-factors from

start to finish so that the front-end

of the filter is relatively low-Q.

Lowpass and highpass sections are

alternated. Choosing If*] this way

and & scaling as usual gives a sys-

tem with:

A=

0 0.7911 0 0

-0.7911 -0 .1278 0  0

0  0  0  0 .8553

0 0.2039 -0.9Wl -0 .1363

0 0  0  0

4

4

zX
X

1X X
3

F’igure 8.7: A Pairing al

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0.7683 0 0

choice of factors

labelled with the

0 0 0 0 .1794 -0 .6572 -0.046% 0 0

0 0 0 0 0 0 0 -0 .9036

0 0  0  0 .0669 -0 .222 -0.0231 -1 .117 -0.0525

cT=[ 0 0 0 0.0825 -0.2066 -0.0214 0.5681 -0.0488 ] d=O

Wti=[ 13.35 15.15 16.18 13.5 15.32 16.42 19.71 15.74 ]

I

-U

io1rd

b=

leriq

0

0.2016

0

0

0

0

. 0

0
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zWii= 125.5
i

This system is clearly quite sparse, as we would expect of a cascade, and has

about 3dB more noise than the optimum.

Partial Sums

An interesting observation to make about this filter concerns zero formation. A

circuit like a KHN biquad [7]] or a Tow-Thomas biquad [14] using output sum-

ming forms notches by summing its internal states (and, possibly, the input),

and then passes a single result on to the next stage. If interpreted as sug-
gested in chapter 3, the “cascade” structure we have here delays that summa-

tion until it is needed, i.e. does summations at the inputs of later integrators.

One is free, of course, to implement these zero-forming networks either way:

using an op-amp to form sums that a Miller integrator’s virtual ground could
equally well have formed is wasteful; but if an &term sum will be needed by

several states, it probably saves net cost to form it only once (at a cost of 8

resistors and one op-amp) and then distribute it (at a cost of one resistor each)

to all of the integrators needing it.

A version of this procedure, related to feedback structure rather than to

zero formation, is illustrated by the SFG of figure 8.8. Inspection of the cascade

system above shows that row 8 of A is directly proportional to cr except at ele-
ment 7, from whence can be derived the equivalence of figure 8.8. This unusual

structure derives an internal feedback from the overall system output, and

avoids using a 5-term summation to form 4 Notice, however, that this saving is

obtained at the cost of a cancellation in forming A97: there are two paths from
the output of integrator 7 to the input of integrator 8 ,  one with a gain of 0.61

through 7~ and a direct path with a gain of -1.73. The result is an increase in the

sensitivity of Ao7 to elements of the second SFG of figure 8.8 in return for a

reduced number of circuit elements.

Generally, within a given state-space structure there will often be a number

of different ways to form the summations implied by the #A,b,c,ci] system. It



Figure 8.8: Re-using a Sum

may be advantageous to form and re-use partial sums when several rows of the

system equations contain several common terms. We regard this as a design

question to be settled after the deeper, state-space, structure has been chosen.

8.8 A Cascade Design with Higher Dynamic Range

The rule of thumb from the literature [10] used above to determine section ord-

ering lacks symmetry with respect to input and output. The dual rules of lfi]

and tgij, and of the signal and noise gains investigated in [9], suggest that if a

particular design is good then its “dual” must also be. By “dual” we mean here

a new system derived by interchanging the {fi{ and tgij of a system, which inter-

changes inputs and outputs in a state-space structure.

We therefore propose a different rule: that the highest-Q sections of a cas-

cade filter be in the middle of the structure and the low-Q ones on the outside.

This rule is symmetric with respect to a reversal of the order of sections in a

filter while the previous rule is not. This symmetry suggests, as does the close
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duality of {fij and tgij, that if any particular structure is good then its reverse

will also be. We still maintain the usual “pairing” rule and associate poles with

their nearest zeros, and we still alternate highpass and lowpass sections.

This modified ordering rule is reminiscent of the rule for ordering of “remo-

vals” in an LC synthesis given in [10] which places tanks (LC resonators) that

form notches close to bandedges near the middle of the filter and those forming

notches at extreme frequencies on the outside. The symmetry here is obviously

implied by the reciprocal nature of a ladder synthesis, because interchanging

input and output in a reciprocal network makes no difference to sensitivity.

In order to experimentally investigate the effect of this more appealing sec-

tion ordering we will look at the ordering shown in figure 8.9.

With lfi] selected in the same gen-
eral way as before we obtain a scaled

system with

Wti=[ 16.89 14.2 12.78 13.57

11-82 11.9 13.35 15.15 ]

for which the total output noise

figure is xWii=109.i’. This system
.i

clearly has significantly better

dynamic range than does its prede-

cessor.

1.4

\a
3

lX
3X

4x x
2

2

-0
!,4Figure 8.10 shows the expected

output noise spectrum 2 1 gi J2 for
i

this design, which can be seen to be F’igure 8.9: Improved Ordering

slightly "peakier"” than that of our best ladder, with a maximum value of about

5OdB.

Figure 8.11 shows sensitivity 5’Y,J~) for this cascade design. Two important

features stand out: that S7,_s 1/2 over the passband and most of the stopband,

but that the sensitivity peaks (just as it did for the ladder) at about the
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Figure 8 . 1 0 :  Output Noise for Improved Cascade

stopband minima.

It happens that there is a cascade design with marginally better dynamic range

yet: namely one with the pairing and ordering shown in figure 8.12, for which

(after scaling} zWiis103.4.
i
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Figure 8.11: Normalized Sensitivity for Improved Cascade

This differs from our previous design only in that the low-Q poles are here

assigned to low-pass and high-pass sections where the previous design assigned
them both to bandpass sections. This (better) design adheres more closely to

the pairing rule recommended in section 8.8 above.

The noise spectrum for this design is shown in figure 8.13 and 5’7,_ appears in

figure 8.14. The most notable thing about these curves is that they are very

similar to those for the previous cascade design: the designs are obviously

pretty similar.
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Figure 8.12: Best Pairing and Ordering

&lQ Summary: Cascade

Three cascade designs have been touched on at different levels of detail. A

“duality” condition suggested an alteration in the manner of section ordering,

and the resulting designs indeed outperformed a conventional design. Zero for-

mation within the cascade can be done in different ways within a basic struc-

ture, with some straightforward trade-offs between component count and sensi-

tivity.

The passband sensitivity figure .S’,.,_ of the cascade designs was about 1/2,

whereas the ladder circuits approached the limiting S7,m=l/n. This just means

that in a cascade design, at any given passband frequency, two integrators (i.e.

one section) dominate performance while in a ladder all n participate about

equally. It therefore seems that (in the passband) cascade design suffer from a

disadvantage of a factor : relative to coupled designs.

W.5
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Figure 8.13: Noise for Best Cascade

Stopband sensitivities for cascade and ladder structures were generally simi-

lar: over much of the stopband .S+ 1/2, reflecting the fact that stopband per-

formance at these frequencies is determined by 2 integrators. The fact that

G=--l/Z at transmission zeros may be directly attributed to the “decoupled

tuning” property for which cascade and ladder designs are noted in their stop-

bands: only a single resonator (i.e. 2 integrators) determines k at these points.

It follows that no structure with decoupled tuning can possibly do better than a

cascade at transmission zeros.
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Figure 8.14: Sensitivity for Best Cascade

The worst stopband feature of these designs, however, is that they have stop-

band sensitivity peaks at stopband minima.
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Both cascade and ladder filters are structured so that only a single pair of
integrators is involved in setting the frequency of each transmission zero. It is

easy to demonstrate that this decoupling of transmission zeros necessarily

implies poor performance at stopband minima.

a: decoupled tuning: result of error in firs1 zero
Lx nominal transfer function
c: coupled tunifqg: result of error causing correlated
shift in zeroes and poles

Figure 8.15: DecoupIed Tuning and Stopband Sensitivity

Figure 8.15 shows the effects for two different filter structures of varying an

integrator gain: in a structure with decoupled tuning only one transmission

zero moves while in a coupled structure both move together. The difference



between the two structures is most evident at the frequency of minimum stop-

band attenuation: in the coupled structure there is no effect on attenuation,

while in the decoupled structure (e.g. cascade or ladder) there is a large effect..

8.12 Companion Form

For a companion-form filter, figure 8.16,

”

Y

Figure 8.16: Companion-form Filter

the {fij are just f e can Ls scale these and look at 2 \gi 1 2 (figure 8.17)
i

and ,SY,_(u) (figure 8.18). Notice that these figures are very much higher than

those for any of the filters we have seen so far. Noise gain is about 12OdB, 8OdB

worse than that for the ladders, while the sensitivity figure is around 40 in the

passband, over 300 times worse than its optimum. At no frequency does this

structure compete with either ladder or cascade.

The reason for this poor performance is not hard to find: some of the ifi] are

very close to others, and so we have “near-dependencies”. In fact,

XIaS2~~I&+2SI.96, which means that every fi is 98% correlated with fi+z and fi_z,

or separated by an angle of only about 13 0 from its second derivative. This
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Figure 8.17: Noise for Companion Form

confirms our earlier comment that it was usually unsafe to design systems that

simply integrate any function two or more times. The correlation becomes

progressively stronger as bandwidth is decreased.
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Figure 8.18: Sensitivity for Companion Form

8.13 &am-Schmidt Orthonormalization

Chapter 5 discussed “orthonormal” filters, which are free of the problem of

near-dependencies among if*). Gram-Schmidt orthonormalization [1  1], of

which equations (5-2) and (5-3) of chapter 5 were a case, is an algorithm that

produces n orthonormal vectors fiij from any n independent ffi j. The pro-

cedure modifies each vector in turn by subtracting from it its projection on



vectors already treated, then normalizing it.

Since the tf%] for companion form are independent and we have an inner pro-

duct, we can use the Gram-Schmidt procedure to find a new system with ortho-

normal intermediate functions from the (extremely poor) set for companion

form. The resulting functions are shown in table 8.3.

function leading list of

coefficient roots

fl 0.00165 e

fz 0.002065 0

I f3 1 0.01105 1 AjO. I

4 0.01277 0, Aj.82457

f5 0.0877 *jO.7414, jO.93742

f6 0.08044 0, kjO.75018,kjO.94929

f7 0.30171 &j.7126,ij.fXK35,~j.9848

ff3 0.34 O,&jO.7225,~jO.856l,&jO.9943
7

Table 8.3: Orthonormal Intermediate Functions

It is interesting to note that these if*] have notches in the filter’s passband.

