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Orthonormal Ladder Filters

DAVID A. JOHNS, W. MARTIN SNELGROVE, MEMBER, 1EEE, AND ADEL S. SEDRA, FELLOW, IEEE

Abstract —A new state-space structure for the realization of arbitrary
filter transfer-functions is presented. This structure should prove useful
where integrators are the basic building blocks such as in transconduc-
tance-C, MOSFET-C, or active- RC filters. The structure is derived from
a singly-terminated LC ladder and has the properties that it is always
scaled for optimum dynamic range and its integrator outputs are orthogo-
nal. For this reason, the resulting realizations are called “orthonormal
Jadder filters”. Since dynamic range scaling is inherent to the proposed
structure, it is felt that this design technique may be most useful in
programmable or adaptive filters. Finally, the sensitivity and dynamic
range properties of an orthonormal ladder filter are shown to be compara-
ble in performance to the equivalent properties obtained from a cascade of
biquads.

1. INTRODUCTION

HEN realizing high order transfer-functions, a cir-
cuit simulation of an LC ladder results in very
good performance. The reason for this fact is the excellent
passband sensitivity properties of doubly terminated LC
ladder filters [1]. However, passband sensitivity is not
always the deciding factor in choosing a filter implementa-
tion. Other properties of a particular implementation may
become important. For example, often a cascade of bi-
quads is implemented because of its ease of design, the
ability to realize any stable transfer-function, or one of its
many other features. This paper will introduce a new filter
structure which has a sensitivity and dynamic range per-
formance comparable to a cascade of biquads as well as
other interesting and useful properties. We call the filters
with this new structure “orthonormal ladder filters”.
Perhaps one of the more interesting properties of or-
thonormal ladder filters is the fact that the resulting cir-
cuits are inherently scaled for optimum dynamic range.
Moreover, an L, norm is used in dynamic range scaling as
opposed to an L norm. Simply stated, L, scaling implies
that the output of each integrator will have the same rms
value when white noise is applied at the filter input. The
relative merits of L, and L, scaling are controversial. L,
is often used in analog systems while L, scaling is widely
used in digital systems. L, is more realistic in many
applications in the sense that it deals with noise-like inputs
(e.g., speech) rather than sinusoids. However, L, scaling is
less conservative in that it could cause clipping with sine-
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wave inputs in high-Q cases. In spite of this fact, it is felt
that L, scaling covers a more general class of filters than
L,,. Note that while L, scaling is relatively difficult to
apply to a cascade of biquads, the actual structure of
orthonormal ladder filters ensures optimum dynamic range
scaling with an L, norm.

Another property of orthonormal ladder filters is the
ability to realize any stable transfer-function. This is ac-
complished through the use of an output summing stage.
Output summing is often avoided in practice because of
fears of poor stopband sensitivity properties. However,
through the use of two examples, it will be shown that an
orthonormal ladder filter (including, of course, the output
summing stage) has a sensitivity performance comparable
to a good design of a cascade of biquads. Additionally,
since for a given transfer-function the orthonormal ladder
realization is unique, the design procedure is more easily
automated than the process of finding an optimal biquad
cascade design where pole—zero pairing and cascade order-
ing are important. It will also be shown that the output
summing stage can be replaced by using feedforward to
each of the inputs of the integrators.

Two other features of orthonormal ladder filters are: a
close relationship to singly terminated LC ladders, and
uncorrelated integrator outputs when the filter input is
white noise. The close relationship to singly terminated
ladders allows a simple synthesis procedure and a trivial
stability check. Uncorrelated integrator outputs suggest the
possibility of adaptive filtering with continuous-time sig-
nals.

Orthonormal filter structures are well known in the
digital filter literature [2]. One of the reasons for their use
is that overflow oscillations are impossible in these digital
filters. However, their main disadvantage is that their
structure is fairly dense. Fortunately, the structure for
orthonormal ladder filters is quite sparse.

The state-space formulation is used to find and analyze
the structure of the proposed orthonormal ladder filters.
Section II defines the state-space description and the state
correlation matrix, as well as deriving a formula which
relates the state correlation matrix to the system matrices.
Although this formula is well known in the control litera-
ture, it is derived here to emphasize its physical interpreta-
tion. When the state correlation matrix is the identity
matrix, orthonormal systems are obtained. Orthonormal
ladder synthesis is presented in Section III where it is
shown that singly terminated ladders can be used to obtain
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orthonormal systems. An example of an orthonormal lad-
der design is presented in Section IV. Section V presents a
sensitivity and dynamic range comparison between or-
thonormal ladder filters, doubly terminated LC ladder
simulations and cascades of biquads. Finally, application
areas for orthonormal ladder filters are suggested in Sec-
tion VI.

II.  STATE-SPACE AND THE STATE CORRELATION MATRIX

An Nth-order state-space system can be described by
the equations:

sX(s)=AX(s)+bU(s)

Y(s)=¢"X(s)+dU(s) (1)
where U(s) is the input signal; X(s) is a vector of N
states, which in fact are the integrator outputs; Y(s) is the
output signal; and a, b, ¢, and d are coefficients relating
these variables. The transfer-function of the above system
is easily shown to be

T(s) =cT(sI — 4)7'b. (2)

As in [3], we define a vector of intermediate-functions,
F(s), to be the transfer-functions from the filter input to
the states, X(s). In the frequency domain,! the vector F(s)
is obtained from

F(s)=(sI-4)""p (3)

whereas in the time domain, the impulse response is given
by

f(1) = e*s. (4)

The elements of F(s) are the Laplace transforms of the
elements of f(¢).

We require an inner product definition in order to find
the correlation between the states of a given system and
thus a correlation matrix, K, such that KX, y is the inner
product between F; and F,. Choosing the standard inner
product [14] which gives the squared L, norms along the
diagonal of K, we have

K= (E(s), E() = [ F(jw)E(jo)do  (5)

which, by Parseval’s relation, equals the inner product in
the time domain given by

o0 -
0, £y =27 [ f(0) (1) d. (6)
In the time domain, the matrix K is found by combin-
ing (4) and (6).
K =27 ["ebbTe " dr.
0

(™

' The variable F in this paper corresponds to the variable f in [3} (not
the matrix F in [3}). This change in notation is required to allow the
representation of time-domain variables.
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Differentiating the inside of the above integral, we find

d(edppTeA™t .
bt = )=Ae"bb7e"+e"bbTe‘T’AT. (8)

Assuming the 4 matrix is stable, integrating both sides of
(8) from 0 to oo, the left side becomes — bb” while the
matrix K can be substituted into the right side. This leads
to the following Lyapunov equation:

AK + KAT+27bb" = 0.

©)

The above equation allows one to find the correlation
matrix, K, given the system matrices, 4 and b. Note that
the correlation matrix, K, is called the controllability
Grammian in the control literature [4], [5] and that a
similar equation is obtained in the discrete-time do-
main [2].

Before leaving this section, we would like to describe
another set of intermediate-functions. This second vector
of functions, G(s), is defined to be the set of transfer
functions from the input of the integrators to the output of
the system. In the frequency domain,

G(s)=c"(s1—4)". (10)

This set of functions, G, together with the set of intermedi-
ate-functions F allow simple analysis of sensitivity and
dynamic range performance for a given state-space struc-
ture [3].

IIL

Consider the state-space structure whose 4 and b matri-
ces are given by

ORTHONORMAL FILTER SYNTHESIS

( 0 o 0
—a 0 a,
A= —a, 0
0 Ay-1
| 0 Ty Tay
[ o
0
b= 0 (11)
ay\1/2
(7]

where all a;’s are greater than zero. The 4 matrix is
tridiagonal and is very nearly skew-symmetric except for
the single nonzero diagonal element. The b vector consists
of all zeros except for the Nth element. Using this system
in (9) above, and setting K = I, the Lyapunov equation is
satisfied. Therefore, the system of (11) is orthonormal
regardless of the actual element values as long as the
structure shown is maintained. Note that an orthonormal
system is also L, scaled for dynamic range since the
diagonal elements of K are the squared L, norms of the
integrator outputs when white noise is applied at the filter
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input. We call the above system an orthonormal ladder
system for reasons which will become apparent shortly.