Since sensitivities are proportional to ffi] (chapter 4) it follows that various sen-

sitivities go to zero in the passband. Note that both magnitude and phase sen-

sitivity are thus forced to zero, where only magnitude sensitivity is zero in a

ladder or FSLB structure. The net effect is, however, not as good as this would

suggest because not all sensitivities are forced to zero simultaneously and
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those that are not zero become larger than they would be for an FSLB struc-

ture.

The total resulting noise is xWii=lOO, slightly better than the cascade design
i

and within about 2dB of the optimum: recall (section 5.6) that we have shown

that orthonormal filters are at most a factor of n worse than optimum. The

structure of the resulting system (Table 8.4} is sparse and suggestive: notice

that this is a type of “leap-frog” structure.

A=

0

-0.0032

0

0

0

0

0

Q

0.8032

0

-0.1861

0

0

0

0

0

0

O.lEv31

0

-0.0651

0

0

0

0

0

0

0.8651

0

-o.laae

0

0

0

0

0

0

0.1886

0

-03417

0

0

0

0

0

0

0 . 8 4 1 7

0

-o.26ar3

0

0

0

0

0

0

0.2668

0

-0.8874

0

0

0

0

0

0

0.3874

-0.3332

b=

0

0

0

0

0

0

0

0.34

cT=[0.7434 0 -0.2492 0 -0.0292 0 0.0146 O] d=O

Table 8.4: An Orthonormal System

The system may be interpreted as a simulation of the (singly terminated) pole-

forming ladder filter of figure 8.19, with transmission zeros formed by output

summing.

The output noise spectrum (figure

8.20) and normalized sensitivity

curve (figure 8.21) are comparable

to those for a good cascade design: a

little better in the passband and

upper stopband and worse in the F-lgure 8-19: Pole-forming LC Ladder with
lower stopband. Orthonormal l ft ]
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Figure 8.20: Noise for Orthonormal System

8.14 Derivative-Based Design

We know (chapter 7) that if an FSLB realization of a filter exists its ff<j must

divide ii. We can choose various sets lfi] by combining the prime factors of t;

and investigate the resulting systems.
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Figure 8.21: Sensitivity for Orthonormal System

Figure 8.22 is a sketch of the s-plane showing roots of both & and t;. It shows

with each root of the numerator of f; a list of the index numbers i of the ffij

that contain that root for a particular design, and so provides a notation for a

choice of [fi].

The particuIar choice of ifi{ in figure 8.22 was made to have a number of

symmetries, one of which gives a sort of “reciprocity” and one of which tends to

force the system to have substructures resembling the FSLB biquads of chapter

7.
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We expect some sort of “reciprocity” to be useful because we know that,

because of the dual roles of tfi] and fgi], taking the dual of a good system

(&]=fgi]) should yield another good one. That in turn suggests that if a unique

best system exists it must be self-dual. The ffi] in figure 8.22 are so chosen

that the
Ju
1

0 1,2.3,4

0

.1,2,3,4

.-%-pm&%?
Figure 8.22: Assignment of Derivative Roots to ifi]

factors of $ missing from any fi (which would be the factors of gi if the filter

happened to be FSLB) appear in fQ_i, i.e. f~f~=f2f7=f~f6=f*f~=i;,

We have also chosen factors so that all ffi] are bandpass in appearance, i.e.

we have paired corresponding factors from above and below the bandcentre.

This was done because the work in chapter 7’ showed that FSLB structures of

high orders were obtained from those of lower order by composition of func-

tions; since our transfer function is generally bandpass in shape we should

expect it to be composed of bandpass sub-filters.

The resulting system has, after Lz scaling the ffi] and using “dot” to find {gi],
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Wii=[9.769 9.771 9.482 9.475 6.532 6.527 11.21 11.191

so that xWiiE73.96. This is very close to that of the best ladder circuit above.
1

The output noise spectrum (figure 8.23) is also similar to that of a ladder.
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Figure 8.23: Noise for Derivative-based Design

Most interesting, however, is the sensitivity performance of this structure,

figure 8.24. While the lower-stopband performance is mediocre, this filter is

superior to any others in the upper stopband and the passband, where it is

close to having FSLB performance (S,.,_=l/8). It has a small peak, Sy,Sl/2, at
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Figure 8.24: Sensitivity of Derivative-based Design

the upper stopband minimum. The fact that this is Iess than 1 clearly sets this

filter apart from the cascade and ladder designs.

The system matrices, Table 8.5, are fairly dense (only 16 A entries are zero}

but have strong structure, which derives from the structure imposed by the

way we chose factors. Note, for example, that the first six columns of row 7 are

directly proportional to the first six of row 8, so that a partial sum of these sig-

nals could be used for both integrators. This pair of integrators essentially

forms a biquadratic section with a single input derived from the other six

ws



A=

0 . 0 2 6 5  0.7971 0.1167 0.1157 0 0 0 0

-0.9194 -0.1488 0.1155 0.1145 0 0 0 0

-0.1223 -0.1067 0.0006 0.a325 0.1194 0.1020 -0.0221 0.0056

-0.1210 -0.1055 -o.ama -0.1139 0.1182 0.1009 -0.0219 0.0055

0 0 0 0 0.0265 0.797 0.1479 0.1466

0 0 0 0 -0.91945 -0.14aa 0.1463 0.1451

0.0414 0.0371 -0.0461 -0.04.02 -0.0930 -0.0807 0.0537 0.6072

0.0410 0.0367 -0.045& -0,039a -0.0920 -0.0799 -0.6924 -0.13aa

b=

0

0

0.0092

0.0091

0.1557

0

0

0

cT=[ 0 . 5 8 4 9 0 . 5 7 5 5 - 0 . 3 4 7 9 0 . 0 2 0 9 0 . 0 2 3 1 0 . 0 2 5 5 0 . 0 0 1 0 -0.0002] d=O

Table 8.5: A Derivative-Based System

integrators and distributed almost equally to both of its integrators. This is

basically the form of the optimum bandpass biquad derived in chapter 7.

Integrator pairs (1,2), (3,4) and (5,6) may similarly be grouped into biquads.

Relationship to Ladders

The fact that many of the roots of i; lie close to roots of intermediate functions

for the doubly terminated ladder (section 8.2) suggests that one could

“correct” roots in the ladder simulation by moving them to nearby t; roots. By

this means it is possible to obtain an infinite class of filters with performance
intermediate between that of a ladder and that of the derivative-based design.

&15 Summary and Conclusions

We have used IF synthesis to investigate, at the {A,b,c,d] system matrix level,

several competing designs for a non-trivial (eighth order) bandpass filter taken

from the open literature. Comparisons were made of dynamic range and

integrator sensitivity performance, which have been the dominant concerns of

preceding chapters.
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A new type of ladder simulation was developed which avoids the need to

simulate “extra” states with their concomitant problems at high frequencies

and near DC. It was shown that the detailed choice of which states to simulate

strongly affected the performance of the simulation, but IF synthesis made it

easy to experiment, and compare alternatives. The best simulations produced

were shown to be close to lower bounds on noise and passband sensitivity per-

formance.

Cascade syntheses were also done, and a new rule for section ordering

inspired by the duality between {fi] and jgi] was tested and found to be superior

to that current in the art. Good cascades appeared to be approximately a fac-

tor n/2 worse than lower bounds in passband sensitivity: this suggests a

straightforward rule of thumb by means of which a designer may compare cas-

cade and highly coupled structures.

The simple sensitivity performance figures for ladder and cascade structures
suggest a new strategy for transfer function approximation, which is is

developed in chapter 10.

Companion form was investigated and the cause of its weakness pointed out.

The Gram-Schmidt procedure was used to modify companion form to a

structure with orthonormal states, which turned out to have sensitivity and

dynamic range performance generally comparable to those of cascade designs

and could be seen as a simulation of a singly-terminated pole-forming ladder.

A new type of structure was developed by choosing ffi$ from the zeros of f;.

It turned out to have better passband and upper stopband performance than
the doubly-terminated ladder, but to perform fairly poorly in the lower stop-

band. The fact that integrators are relatively well-behaved at low frequencies

suggests that this type of design could be preferable to a ladder simulation.

The technique of basing a design on $ is applicable to a wider range of transfer

functions than is ladder simulation because there are restrictions on the class

of functions for which ladder synthesis works and because ladder simulations

only try to obtain good performance near transmission maxima. This suggests
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that derivative-based design offers a new approach to synthesis of unusual

types of transfer function.

Intermediate-function synthesis appears to be a powerful and practical

design tool.
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9. Synthesis of Complex Filters

Intermediate-function synthesis has proven useful in the investigation of “com-

plex filters” [1,2], by which is meant filters whose transfer functions may have

complex coefficients. This type of filter is shown to be potentially useful.

9.1 Introduction to Complex Signals

This section presents the concept of a complex analog signal. It will be useful in

defining and designing the networks required for, inter alia, single-sideband

(SSB) generation. This section is tutorial in nature because this chapter applies

a concept known in signal processing to circuit design, where it is not familiar.

One conventionally thinks of analog signals as being real-valued because they

are represented by (real-valued) voltages on wires. If, however, we have a pair

of wires at different voltages (to ground, presumably) V1 and Vz, we may think

of the pair of wires as carrying the “complex voltage” V$~+JV~. Now, if VI and

Vz vary with time (i.e. are signals) so does the fictitious V, and we call it a “com-

plex signal“ (or a “complex-valued” signal). This procedure is no different from

that we follow when we write a complex number as, e.g., 3+j4 or (3,4): we are

resolving the complex quantity (in a particular one of infinitely many possible

ways) into an ordered pair of real numbers.

The properties of a “complex signal” in the time domain, then, are fairly

straightforward: it is just an ordered pair of real signals. In the frequency

domain the difference between real and complex signals is that the spectrum of

a real signal must be symmetric about DC [3] while no such constraint applies

to the spectra of complex signals. To take a concrete and important example,

if V~=COS(LI~) and V~=sin(c~~) then by definition ~=co~(~~)+~sin(~~)=e~~~, which

has power only at a positive frequency IX. A  rea l  s ignal ,  like
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vp2os(Gf)=
eW +e-jd .

* , must have equal power at positive and negative frequen-

cies.

We will want to do two types of things with complex signals: linear filtering
and modulation. We will also want to convert real signals to complex ones and

vice-versa.

Modulation

Modulation just involves multiplication of a pair of signals to produce a result.
We define multiplication in the usual way, (a+jb)(c~jci)&(ac-bri)+j(ud+bc), and
can draw the resulting “complex modulator” as shown in figure 9.1.

We can easily check that
the structure of figure 9.1
does what we would expect of.
a modulator, i.e. convolves

spectra, on a simple example.
If ejut and cj@“)! arc multiplied

this way one may verify that
the result is ejt3@. Complex
modulation by ej”’ is actually
conceptually simpler than

modulation by a real signal

like cos{cJf ), because the

former involves frequency-

domain convolution with a sin-
gle &function at Jo while the

latter involves convolution F’igure 9.1: A Complex Modulator

with a pair of &functions (one at +ju and another at -ju). Thus complex modu-
lation involves a simple frequency shift, while “real” modulation involves adding
the results of shifts both up and down in frequency.



Complex Transfer Functions

We can make two-input two-output linear systems, and so we can make systems

that process complex signals. In particular, the four ordinary single-input

single-output (SISO) systems in figure 9.2a process the complex signal

K !!V~J?~ +jViJm applied at the left to give a complex result at the right.

Figure 9.2: Two-Input Two-Output System Equivalent to a Complex System

Notice that we have started to use subscripts “Re” and “1m” to distinguish the

two real signals comprising a complex signal, rather than the anonymous 1 and

2 that we used earlier: this is just a mnemonic device and need not necessarily
imply anything about a relationship between the signals.

It is straightforward to verify from the figure that the “complex output”

V. iVo ,R~ + jVo ,lm is just

by substituting the definitions of V. ,tS, and Vi given in figure 9.2b. We can there-

fore draw the network of figure 9.2a in the shorthand form of figure 9.2b: as a
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system with a single (complex) input (shown as a double line to emphasize that

a pair of real signals is involved) and a single (complex) output V0 related by a

transfer function &.

Just as signals with complex values as functions of time can have spectra

asymmetric about DC, so filters like ts(s) with complex inputs and outputs can

have asymmetric transfer functions. The individual SISO transfer functions tRs,s

and tI,,,s of figure 9.2 had to have real coefficients as functions of s and so

lt~~,~~~)l=lt~*~(-j~)l, but Q&.&&,~ can have complex coefficients and

there is no symmetry imposed at all.

This chapter is concerned with the design and synthesis of complex tS(s)

(which we often call “complex-coefficient transfer functions” when “complex”

alone might be misread to mean “complicated”) especially when the function

desired is a filter.

Converting Real Signals to and from Complex Signals

Complex signals may be used internally in systems processing real inputs to get

rea1 outputs. A real signal may be “converted” to a complex one by the trivial

operation of adding an imaginary part of value zero, which has no effect on the

signal’s spectrum.

A complex signal may be converted to a real one by ignoring its imaginary

part (which obviously destroys information) but this does affect the spectrum:

it causes a type of “aliasing” between positive and negative frequency com-

ponents of a signal. This issue will be discussed in section 9.3 below.

9.1.1 Application to SSB Generation

The block diagram of figure 9.3 shows how to construct a single-sideband (SSB}

modulator* using complex signals internally. The first stage is a “positive-pass”

l Here we are simply deriving Weaver’s second method of single-sideband generation in such a
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take real part

complex modulator

carrier without
negative frequency

Figure 9.3: An SSB Modulator using Complex Signals .

complex transfer function, i.e. a “complex filter” designed to pass positive and

reject negative frequencies (which is perfectly permissible because transfer

functions are not restricted to be symmetric around DC). The next part is a

complex modulator, which shifts the spectrum of the complex signal at its

input up by a carrier frequency c+ by multiplying by e jUO’. Notice that the

result has, at positive frequencies, the spectral asymmetry (upper sideband

only) that we desire of a single-sideband signal. The final stage takes the real

part of the complex SSB signal, which has the effect of adding a mirror image of

the complex SSB spectrum at negative frequencies, resulting in a symmetric

output spectrum.

The problem of specifying the positive-pass filter so that the overall system

has given performance as an SSB modulator is straightforward. If, say, 40dB  of

lower-sideband rejection is required, the input filter must suppress negative

frequencies by 4OdB; if 0.5dB of variation is permissible in the upper sideband,

and frequencies from 300Hz to 3OOOHz are to be passed, a 3OO-3OOOHz passband

with 0.5dB of ripple is required.

way as to motivate complex network synthesis.

IF Synthesis - (9) page 189 revised ?9L?f/f f/Z’8 WS



9.1.2 Analytic Signals

A positive-pass filter like that needed for the SSB modulator above is essentially

a way to aproximate the “analytic signal” [4,5], which is the result of removing

negative-frequency components from an ordinary “real signal”. Analytic signals

have the interesting property of allowing measurements of the “instantaneous

magnitude” and “instantaneous phase” of a signal.

If COS(CJ~} is applied to the input of an ideal positive-pass complex filter the

output (i.e. the analytic signal) will be V,,=ej“’ =cos(ui)+jsin(&). Now we can

measure the rms amplitude of the complex signal CL~ un.y &skn~ t as the rms

value of the two component signals: 1 ifa 1 =~cc~s~(~~)+sin~(c~~)= 1. By comparison,

we cannot estimate the amplitude of a sinusoid from its value at any single

point (unless we are also told its phase).

Similarly, we can define the “instantaneous phase”, uTg(VO)=ui, and its

derivative, “instantaneous frequency”. These measures are sometimes used for

theoretical reasons, but have also been suggested for such practical applica-

tions as bandwidth compression [4].

9.1.3 The Relationship between Real and Imaginary Parts of a Positive-

Pass Complex Signal

We saw above that an ideal “positive-pass” filter presented with cos(c~f) would

produce a pair of outputs, cos(w~) and sin(wf), with exactly equal amplitude and

a 90a difference in phase. In general any  signal containing only power at posi-

tive frequencies wil1 have its outputs in this relationship one to the other: the

outputs of an ideal positive-pass filter (i.e. the real and imaginary parts of an

analytic signal) are related by the Hilbert transform.

This phase and magnitude relationship comes about just because it applies

to every Fourier component of an arbitrary signal. If a signal is
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q (f)=Jm(uu~ (CJ)COS{CJ~ )+cru~(t2)sin(~f ))d u
0

then the corresponding analytic signal is

& (f )=~-(~~~(~)~~~f~~~~~~)~~~~ -$ Ll

which we can decompose into real and imaginary parts:

=J--(L7& (u)cos(rJf }+u&)sin(c3f ))d I3
0

(9-1)

+jj--(u~J&)sin(~f)-u@J(co)cos(cJf))dcd
a

in which every frequency component of the real part (just the first half of (Q-l))

can be seen to correspond to a component of the imaginary part (second half of

(Q-l)) with equal amplitude and whose phase lags by 90°.

9.1.4 History

The concept of a complex signal is well-known in digital signal processing and

communications theory [5] and is used for theoretical purposes in network

theory [ 12,15]: in particular the signals appearing in machines implementing

the Fast Fourier Transform [5] are usually treated this way, and the “analytic

signal” [4,5] in which real and imaginary parts are related by the Hilbert

transform is used in communications theory. The SSB modulator we described
above is a known derivation of Weaver’s second method of single-sideband gen-

eration [6], but the matched-allpass synthesis approach usually taken for

One can convert the structure of figure Q.3 into that conventionally used to

implement Weaver’s second method of SSB generation by substituting into it
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the implementations of modulators and ftiters suggested by figures 9.1 and 9.2.

Because the input is real-valued, the two SISO blocks processing its imaginary

part suggested by figure 9.2 may be eliminated *; because only the real part of

the modulator’s output is used, the two multipliers involved in producing the

imaginary part (cf. figure 9.1) may also be eliminated. The result is the well-

known structure shown in figure 9.4.

The conventional approach

to the approximation problem

(choosing iI and is) has been

to derive a pair of all-pass

functions whose phase

difference approximates 90’

over the frequency band of

interest. Because the func-

+1

V-+~ ‘- “.

-1

tions are a l l -pass ( i .e .

1 t  l  I= 1 t2 I= 1) their magnitudes Figure 9.4: Weaver’s Second Method of SSB Gen-

must match, and because they eration

also approximate 90° of relative phase, the pair {tI+jis) approximates a

positive-pass f i l ter

We show in this chapter that this restricted approach to approximation and

synthesis is unnecessary (because much more general extensions of ordinary

filter approximation and synthesis may be used) and undesirable (because we

can derive networks of other forms with better performance).

* Note that the result is a one-input two-output Iinear system characterized by a complex-

coefficient transfer function. We will often be more interested in this special case than in the

two-input two-output case.
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9.2 Approximation

An extensive theory is available [?] for approximation of conjugate

specifications by transfer functions with real coefficients, but the correspond-

ing theory for complex filters is limited: Lang [1] suggests an approximation

technique involving a shifted bandpass design, while Tsuchiya and Shida [8]

develop some theory for a special case in which natural modes are pure real

but transmission and reflection zeros complex. We give here the complex

equivalents of the exact formulae available in “real filter” design and a theory

for transforming between complex and real filters to allow designers to use

existing techniques to design complex filters.

9.2.1 Feldtkeller’s Equation

It is generally easier to approximate characteristic functions ,& (ideally 0 in

passbands and m ln stopbands) than attenuation functions hs (ideally 1 in

passbands and = in stopbands), In “real filter” design Feldtkeller’s equation

allows one to derive an hs from any kS such that

(where the factor E sometimes used is subsumed here in kS).

This much applies equally well to complex filters. In “real filters” a pair of
identities is then used to produce an equation in rational functions that is

identical to (9-2) over the ~CJ axis. For any rational function f s(s) with real

coefficients

where fmis the conjugate of f=(s), so that (9-2) may be re-written

(9-3)

(9-4)
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hs(s)hs(-s)=l+ks(s)ks(-s) (9-5)

Now this is not directly applicable to complex filters, because (9-4) only holds

when f has. real coefficients. (9-3) still applies, but cannot be used directly

because jm is not a rational function of .s, which is why (9-4) was needed to

analytically continue (9-2) from the imaginary axis to the whole s-plane. To

solve this problem we define a function f:, so that f:(s) (note that this is not

fm) has coefficients conjugate to those of fs(s). We then have

and on s=jrz, F=-s, so

lf~~~~lzs=jrdf s ts )fTFs J I s=jLl

and now the right-hand-side is rational.* Our new version of (9-2), then, is

kc{-s)=l+ks(s)k:(-s) (9-6)

from which, by looking at the numerator and denominator polynomials

we can derive a formula in polynomials

This formula is suitable for computation of eS(s)eT(-s) from a given kS, and pro-

duces roots symmetrical about the ~CJ axis, so that pole-sorting may be used to

* Kuh and Rohrer [15] use compIex power definitions like this for their discussion of complex

one-port networks.