For the above system to be a useful design structure, a
procedure is required to place the eigenvalues of A, or
equivalently the poles of the system, at positions in the
left-half plane dictated by the filter transfer-function to be
realized. With this goal in mind, note that the above
structure is very similar to that of the state-space descrip-
tion of a singly terminated LC ladder filter where the
states are defined to be the inductor currents and capacitor
voltages. For the even order case, the singly terminated
ladder is shown in Fig. 1. Here, the resistor value is
defined to be one without any loss of generality. As well,
reactive components are labeled r, where 7, is either the
capacitor or inductor value. The matrices 4 and b of the
state-space description of the ladder in Fig. 1 are found to
be

1
0 — 0
n
-1 1
- 0 _
r r
A= n
1
0
n-1
0 -1 -1
L rN rN -
C o
0
0
p=| (12)
0
1
ry

We can transform the above system to that of the or-
thonormal ladder system with the structure of (11) by an
appropriate scaling of the system states. Scaling the ith
state of a system by a factor of B; results in the ith row of
A and b being multiplied by 8; and the ith column of 4
divided by 8,. Using this fact, the required scaling factors,

B, are found to be
r, 1/2
(1)
w

It should be noted that this scaling process does not
change the system poles. Scaling the state-space descrip-
tion of (12) and comparing the result to the system in (11),

w¢ find the followinﬁ rclationshir between the elements of

(13)
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Fig. 1. A singly terminated ladder and its states.

the orthonormal ladder system and the reactive compo-
nents of the LC ladder:

1 V2
a,=( ) , 1<i<N
SUTES

1
ay=—. (14)

rn

Recall that our goal is to be able to place the poles of
the orthonormal ladder system at given locations in the
left-half s-plane. This can be accomplished by obtaining a
singly terminated LC ladder with the desired poles and
then using the above equation to obtain the elements of
the orthonormal system. From circuit theory, we know
that any stable natural mode polynomial can be uniquely
realized by an all-pole singly terminated ladder with posi-
tive elements [6]. Thus one can always find a unique
orthonormal ladder system for any set of stable poles.

Note that an interesting property of all-pole singly ter-
minated LC ladders has become apparent. We have shown
that the states (inductor currents and capacitor voltages) of
an all-pole singly terminated LC ladder are all orthogonal
since the states in (11) and (12) differ only in scaling. Also,
the L, norms, as defined in (5), of the ladder states are
1/B, where B; is given by (13). These simple properties
appear to have never been mentioned in previous litera-
ture.

In order to implement the numerator of a particular
transfer-function, the proper ¢ vector must be obtained.
To find the required ¢ vector, we first need to find the
states of the system. To find the states, note from Fig. 1
that the first state of the ladder, ¥, , is an all-pole function
with unity gain at dc. Hence, the numerator of the first
state of the ladder is E(Q) where E(s) is the natural mode
polynomial. Using this fact together with the state equa-
tions of the orthonormal ladder system, we can write the
orthonormal states recursively as

_BE(O)
1™ E(S) (15)
Rtk 0

Pe (e, seish. @)
i—1
The proper ¢ vector is found as the multiplying coeffi-
cients required to create the desired numerator.