IF Synthesis - (9) page 194 revised I 98 l/l 1/28 ws



construct a stable es.

Note that (9-6) degenerates to (9-2) for the real case.

For discrete-time filters we may similarly derive

Example

Take

pT(s)=s-j

and

esFs(-s)=(s+j)(-s-j)+(s-j)(-sij)

=2( l-s}{ 1+s)

and we can sort roots to get a stable

ep5(1+s)

This is a first-order approximation to an SSB filter specification It may be

implemented as a first-order filter with two outputs: a “real part” of



and an “imaginary part” of .e.2(s + 1)

The fact that es happened to have real coefficients in the above example is a

coincidence arising from the symmetrical relationship between fs and ps. This

symmetrical case is the one studied by Tsuchiya and Shida [8], although much

of their work can be applied more generally.

9.2.2 Complex Filters from Real Prototypes

The availability of a form of Feldtkeller’s equation for complex filters makes it

possible to get transfer functions from given characteristic functions. Charac-

teristic functions may be obtained by doing simultaneous approximation on

passbands and stopbands after the fashion of [9]; by using classical approxima-

tions (e.g. Chebyshev polynomials); or by using an approximator on stopband

specifications together with closed-form formulae giving fS(s) to get an ideal

passband given any p=.

Arithmetically Symmetric Complex Filters

If the response Ts(i) of an ordinary “real” filter is translated by some juO (i.e.

&(s)=~~(s-jc~~)) the resulting transfer function (cf. figure 9.4) has arithmetic

symmetry about s=ju,, because the “real” prototype zs was symmetric about DC

(s=O). This offers a particularly simple approach to the approximation of com-

plex transfer functions that is applicable when arithmetic symmetry is accept-

able.

This design procedure, which is analogous to that involved [‘Y] in using the

lowpass-to-bandpass transformation, involves these steps:

i. Given specifications are “symmetrized” about some CJ~ by Ending a (more

,conservative) set of specifications with arithmetic symmetry.
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Figure 9.5: Obtaining a Complex Filter by Translation of a Real Prototype

ii. The symmetric specifications are then shifted down by GJ,, to generate an

ordinary real-filter design problem.

iii. A “real” filter is obtained meeting the specifications of “ii.“, and

iv. the real filter prototype design is shifted back up to a0 by applying the

transformation S=S+~CJ~ to its poles and zeros.

The final step of this procedure will appear later to have a simple correspon-
dence with a network transformation in “LCX” filters, just as the lowpass-to-

bandpass transformation could be applied directly to an LC network. This is the

principal reason for our interest in “shifted real” complex filters.

Example

The function is(Z)=+- is a first-order Butter-worth (real) filter with a 3db
s+l

passband from -lrad/s to lrad/s. Shifting all poles and zeros up by j gives

ts= 1s+I-j’ which has an arithmetically symmetric (about s=j) response with a

(3dB) passband from DC to +2rad/s.

IF Synthesis - (9) page 197 revised 1981/12/26 ws



Asymmetric Complex Filters

This section gives a transformation that may be used to convert a “real filter” of

order N into a complex filter of order f whose positive-frequency behaviour

comes from the real prototype’s ~CJ axis performance. This may be used to

design complex filters using well-known techniques for designing real ones or to

derive design aids for complex filters equivalent to those available for real

filters. The principal advantage of this technique over the “shifted-real”

approach given above lies in its higher efficiency in meeting asymmetric

specifications.

We first present the transformation in its simplest form, and show that it has

the stated property, then show how to use it to do design.

Real-to-Complex

The mapping

changes a function is(l) into an hs such that

on i=&. Positive frequencies in .s map to the imaginary axis in i while negative

frequencies map to real Z. Under certain conditions on gS(.s) a stable hs may be

obtained, and so the transformation may be used to design complex filters with

stated magnitude performance on positive frequencies. We show later how to

transform an arbitrary complex filter problem to this form, so that this can be

used to do design over the whole imaginary axis. Let us first derive the effect of

the transformation.

We have to assume a special structure for is(l): that all roots of cS{g) have

complex conjugates. This means in practice that the order N of gS(i) must be



even, which is not too surprising since the transformation divides order by 2.

The restriction also requires that real-axis transmission zeros in LS be of even

multiplicity. As a further point, real-axis natural modes in hsw are not permitted

because they would transform to imaginary-axis roots in & and cause marginal

instability.

Assume cS(i) may be written

Then

collecting first and third terms in numerator and denominator, and likewise

second and fourth,

2
and now substituting sj=s

now multipIying terms of the first products (both in numerator and denomina-

tor) by j and dividing the second set of terms by j:
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=hShT(-s)

where

The choice of roots for & should be made for stability.

The above shows what we wanted: that

behaviour of transfer function magnitude.

3

substituting s=F preserves the

Example

This section gives a simple example of complex filter design using the transfor-

mation just obtained. The technique used here has a restriction, in that it may

not be used to approximate specifications that go down to -j=. A more general

approach that does not contain this restriction appears later.
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We wish to design a filter (for an SSB application) meeting specifications as

shown in figure 9.6:

Att 1

,-A - -  4OdB

,
-4000

0.5dB .- w
, , 8

-300 300 3300

Figure 9.6: Complex Specifications for SSB Prefilter

we first shift them to positive frequencies and normalize with the Iinear

transformation p = ” +4000’2”
7300,2ri ’

getting a new set of specifications (figure 9.7).

Att

k

I////////////

Figure 9.7: Complex SSB Specifications Shifted to Positive Frequencies

Next we pre-warp by taking fl=&, and solve the resulting “real-filter” problem

in i using FILTOR2. The specifications and E?” order transfer function resulting



Figure 9.8: Real Filter Prototype for SSB Prefilter

are diagrammed in figure 9.0. We can now apply our frequency transformation
to produce a complex filter solving the problem of figure 9.7: this is done simply

IN.2

by transforming roots & according to the rule c+=?. As a final step, the roots

obtained may be shifted down in frequency to solve the original problem, as
shown in figure 9.9.

All of this was done using the “real filter” approximator in FILTOR2 [10], and
the results obtained are:

polynomial

leading coefficient 50.801 15988. 5584.8

-j.20518 j.04911 -.017533+j.O38052

roots: (normalized -j.O51848 j.12327 -.06854+j. 10648
to 73OOHz)

j.9011 j.28484 -. 10938+j.28667

m j.43072 -.049279+j.45674
4
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Figure 9.9: Attenuation Function Meeting the Specifications of Figure 9.6
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9.2.3 Another Transformation

The scheme above required that we shift specifications up so that all specified

points were at positive frequencies, because the real-to-complex transforma-

tion only attends to positive IX. This section shows how to map any transition

band onto the entire negative frequency axis, so that the complex-to-real

transformation given above may be used to design arbitrary complex filters. In

particular this transformation reduces any single-passband complex problem to

a normalized lowpass.

If the lower transition band extends from, say, jc up to ju, the transforma-

tion

maps that transition band onto the entire negative imaginary axis in p. The

remaining portion of the specifications is mapped entirely onto the positive

imaginary axis in p, and the lower passband edge jc is mapped to p=O. The

constant a may be used to do normalization: if the upper passband edge is at

s=jb it may be mapped to p = j by:

This maps any single-passband complex filter to one with a normalized

positive-frequency passband. The transformation

presented above may then be used to obtain a lowpass “real filter” problem,

which may then be solved by conventional means.
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Example

We want a filter with a passband extending from DC to +3OOOHz and with stop-

bands extending up from 4OOOHz and down from -1OOOHz. Passband ripple is to

be O.ldB and we want 40dB of stopband attenuation.

The parameters a,b and c above are respectively 0, +3OOOHz and -1OOOHz.

Applying the transformation results in a specification with a passband from 0 to

16 .
j and a stopband from ZJ on up. Applying the complex-to-real transformation

then gives us a lowpass design problem with flS=J-$. This is best solved with

an elliptic filter of order 9, but odd order real filters correspond to complex

filters with & terms in their frequency responses, so we choose a tenth-order

prototype. This in turn will produce a fifth-order complex filter.

9.2.4 A More Direct Approach

Equiripple passbands are obtained in closed form for “real filters” by means of

a mapping to a variable z:

n.2
2As +l

2 =n

s +u

and we obtain our complex filters by means of another transformation

These two may be collapsed into a single transformation for the purpose of

designing a complex filter. The result is simply

which allows us to design a complex filter, given an arbitrary pS, to have an

IF Synthesis - (9) page ,205 revised 198 7/? f/23 ws



ideal equiripple passband between .s=$z and s=jb.

This technique avoids the problem implicit above that we were first required

to shift the problem to positive frequencies, and in fact provides us with the
same power that the z transformation gives for “real filters”. With this and the

generalization above of Feldtkeller’s equation approximation for complex filters

becomes no harder than that for real filters.

Interpretation of the variable z in terms of the complex s-plane is a little

different than that for the “real” i-plane. The main difference is that the area

in z that maps to the real axis of g, and is therefore usually uninteresting, maps

to negative frequency in s, which is very interesting.

“Pole-placers” for real filters often work in the variable 7&(2), where the

closed-form formulae for fs(s) are particularly convenient and numerical con-

ditioning is good. The same variable 7 may be used for complex filters with the

same result. This allows one to re-write a standard pole-placer for complex

filters The different significance of the portion of z corresponding to negative

frequency in s turns out to make the approximation problem in 7 look like a

problem for a low-pass real filter.

Note that our transformation produces filters in z with twice the order of the

final filter in s .

Example

Given ps &.s + j, obtain an equiripple passband between j0 and j 1.

Using the transformation zzgy we get (after the fashion described in

[Sedra78])

transforming the root s=-j to zz=Z
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and choosing only LHP roots for pz so as to get the maximum number of rip-

ples,

and using the closed-form solution for equiripple fS(s)

and transforming the reflection zero z = j& back to s ,

fsW=q cs -$I

where the leading coefficient contains the usual parameter E that sets passband
ripple. Choosing &=l, which gives about 3 decibels of passband ripple, gives

C~ =3 (obtained by setting 1 &(O) 1 =E).

We can now use (9-7) to obtain eS and complete the design:

es --2d5-(s-&$-q
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9.3 The Effects of Relative Gain Error

Complex filters implemented as two-output systems contain an inherent gain-

matching requirement: that gain mismatches between the two outputs cause

positive and negative frequencies to “leak” into one another. In analog techno-

logies, where precise matching is often difficult to obtain, this is the critical

effect that limits the performance of complex filters.

As an illustrative extreme case, turning one output of the system in figure

9.2 entirely off produces a single-output filter with positive and negative-

frequency responses exactly conjugate: i Gu)=~-.

We can derive a formula expressing this problem by adding an error term

sib to a complex transfer function i=tRei-jfh. First we must write fRez in terms

of the complex &, which we can do by manipulating the definition

and, taking the conjugates of poIynomia1 coefficients on both sides of the equa-

tion

so that we can add expressions for ts and z to get

We said in section 9.2.1 above that c(j~)=im, so we can write tRaS as a sum

of positive- and negative- frequency terms as follows:
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Now that we have an expression for i& of a suitable form, let the real-part out-

put of figure 9.2 suffer a gain error E, i.e. create a new &,p(l+c)ib. The result-

ing new complex transfer function is

=tS(jw)+G[tS(jw)+tS(-jw)]

=(l+$)tS(jt3)-t$tS(-jw) (9-9)

Correlated gain errors in the two sides simply produce a gain change in t*(s)

- which is relatively unimportant - but gain mismatch produces the “aliasing”

term in ts(-ju) of (9-9). As an example of its effect, let us suppose that th and

th become mismatched by 1%: then at some stopband frequency jw we will find

t(-jw) - whe r e - jw might be in the passband (1 tS(- jw) 1 s 1) - added into

&(jw)ECI with a loss of only 2Olog(.Ol/2)=46dB. This clearly limits stopband per-

formance.

This problem is inherent to the structure of quadrature SSB modulators.

The same gain matching error in the two multipliers or carriers of figure 9.1a

will have the same effect. The effect is therefore well-known in SSB modulator

design. If one chooses to tune out this leakage it suffices to adjust either car-

rier amplitude or gain on either channel of the complex filter.
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Relative phase between the two outputs is also important: equation (9-9) can

be applied just by taking E to be a complex value. For small phase errors p,

.+jp: thus a 1' (.01'7 radian) phase error allows 2Olog(.Ol7/2)%42dB of leakage

between pass- and stopband. Again the same care must be taken with the rela-

tive phase of the carriers in a quadrature SSB modulator.

9.4 Application of IF Synthesis

The intermediate-function synthesis method of this thesis may be applied

directly to complex filter synthesis: we will show how with an example that syn-

thesizes a first-order complex transfer function with two real-valued integra-

tors.

Let us, for example, find a configuration of two (real-valued) integrators that

realizes &(s)&/(s+l-j) as a one-input two-output system. Let us further

attempt to do this in such a way that the two system outputs are just the out-

puts of the two integrators: this will save the cost of output-summing networks.

We need to have transfer functions from the system input to the two integra-

tor outputs of:

Given fl and f2 we can solve for system coefficients (A,b,c,dj by the methods dis-

cussed in chapters 2 and 6. The result is
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so that the system represented by the SFG in Fig. 9.10 would have the appropri-

ate properties:

A circuit implementing this SFG (except

for some sign changes to reduce complex-

ity) is given in Fig. 9.11. One could, as dis-

cussed in chapter 3, use other circuits to

implement either or both of these integra-

tors: improved performance with regard to

c++, for instance, could be obtained by

using  an Akerberg-Mossberg positive

integrator [ 11]

The {gi} functions for this filter are: Figure 9.10: SFG of First-order Com-

plex Filter

g1=
s+l+j

s*+2s +2

We use IF synthesis because it is easy to use it to construct and compare all

of the popular topologies for filters and to invent new ones with particular pro-

perties. Thus, for example, it is of practical value, from the points of view of
both economy and sensitivity, to be able to force ih and t~,~ to appear at the

outputs of integrators rather than as sums of outputs.

When combined with the set igi { the [fi ] functions may be used to measure

sensitivity and dynamic range performance in complex filters just as in real

ones. Thus, for instance, scaling may be accomplished by setting
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Figure 9.11: Circuit for First-order Complex Active Filter

9.5 Complex SFGs

Another tool useful in dealing with complex filters is the complex SFG. A com-
plex SFG is one in which the transmittances may be complex, and thus has
complex signals flowing throughout. In order t o  obtain a circuit implementa-
tion the complex SFG first has to be converted into an SFG whose branches
have real-valued transmittances. This conversion process is done one branch at
a time and will now be illustrated.

Consider a branch with a complex transmittance (a+j@) and let the input sig-
nal to this branch be (a+jb). It follows that the output signal of this branch will
be (aa-bp)+j(ap+ab), which gives us the equivalence of Fig. 9.5 for converting

complex SFG’s to real ones:

where we have denoted*paths over which complex signals must flow by double
lines.
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Figure 9.12: Implementing a Complex SFG

At this point it is worth noting that a matching requirement is implicit in the

real SFG of Fig. 9.12. This is an indication of a general need for matching

between the two ‘channels’ in a complex filter. Failure to achieve this matching

results in aliasing between positive and negative frequencies. This causes
‘feedthrough’ from the passband into the stopband thus limiting stopband

attenuation. To guard against this problem one seeks realizations which
employ strong coupling between the two ‘channels’.

As an example of the application of complex SFGs consider again the syn-

thesis of the first-order function fs(s)k ’(s+l-j) ’
This function can be realized

by an integrator (l/s) with a feedback path having a transmittance of (-l+j).

The resulting complex SFG is shown in Fig. 9.13.

The conversion identity may now be used first

for the integrator branch (a=~$=O) and then for

the feedback branch (a=-l,p=+l). This results

in the SFG of Fig. 9.3, which we previously

obtained by more involved (but more general)

means.

Figure 9.13: Complex SFG of

First-order System

IF Synthesis - (9) page 2 13 revised 198 l/l l/Z8 ws



9.6 Three Possible Realizations

The techniques of the previous two sections have been applied to

compare several syntheses of the second-order transfer function

This function is

,062436(s +j. 1495)
~s~s)~(s+.16966-jl.056)(s+.10725-j.6124)

and satisfies the specifications of Figure 9.14.

1dB

produce and

given in [l].

Figure 9.14: Specifications and transfer function

These syntheses include a cascade design, one formed by summing various out-

puts of a pole-forming network derived from an LC ladder, and a design derived

from an LCX ladder similar to the type described by Humpherys [ 12] Details of

IF Synthesis - (9) page 2 14 revised 7 98 l/l 1/28 ws



-,1072S+J612346 -.i6966+11.0%

Figure 9.15: Some Different Designs

given in the following.

Figure 9.15 shows SFG’s for these realizations, and Figure 9.16a is a plot of
$h-4

the worst-case integrator sensitivity rnpxj STi 1 as a function of u for each

realization as a network of real integrators for positive frequency. This plot
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could be extended to negative frequency, where the stopband lies, but classical

sensitivity is not the most useful measure for stopband performance because

f*(s)+0 in stopbands, so that d&/& is badly behaved. Figure 9.16b shows

maxJEW
dri

.T~ 1 for negative frequencies, which is a more useful measure.
i

Sensitivity

Sensitivity
9.16a

Pole-forming

Pole-forming

*GJ l

.6 1.1 -1.1 7.6

Figure 9.16: Worst-case Sensitivities

The better designs

relatively poorly in

ously discussed.

9.7 CompIexx Cascades

.4

.3

.2

.l

-cJ

come quite close to a lower bound in the passband, but do

the stopband. This is a result of the aliasing problem previ-

One may realize any complex transfer function as a cascade of first-order com-

plex sections corresponding to bilinear factors of &(s). Thus the complex SFG

of figure 9.15a may be derived from the factorization
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.1872(s+j. 1495)
~s~s~=(~+,10725~j.6124)' (s+.l&t:f&.O56)

The real-valued SFG of figure 9.15b is in turn derived from this.

Complex cascade designs are conceptually even easier than real-valued cas-

cades, because there is no need to use biquadratic sections: just bilinear ones.

Of course each bilinear complex section will actually contain two real integra-

tars, just like a conventional biquad.

Humpherys [12] develops ladder synthesis for complex transfer functions in

terms of three types of lossless elements: inductors and capacitors of purely

real value and reactances whose impedances are purely imaginary and

frequency-independent, which he called pure reactances, X. Because these ele-

ments allow synthesis of transfer functions with maximum power-transfer [13]

between source and load one could hope to get good performance by analogy to

the situation for real ladders [ 14].

We distinguish between two slightly different types of element, an ordinary

“pure reactance” and an imaginary-valued resistor. A “pure reactance” has

impedance

while the impedance of an imaginary resistor is simpiy

Both types of element are lossIess, but a pure reactance is a (non-causal but

real-valued) element that could only be simulated with an infinite-order lumped

system, while an imaginary resistor corresponds to coupling between two signal

paths. We use X to denote an imaginary resistor.



Figure 9.17: LCX Ladder for Second-order Example

An LCX ladder realizing the desired transfer function appears in figure 9.17.
The operation of LCX ladders can be simulated using techniques similar to those
employed for LC ladders (by the methods of [7] or the new ones of chapter 8).
The difference from “real” filters is that in the LCX case complex SFG are
ob taincd. The simulation of the LCX ladder in Fig. 9.17 was obtained by an
extension ‘to complex signals of the techniques outlined in chapters 3 and 8: the
transfer functions from the input to the real and imaginary parts of the vol-
tages across the two capacitors were derived, scaled for dynamic range, and
used as the four intermediate f functions. Note that, while the capacitors are
real in value, they carry complex currents in the LCX ladder, and so have to be
simulated with pairs of integrators. Although many other networks are possible
the one in Fig. 9.17 has the output appearing across a capacitor. This means
that the simulation of figure 9.1% has the output desired at the outputs of the
pair of integrators which simulates this capacitor’s voltage, so that no output-

summing network is needed.

One can synthesize any desired transfer function using a state-variable simula-

tion of an LC ladder with the desired natural modes by summing the outputs of

the various integrators in the simulation with appropriate coefficients to get
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the required transmission zeros. If two transfer functions sharing the same
natural modes are to be produced they may share the natural-mode forming
network, and differ only in their output-summing networks. A design of this
type is described in [l].

Any type of network could be used to form natural modes, for example cas-
cade or companion forms. The purpose of basing a network on a ladder is to
benefit from its good sensitivity near maximum power-transfer. In the following
we show sensitivity for one design of this type, and discuss some observations

on the technique in general.