We note from (15) to (17) that the numerators of the
odd states will be even polynomials while the numerators
of the even states will be odd polynomials. This fact helps
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Fig. 2. Block diagram of an orthonormal ladder filter.

to explain why an output summing amplifier which imple-
ments the ¢ vector does not have poor sensitivity proper-
ties. Specifically, in the case of finite transmission zeros on
the jw axis, where the transmission-zero polynomial P(s)

P(s) _

T(s)=
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It is easily shown from (2) that the two systems will have
the same transfer function. It is also not difficult to show
that the following relationship holds between the interme-
diate-functions, F and G, of the orthonormal system and
the feedforward system.

Ffeed =G,

ortho > (19)
Thus for the feedforward system, the intermediate set of
functions Gy.y will be an orthonormal set. Since the
intermediate-functions are simply interchanged, it is also
easy to show from the sensitivity formulas in [3] that the
feedforward and orthonormal systems will have the same
sensitivity performance with respect to system elements.
Finally, although the feedforward system does not have
the F functions scaled for optimum dynamic range, these
functions can be L, scaled to equal levels using the stan-
dard method of scaling.

IV. DESIGN EXAMPLE

Consider a fifth-order elliptic low-pass transfer-function

Gfeed =F, ortho*

0.01321s* +0.1037s2 +0.1739

is purely even or odd, only even or odd elements of the ¢
vector will be nonzero. Thus, a small change in any of the
nonzero ¢ elements will result in transmission zeros which
remain on the jw axis.

Fig. 2 shows a block diagram of a general orthonormal
ladder filter. The simple leapfrog structure is a result of
simulating a singly terminated ladder. As shown in the
block diagram, the output is obtained as a linear combina-
tion of the integrator outputs.?

Although output summing (having a ¢ vector with more
than one nonzero element) does not have poor sensitivity
performance, there are situations where a circuit imple-
mentation of the ¢ vector is difficult. An example of such
a situation is the design of high frequency transconduc-
tance-C filters where a wideband output summing network
is difficult to implement. In such a situation, it is much
easier to add one more input to each of the integrators
than to design a high frequency summing stage with many
inputs. For these situations, feedforward (having a b vec-
tor with more than one nonzero element) can be used to
create the required transmission zeros. It is important to
note, however, that the feedfoward system to be described
does not have an orthonormal set of F functions.

In order to create a feedfoward system, an orthonormal
ladder system with output summing is first obtained. The
feedforward system can be obtained by creating a new
state-space system related to the orthonormal ladder sys-
tem by [7]

— 4T . —
Afeed - Aorl.ho’ bfeed = Cortho

Cteed = Dorthos dfeed = dorlho' (18)

?Note that, from (14), the units of a; are Hz as expected. However, the

units of the feed-in term is yHz . This surd term is a result of forcing the
states to have the same rms value when a signal of constant spectral

density in V/VHz is applied at the filter input.

E(s) 5°+0.9287s* +1.77265° +1.055752 +0.6917s +0.1739 "

(20)

The reactive elements of the singly terminated ladder
which realizes these poles can be found using continued
fraction expansion [6] on the polynomial, E(s). Applying
such a procedure results in the following elements:
r;=0.9078; r,=2.0205; r,=1.9937,
r,=1.4606; r,=1.0768. (21)
Using (14), the following elements of the orthonormal
ladder system are obtained:
a;=0.7384; a,=0.4982;
a,=0.7934; as=10.9287. (22)
The intermediate-functions of the orthonormal system
found using (15)-(17) are

a; = 0.5860;

0.09346

NTE) )
0.1266s

TER) 9
0.254052 +0.1385

O N )
0.4335s3 +0.34405

TR e
0.5437s* +0.6181s2 +0.1018

Fy= 0] (27)

We easily find the ¢ vector and scalar d required to form
our desired numerator to be

¢T=[1.3163 0 03492 0 0.0243]; 4=0. (28)