9.10 Performance Comparison

We shall ROW compare the three realizations from the point of view of worst-

case time-constant sensitivities. We use these because they are indicative of

sensitivities in general and because they are not affected by details of imple-

mentation and therefore show up inherent properties of topologies.

We chose to look at a number of different implementations of a simple

transfer function in order to demonstrate the options available. We would

expect the differences among the various schemes to become more marked at

higher orders.

The plots of Fig 9.16 clearly show the LCX simulation as having the best

passband sensitivity, while it is slightly worse than the complex cascade design

in the stopband.

The actual values of sensitivity are encouraging: passband sensitivity in the

better realizations is less than 1.5, and the stopband sensitivity figure is about

0.25. The passband .sensitivity figure translates to a worst-case magnitude devi-

ation of 2010gIo(l.015)%13dZ3 for a 1% time-constant (or integrator gain) error.

The stopband figure is best interpreted as measuring “feed-through” that limits

attenuation. The amount of this feed-through from the passband (for a 1%

time-constant error with d V&N
d 1nT =.25) is 2OIog&.25x. Ol)E-52dB. This suggests
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that the required 36dB stopband is easy to obtain

This stopband sensitivity figure is interesting because it shows that feedback

within the good filters couples the two ‘channels’, thus desensitizing the

transfer function to gain mismatch. Note that if one simply changes the gain

constant of either the real or the imaginary-part channel by a factor a, one can

expect (in the stopband) feedthrough from the passband of dx=.5. Chang-

ing the time-constant of either of the two integrators forming the outputs

might be expected to do the same thing, since time-constants are just integra-

tor gains: but the figure obtained is actually almost a factor of 2 better because

feedback within the network tends to change the level of the other signals in

the same direction.

This factor of 2 desensitivity illustrates the utility of being able to force the

overall system outputs to occur at integrator outputs. This kind of flexibility is

easy to get with the synthesis method of this thesis.

The pole-forming approach appears to be somewhat worse than the designs

based on “complex integrators”. There are, however, many different ways to

choose pole-forming networks, some of which might do better than the one we

used. In particular, the advantage gained by choosing this LC-based network

over, say, a cascade is probably illusory. The problem is that the transfer func-

tion of the prototype LC ladder is very far from being flat in the passband, so

that over much of the critical range of frequencies the ladder is far from having

maximum power-transfer to its output. It may be that choosing to simulate a

prototype with transmission zeroes chosen to keep the passband near max-

imum transmission would produce better sensitivity. The method might, if its

performance were improved, be competitive with complex cascades in applica-

tions where the number of components, in an LCX simulation is too large.
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9.11 Comparison with Existing Art

If complex filters are to be used as broadband 9tY' phase shifters they will obvi-

ously have to be better than the conventional circuits using pairs of matched

all-pass filters. We therefore compare the designs obtained thus far with an

all-pass based design.

Phase-shifter designs may in fact be regarded just as special types of corn-

plex filters (cf. section 9.1.4), because they involve a pair of transfer functions

t 1 and fs which we may conceive of as a single function t 3 l+ifs with complex

coefficients. The conventional design, however, has natural modes only on the

real axis, so that the class of complex transfer functions obtainable is very res-

tricted. Since our sample function is not in this tiny sub-class, we cannot use

the same complex &(s) when investigating all-pass designs as we used earlier.

We could therefore choose a function that meets the same specifications as the

original as a basis for comparison: unfortunately an all-pass based design can-

not even do that, because our sample filter has 36dB of attenuation down to DC

while a pair of all-pass networks has low attenuation near DC. The only way to

meet this specification with all-pass networks is to precede the phase-shifting

pair with a conventional bandpass filter. We therefore choose for comparison

just the part of the transfer characteristic for which the all-pass portion would

be responsible: obtaining an approximation to a 90° phase-shift over the

passband (j0.6 to j 1.1). The resulting all-pass transfer functions are:

PRO ,s =
s-l.9932
s+ 1.9932

bn,s=
s-.33117
s+,33117

These may be implemented as a pair of first-order networks: note however that

meeting the overall complex specification will require that the phase-shifting

pair be preceded by a fourth-order “real” filter. This means that the number of

.real-valued integrators needed to meet specifications with the conventional

approach is 6, while any of the “complex” designs do it with 4.
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Time-constant sensitivities for this approach

they are compared with those for the LCX design.

sensitivity

sensitivity

appear in Figure 9.18, where

9.18b

.6 1.1 W

Figure 9.18: Sensitivity Comparison; LCX vs. AP

Nole that the all-pass design, already much worse than the LCX simulation,

also be sensitive to components of the “real filter” with which it is cascaded.

9.  12 On implementations of Complex Integrators

will

In section 9.5 above we discussed the implementation of “complex integrators”,

i.e. circuits to integrate compIex-valued signals, as pairs of ordinary real

integrators. This section shows how the ifi] and lgi] of the ideal complex sys-

tem are related to the iii] and tiij of the “real” system obtained in this way. It



also shows how a state-space description {A,b,c,d] is converted.

The first-order complex synthesis example in sections 9.4 and 9.5 above will
serve as an illustration: a complex synthesis could be done, resulting in

f*ss =& (s)= l
s+l-j

for which {gi] would just be

1
f&s =fis =

s+l-j

Now we chose to implement the complex integrator responsible for fi as a
pair of real integrators producing its real and imaginary parts separately. Thus
we have chosen

The effect of this on the A-matrix is to separate the complex entry Ali into a
sub-matrix of four real entries:

This much just restates in terms of ifi{ and matrix entries what was given for
SFGs in section 9.5.

Note that Iii] should really be used in doing scaling, not tftj, since the real
integrators, not the fictitious complex ones, are the things that “clip”. The
results of scaling the lfij will not, however, usually be much different. In partic-
ular, when a positive-pass transfer function is being implemented
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(where i is the complex integrator from which real integrator i was derived)

because

(because for a positive-pass filter the regions over which ft(ju) and

Ti(ja)=fi(-ju) are significantly different from zero are disjoint)

Thus a filter whose complex signal levels have been scaled to avoid clipping is

also scaled reasonably (though somewhat conservatively) for real integrators.

It remains, to find the &], after which we will have everything we need to

evaluate the performance of a real-integrator implementation of complex ffij.

We could work with computed either of two different ways: either as

noise gains from the inputs of each integrator separately to each of the real

and imaginary outputs - in which case we would need two sets of {gt{, one set

for gains to each output - or as complex transfer functions from (real) integra-

tor inputs to the notional “complex output”. We choose the latter because we

are not interested separately in the real and imaginary parts of &(.s), but only

in the (complex) overall result. Thus we have complex &] while our [ii{ have

real coefficients. This apparent asymmetry results from the assumption that

our system has only one input terminal, i.e. has pure real inputs.

WS



For the first-order example of section 9.4, the &] were

In general, noise injected at the “real part” of a complex integrator sees the g

function of the complex integrator while noise injected at the “imaginary input”

sees “j” times that gain to the complex output. This is because the effects are

those of injecting purely real-valued and imaginary-valued noise to the original

complex integrator.

9.13 Summary and Conclusions

We have presented some tools for dealing with the synthesis and analysis of

complex analog filters. Using these techniques we have discussed three

approaches to synthesis and compared the resulting realizations using a

single-sideband filter example. The complex filter approach has also been com-

pared to the traditional method of designing broadband 90’ phase-shifters.

It appears that much of the design art for “real filters” may be carried over

directly to “complex” ones. In particular, one may use complex-valued signal-

flow graphs to design complex filters in a straightforward way, and it appears

that doubly-terminated lossless (LCX) filters designed for maximum power-

transfer may be simulated to obtain very good passba’nd sensitivities. As with

“real filters”, cascade and ladder-based designs perform about equally well in

the stopband.

The problem of matching gains, inherent in two-output complex filters,

appears to be somewhat alleviated by designing such that integrator outputs

form the required signals directly, because feedback can then tend to make the
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levels of these signals track one another.

This preliminary investigation has suggested that the complex filter concept

may be used to design broadband phase-shifting networks that perform better

than conventional all-pass systems.
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A new technique for investigating the performance of filters in the presence of

errors is outlined. The technique is shown to make clear fundamental limita-
tions on sensitivity performance for filter realizations and to allow a designer to

take component tolerances into account at the approximation stage of filter

design. It also suggests a novel way to simultaneously approximate attenuation

and group delay specifications.

10.1 Introduction

One conventionally analyzes the behaviour of an imperfect realization of a filter

design by computing sensitivity figures S:ji or component or

parameter values h affecting performance.

A common intermediate step [ 1,2] in computing Sz 1 is to compute sensi-

tivities of pole positions (aojvqj) to the A, and write

This kind of scheme is used, primarily for realizations using biquadratic sec-

tions, because 5’~~ 1 and SAtsf depend only on the transfer function to be imple-
Q

mented, while 23;’ and Sp depend on the particular circuit.

Our method, by contrast, models the effects of component inaccuracies by

defining a frequency transformation that would have the same effect. Thus, to

take a simple example, we would model the effect of a Q-enhancement

phenomenon not by investigating the effect of natural modes moving right
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(towards the ju axis) but by deeming the ja axis to have moved left towards the

natural modes. In this way, the actual frequency response of a filter can be

evaluated using the nominal poles and zeroes along a “deformed” frequency

axis - some curve, nominally ju, whose exact shape is determined by com-

ponent errors.

The principal advantage of this peculiar inversion is that it enables us to

state a simple variant on the conventional approximation problem for filters

that allows one to design transfer functions so that their implementations will

meet specifications even in the presence of components with errors (of known

tolerances).

As a side-effect, the method may be used to design for minimum group delay

and a simple variant of it may be used to approximate flat delay.

The following sections of this chapter develop this idea further. They show

how one may regard each non-ideal integrator in a filter as defining a (slightly

deformed) version of the s-plane, and how a good filter tends to average these

deformations. The nature of the deformation induced by some practical circuit

effects is discussed, and design criteria are developed. Some points are made

concerning the new type of approximator required.

10.2 Deformation of the s-plane

This section develops a formal basis for the idea introduced above.

Errors in circuit components are usually modelled as changing an ideal

transfer function & to a perturbed function &. Instead of this we define a new

frequency variable i=& so that

(lo-l)
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The meaning of this is illustrated in figure 10.1, where our method is com-

pared to the usual one.

T
-

Jt?
poles
shift h

*passband

f
poles
fixed SC

Figure 10.1: Comparison of Methods

Instead of investigating the effects (at ordinary physical frequencies s=jc~) of

changing & to iS we wish to look at the G~Q#uL~ function & at frequencies

:=$(jU). Equation ( lo- 1) says that  we have to  choose  the frequency-

transforming function + so that the transfer function values we obtain are the

same for both methods. The mapping $ will, of course, be a function of the cir-

cuit topology and of its components.

We will usually be concerned with the case of small errors, where &s,

although the technique ha-- some applications in studying large-change perfor-

mance.

the transformation q(s)Some mathematical points should be made about

needed to produce g. Firstly (concerning existence)

function that does what we want; and secondly there might not be a unique one.

there might not be any
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We will show a way to define a suitable mapping that does what we want in the

practical filter case. The mapping will exist for the kinds of fS encountered as

filters, and z approaches s for small component errors as we should expect.

For small errors, we can define the derivative of s with respect to a com-

ponent p as

(10-2)

It is inelegant to have to define g by referring to an implementation (i.e. using

the effect of errors ap) and we will presently show examples for which this is

unnecessary. Equation (10-2) is, however, useful because it relates analysis in

terms of s to the conventional approach, which studies g.

Equation (10-2) obviously blows up when the denominator x=O. This

means, for instance, that i will not exist when iS is a constant, in which case the

derivative disappears. For practical filters, zeroes of the derivative do not

appear on s =~cJ? and s is well defined by (10-2) where it matters.

10.3 Modelling integrator gain errors

It is especially straightforward to apply the technique of this chapter to model-

ling the effects of non-idealities on integrator circuits. We are particularly

interested in the effects of errors in the gains of the n integrators in a state-

variable realization of &, because these tend to be the least well-controlled

t At reflection zeroes w--0, but this is only the derivative of the TYLU~T&U&?. The

complex derivative (which includes phase) is non-zero.
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components in high-performance filter applications. In active filter technology

this means that we will model RC time-constant errors as well as the effects of

finite amplifier bandwidth. The results can be directly applied to LC ladders,

where reactive components correspond one-to-one with integrators in a state-

variable realization (e.g. [3]). For the LC case this technique may be used to
model the effects of non-zero dissipation factors (i.e. finite Q’s) and small

errors in component values.

In order to investigate the effects of integrator gain errors we will define (by

analogy to the definition for filters in general) R new frequency variables

&=$i(s) that model the frequency responses of the n “integrators”. Thus, for

instance, if integrator number 1 has gain (l/l.Ols) instead of its nominal l/s

we shall say sl= 1.01.~. As a more interesting example of a transformation $J(s), a

Miller integrator with nominal gain l/&R implemented with an operational

amplifier with gain c+/s has

(10-3)

Figure 10.2 shows the locus in the s-plane to which this mapping moves the

physical-frequency axis, i.e. plots &=$iG~), for the normalized case CR=1 and

c4=20. Figure 10.2 also shows an error term AS&-S for a particular S=~GJ. The

second-order term in (10-3) causes the Q-enhancement effect for which these

integrators are known: in our terms it shifts the “physical-frequency” line

s=$(~u) to the left of the j-axis towards natural modes.

These &($c,J) contours have exactly the same physical interpretation we dis-
cussed above for the overall filter: one may obtain the gain of “integrator” i at a

frequency ~C,J by evaluating the ideal integrator function l/s at the correspond-

ing point on the curve &(~GJ). These J&(~LJ) contours are easy to estimate; we

will show later how to estimate the overall s from them.
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Figure 10.2: The Effect of Finite Op-Amp Bandwidth

As an even more extreme case, one that would be quite difficult to analyze by

conventional methods, figure 10.3 plots the contour that results from imple-
menting a Miller integrator with an op-amp with the second-order transfer

function -100---.
S+s /lo+ 1

Note that the deformed and ideal frequency-axes are very close near s=jl

(because the amplifier gain is high there). This suggests that an amplifier with

this “peaking” gain function would be quite useable for implementing a narrow-

band filter around s=jl, where As is quite small.
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Figure 10.3: Implementing Filters with Peaky-Gain Amplifiers

10.4 A Second-order Analysis Example

Figure 10.4 is a signal-flow graph for a second-order lowpass filter with equal

sensitivity to its two integrators (i.e. is FSLB, cf. chapter 7), a condition which

we have shown (in chapter 7’ and [4]g very strong type of optimum. It is

shown as having two “integrators” with gains -!- and 1, which would be exactly
Sl s2

equal to * in an ideal filter. Analyzing the SFG without assuming these integra-

tors ideal we find that it has a transfer function 1 =g where
;

and Gi and G2 may be arbitrary functions of s. For the ideal filter &=&=s and so
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Figure 10.4: Second-Order Lowpass, Non-ideal Integrators

e (s)=s2+2s 2. Writing the equation z(s)=e (g)
Q

and solving for s in terms of :I and & gives

(10-4)

For reasons to be cxpIained in the next paragraph, we prefer to choose the
positive sign for the square root.

This example illustrates two things: firstly that i is a kind of average of zI and

& (to be exact, G+%
2Q

is the geometric average of gI+s
2Q

and &+ $J); and

secondly that, while the choice of g is not unique for this second-order &

because the choice of sign for the square-root is arbitrary, there is nonetheless

a “natural” choice (the positive sign) that has :=s when zI=z2=s.
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10.5 Averaging Deformations

One may analyze the integrators of a filter as described in chapter 4 and sec-

tion 10.3 to estimate their zi: we next need to know how these will affect the

overall g. In general the relationship is a function of the filter structure and

transfer function chosen. We will show that the best structure conceivable
(FSLB) has a strong “coupling” property, so that changing any one integrator is

equivalent to changing them all (by a smaller amount).

The most important point about the relationship between i and the n ii is

this: that in a good filter structure s tends to be an average of the ti. This

averaging is depicted in Figure 10.5, where some exaggerated ++i(j~) contours

are shown together with the resulting :=$(~cJ) for a good filter structure. One

may observe that this s contour is some sort of an average of the & contours.

Note that g doesn’t wander further away

from ideality than do the &; in fact the

averaging effect tends to make g better

than the & because their errors partially
cancel. That averaging gives rise to per-

formance improvement is familiar from

statistics: by taking an average of several

estimates of s, all somewhat corrupted by

“measurement error”, we may expect to

get closer to the “true value” than the

individual Zi do.

We already saw, for a second-order

case, how averaging came about. The type
Figure 10.5: Averaging Gain Errors

of closed-form relationship obtained there is not usually available for higher-

order filters. As a substitute, we can look at a small-change formulation that
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applies at arbitrary order.

The formula

relates a small change As for an entire filter to the Asi of its component integra-

tors, which we can readily estimate. We are therefore interested in the deriva-

a:tives -.
a&

To see how these derivatives perform for the simple second-order case, we

may differentiate (10-4) with respect to Ei to find that

A similar expression gives K,
lu Vu

and when .s1Zs2 both expressions reduce to
6s

(10-6)

In the general case an “averaging” like

at iwould give -=-. Note that we were able, in our second-order example, to
ai& n

attain this perfect coupling. While one cannot generally do this well, good filter

structures often approach this performance. In particular (cf. chapters ‘7 and
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8), over their passbands, lossless filters designed for maximum power-transfer
between input and output [5,6,7] come fairly close to this limit. Cascade
designs are not as good, since at frequencies near their singularities their per-

formance is dominated by single biquadratic sections, so that they average g

over only two &: this may be understood as meaning that they “weight” the
averaging described by equation (10-5) in a Iess-than-optimum way.

If we plan to use a type of realisation that “averages” well, we can make an

estimate of & from our knowledge of the expected behaviour of the &. We can

either take a “worst-case” approach, saying that & will be no worse than the

A&, or a less conservative statistical approach that suggests that the variance

of d will be almost m times lower than that of the A$. Either approach

gives us an estimate of the area in the z-plane to which we can expect 9 to map
an area (e-g. a passband) in the s-plane. We will use this estimate in section
10.7.

10.6 Application I: Sensitivity Bounds

This section introduces a simple application of the method of this chapter. We

show that an “averaging” represents the best possible relationship between s

for a filter and the & of its component integrators. This section gives an alter-
nate way to look at the FSLB condition of chapter 7. An important identity con-

cerning the & is this:

(10-7)

that the sum of all integrator sensitivities is 1 regardless of implementation.
This comes about because the effect of a u n i f o r m  gain change in all integrators
must be a simple frequency shift, since terms in s in an expression for the
transfer function of a system of integrators and frequency-independent gain
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elements come only from integrator gains gi. Thus the effect of putting

&=s+6 Vi is to give ?(s)=f (~+6) and G=s+d. Putting Asi=t5 in (lo-5} then gives

This corresponds to an identity in passive network theory concerning the

sensitivity of RLC networks to their inductors and capacitors [8]:

In the RLC case the inductor and capacitor values

because they multiply s in their immitances. Equation

of classical sensitivity,

(10-8)

set integrator gains W

(10-5) and the definition

may be used to relate (10-7) to (10-8).

The interesting thing about (10-7) is that it suggests an optimality condition

for sensitivity. All topologies for filters respond in exactly the same way when

all of their integrators are simultaneously disturbed by the same amount; sys-

tems differ from each other in how they react when integrators change

different amounts. For this reason figures of merit like
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may be useful in measuring the aggregate effect of uncorreIated random errors

in &. These aggregate measures may be related in the better-known case of

classical sensitivity analysis to worst-case (p ==J) and statistical [9] figures of

merit.

The problem of optimizing measures of form (10-9) under a constraint like

(10-7’) has a simple solution: that all sensitivities should be equal, i.e.

(10-10 )

This condition implies a very strong type of optimality, because many different

and important measures of integrator sensitivity are simultaneously attained.

UnfortunateIy it is not always possible to obtain (10-10) although we did so in

the second-order example above and in fact can for most second-order func-

tions [4].

It also appears that simulations of doubly-terminated lossless ladders

designed for maximum power-transfer quite often come fairly close to (10-10)

in the passband.

10.7 Application II: Approximation

We showed in section 10.5 how to estimate the sizes of the regions in the s-plane

over which the passbands and stopbands might wander because of errors

modelled by z(s).

Figure 10.6 illustrates these regions for a

tour plot of a particular transfer function.

low-pass filter together with a con-
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Figure 10.6: Specification Regions and a Transfer Function

The contour plot shows lines of constant magnitude for a transfer function, and

in particular shows some.lines for magnitudes that one might specify as limits
to passband and stopband attenuation. This diagram shows the problem to be

solved if a transfer function is to be designed to be tolerant of component

errors: a rational function fs must be found that meets a passband specification

(e.g. .99Si ts 151.01) inside the “passband region” and that meets a stopband

specification (e.g. 1 ts ] <,Ol) everywhere in the “stopband region”. This function

will have to enclose the passband and stopband regions entirely within the mag-

nitude contours (1 is I=.99 etc.) that define the limits of acceptability, because i

in the practical filter might wander anywhere inside those regions.

Specifications are thus expressed by “boxes” in the s-plane whose heights

and widths are determined by tolerances. on z(s) and whose depths are



determined by attenuation specifications.

Natural modes of I!~ cannot be allowed into the specification “boxes” because

at a natural mode 1 is 1 =m and specifications are certainly not met*. Zeroes of fs

must also be kept out of the “passband” regions.

Once poles of ts are banned from the specification boxes, we have the useful

fact that ts is analytic within these regions; and because zeroes may not lie in
.

passbands $ is analytic in the passband region. The maximum modulus

theorem [10]i may then be invoked to show that maximum and minimum

passband region values always appear on the boundary of the passband region

and similarly that maximum ‘stopband magnitudes (i.e. minimum stopband

attenuation levels) appear on the stopband boundary. Since these maxima and

minima are the values normally of interest, this means that an approximation

program only need force specifications to be met on the boundaries of

specification bands and they will automatically be met everywhere inside.

Another interesting side-effect of analyticity in the passband region may be

seen by investigating ln(ts)&a+jp. An approximation solving the pr’oblem of con-

straining gain variation - Aa - over a region in s of finite width Au (where

s &+~cJ) obviously controls 2( d fan o course this becomes more precise as Aa

and AU tend to zero). Now the Cauchy-Riemann equations [10] for the function

In(&), which is analytic in the passband region, give

but now the right-hand term is simply r, the

ing a filter to have gain variation less than Aa

taneously constrain the group delay to about

group delay of &.1 Thus by design-

over a region of width AU we simul-
Aa
-G

* In fact they should be kept to the left of any possible Z(~CJ) even in transition bands, since

otherwise filters could be unstabIe.
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Figure 10.7: Tilted Passband Specification

The problem of designing filters to simultaneously meet attenuation and group

delay specifications is an old one (e.g. [l 11). Group delay may in practice either

be specified to stay below a given maximum, in which case the preceding

approach may be used, or to approximate an arbitrary constant to within a

stated tolerance, in which case a minor variation is required. By allowing the

passband box to “tilt” so that a=- ~~ w&Aa one may approximate a constant delay

with variation Ao
7.2 -57 A three-dimensional view of a tilted passband

specification box is presented in figure 10.7. The box is A~=ZATACT “deep” to

allow slope variation of *AT, and has an overall slope TV. In this case, unfor-

tunately, some of the sensitivity advantage of this kind of approximation is lost

because a may vary by an additional amount TRACT across the specification box.

A general approximator might best be designed to allow an adjustable max-

imum amount of tilt TV together with a specified Aa so that attenuation, group

delay and sensitivity specifications could all be dealt with simultaneously.
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10.8 Summary

We have presented a new theoretical tool for investigating the performance of

systems implementing linear transfer functions in the presence of errors and

non-idealities in circuit elements. We have applied this method to obtain new

insight into the behaviour of integrators, a second-order structure, and a sensi-

tivity bound. We have also used it to derive a novel formulation of the filter

approximation problem that accounts for the important problems of finite

tolerance and group delay at the very fist step of filter design.
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We have introduced and developed a new approach to the design of anaIog cir-

cuits, “intermediate-function synthesis“. This approach derives circuit topolo-

gies from the behaviour that is required of them, whereas it has been conven-

tional to start with a circuit structure and try to analyze it for its performance.

Intermediate-function synthesis has been applied to the analysis, synthesis, and

design of filters. It has produced good results.

11.1 Summary

A novel approach to filter design was presented in chapter 2, and following

chapters developed the central idea of vector-space oriented design towards a

practical design technique.

A link between abstract state-variable systems and the dominant practical

problems of filter circuits was forged in chapters 3 and 4. Chapter 8 provided a

detailed design example on a medium-order problem.

In order to be useful, a filter design technique must be suited to design auto-

mation. Intermediate function synthesis is ideal for computer-aided design

because it is general enough to allow a designer to use a single language to

describe a wide variety of circuits and circuit problems while simultaneously

admitting of concrete enough interpretation that good models of important

phenomena (like sensitivity and dynamic range performance) tend to be

straightforward. Chapter 6 developed a useable set of algorithms that have

been incorporated into a preliminary version of a design program.

A powerful design technique should readily adapt itself to variations in the

problem to be solved. We used the “IF synthesis” technique to investigate

“complex filters” in chapter 9, and obtained good results. In the course of
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research on this problem new structures fundamentally better than current art

were developed.

A new approach to a problem should produce new insights. Chapter I

developed a new way of looking at, and designing for, good sensitivity perfor-

mance; chapter 5 developed some “geometric” ideas about the filter perfor-

mance problem; and chapter 10 suggested a new way to do transfer-function

approximation that tackles the difficult problems of designing ab in%50 for good

sensitivity performance and of meeting simultaneous specifications on magni-

tude and delay.

The main result of this work is the design approach itself: nevertheless

significant incidental discoveries have been made in the course of its develop-

ment.

Practical results include; new structures for “phasing networks”, i.e. com-

plex filters, that are significantly less sensitive to their components than those

in use (chapter 9): a new strategy for ladder simulation that results in canonic

systems that retain good passband sensitivity (chapters 3 and 8); a powerful

CAD tool (“dot”, chapter 6); a fundamentally new filter structure with better

performance than a ladder simulation (the near-FSLB realization of chapter 8,

which was based on ideas deveIoped in chapter ‘7); and an unusual-looking

third-order ladder simulation using only one op amp (chapter 3).

Theoretical points were also made, especially in the work on FSLB filters in

chapter 7 and in the investigation of “redundancy” in chapter 5.
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1 I. 3 Suggestions for Further Work

Because we have presented a design tool for filters, we clearly think that there
is more work to be done in the areas of filter theory and generally of linear sys-

tem synthesis. Much of the work that has been presented strongly suggests

directions for future research in the area.

Extension of the synthesis technique to digital filters would be fairly easy, as

suggested in chapter 3. A designer would then be able to use similar synthesis

techniques for both digital and active filters.

The ease with which one may use ifi{ and fgij to help in linear functional tun-

ing (chapter 4) suggests that there might be value in extending the study of

filter performance in terms of the synthesis vectors to the large-change case.

This type of extension might be useful both in correcting errors too large for a

linear approximation to be valid and in analog fault diagnosis.

The material of chapter 5 suggests a new approach to the “tolerancing” prob-

lem which might be fruitful. A designer should be able to check, for a given

design problem, whether the implicit redundancy of representation of impor-

tant states offered by a highly coupled structure is worthwhile or whether the
same problem can be solved more cheaply by tolerance assignment.

The beginnings of a geometric filter theory are suggested by our results on

orthonormal systems, and some simple measurements of angles have been

found useful in diagnosing and correcting problems in designs (chapter 8). It

would be interesting to see whether this could be extended in the manner of [1]

without losing touch with the practical problems of circuits. The link to infor-

mation and communications theory suggested by the study of redundancy

could also be productive.

Signal-space geometry could be related to the geometry of eigenvectors sug-

gested in [2].

Chapter 6 produced fairly well-conditioned algorithms and its “choice

basis” seems reasonable, but there is probably still room for numerical work.
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might be more useful, though, to work on the “man-machine interface” and try

to turn “dot” into a generally useable program. FORTRAN is a wholly inadequate

language for this task: if ADA compilers are ever made to work that language’s

richness in handling programmer-defined datatypes would be useful.

Chapter 6 used fairly primitive linear algebra to find answers to the specific

problem of designing algorithms, yet nonetheless produced the result that

zfigi is invariant (which in turn led to the work of chapter 7). The application
i

of more powerful mathematics in this area (especially to the relation between

{fi ] and {g( 1) could produce even more.

It would be useful to add an iterative optimizer to “dot” [3].

Chapter 7 presented, among other things, some new fiIter structures which

produce FSLB-sensitivity filters for some special transfer functions. These

structures were capable of producing only a restricted set of functions because

the “blocks” of which they were composed had to be identical. It would there-

fore be interesting to find out whether more generality can be obtained just by

weakening the constraint to one that blocks should be “similar”. A precise

definition for “similarity” and a method for decomposing a transfer function

into “similar” blocks inserted into FSLB topologies could yield a new and power-

ful type of filter synthesis. This would be especially useful if it did well in stop-

bands, where (as was shown in chapter 8) existing methods are poor. It would

also be useful in designing amplitude-shaping networks, which are not handled

well by ladders because their “passbands” are not flat.

Chapter 8 outlined the design of a practical filter by the methods of this

thesis. Experimental work on a slightly simpler (6th order) function yielded

encouraging results, so a detailed experimental characterization of the designs

is now in order. The general procedures suggested in that chapter could be

applied to some different transfer functions to explore their generality.

Work is continuing in the area of “complex filter synthesis” (chapter 9).

Some preliminary results on medium-order examples are very encouraging,

suggesting that only a few components need to be tightly matched. Analytic
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signals, Analytic signals, and complex Signals in general, seem to have been
under-used in analog signal processing because of two things: the lack of a gen-
eral and straightforward design technique (including approximation and syn-
thesis); and the poor sensitivity perfortiance of current realizations. Chapter 9
has addressed these problems, so that now applications work is called for to use
complex analog signals. Some experimental work is under way.

Several technologies can support complex signals. Chapter 9 was written for
the active-RC case, but switched-C filters have good ratio-matching, low cost at
high production volume, and can use switches for modulation. Switched-C com-
plex filters therefore seem to be interesting building blocks for economical ana-
log signal processing [4].

The work on complex signals could usefully be related to the older work on
“N-path’ filtering [5] and to “sequency-domain” filters [6].

There are infinitely may representations of complex numbers as sets of real
numbers, and decomposition into real and imaginary parts is not necessarily
the best one to choose in every application. The material of chapter 9 could be
reviewed with an eye to choosing optimum representations of complex signals.

Chapter 10 suggests a new approximation strategy for filters that shows
promise: the next thing to do is to write an approximator and see how much
improvement is possible on current transfer functions.

There seems to be plenty to do.
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