V. SENSITIVITY PERFORMANCE COMPARISON

This section will compare the sensitivity performance of
orthonormal ladder filter realizations with realizations re-
sulting from two alternative synthesis methods. One of the
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alternate methods is a state-space simulation of a doubly
terminated LC ladder filter [8). The other method
is a cascade of second-order sections implemented with
Tow-Thomas biquads. The finite transmission zeros of the
biquads are realized using feedfoward with a resistor and a
capacitor. Pole-zero pairing and cascade ordering are cho-
sen using the rule-of-thumb in (9], [10]. In order to use the
analysis methods in [3], we require the cascade structure in
a state-space formulation. Fortunately, a cascade of bi-
quads designed can be easily put into a state-space de-
scription if one allows a nonconstant feedback matrix. The
nonconstant feedback matrix, 4(s) consists of two matri-
ces, A, and A,, such that

A(s)=A,+54,. (29)
With an active-RC circuit, the 4, elements are realized
with capacitor feed-ins to integrators. Finally, for a fair
comparison with orthonormal ladder filters, L, dynamic
range scaling was performed on filters before comparing
sensitivity or dynamic range.

Since different criteria are used to judge the filter perfor-
mance in the passband and stopband, slightly different
measures will be used in the two regions. However, in both
bands, the multiparameter sensitivity value presented by
Schoeffler [11] is used to find the standard deviation in the
transfer-function for standard deviations of 1 percent of
the nominal component values. The transfer-function devi-
ation, ¢|T(jw)|, is found from

) 1/2
T (jew) )2
—X

o|T(jw)|=0.01 Y ( o

xﬂA‘-j,bi,C,»,‘/,

(30)

where v,/s represents the gain of the ith integrator. The
formulas in [3] were used to obtain the above derivative.
This deviation measure takes into account all the passive
elements of an active-RC implementation.

Since transfer-function deviation is often the most criti-
cal performance measure in the passband, the passband
deviation in decibels, D(w) is used for sensitivity perfor-
mance in the passband. D(w) is found from ¢|T( jw)| and
IT(jw)| as

o|T( jw
D(w) =20log,, IT(je)|

1+ ()] ) (31)
This passband measure gives the standard deviation of the
passband in decibels from the ideal response for standard
deviations of 1 percent of component values.

In the stopband, an expected gain curve is plotted. This
stopband expected gain value, T,(w), is found from

T,(w) =20log,o (IT(jw) |+ 6| T(jw)]).  (32)
This stopband measure allows one to easily see the ex-
pected stopband gain for standard deviations of 1 percent
of component values. Note that if the passband deviation
measure were used in the stopband, it would go to infinity
at transmission zeros.

For dynamic range comparisons, the figure of merit
T,IIG,|13 will be used [3]. This figure of merit is the square
of the rms noise level obtained when uncorrelated white
noise sources of unit power spectral density are applied to
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Fig, 3. Fifth-order example: Plot of ideal transfer-function along with
the expected stopband transmission, T, (w), for a 1-percent component
standard deviation. Also shown is the standard deviation in passband
response, D(w).

each of the integrator inputs. Thus a filter with good
dynamic range will have a low number for Z,||G,13.

For the fifth-order example above, three state-space
descriptions were obtained using the different design ap-
proaches. The state-space system for the ladder simulation
is

—0.4643 —0.5823 0 00821 —0.0045
0.8408 0 ~0.5994 0 0
A=|-01064  0.5271 0 ~04961 —0.0272
0 0 0.6153 0 -0.5892
| —0.0097  0.0479 0 07574 —0.4643
0.4655
0
b= 0.1066
0
[ 0.0097
¢T=[0 0 0 0 13620]; d=0 (33)

and the state-space system for the biquad cascade is

[ ~0.3379 0 0 0 0
—0.7709 0 ~0.7967 0 0
A=|(00922)s 06491 —0.4577 0 0
0 0 1.4464 0 —1.8603
| © 0  (03191)s 0.5348 —0.1330
[0.3297
0
b=| o
0
L 0
¢™=[0 0 0 0 13622]; d=0. (34)

Fig. 3 shows a plot of the ideal transfer-function response
along with passband deviations, D(w), and stopband ex-
pected gain, 7,(w), curves. We see from these curves that
the orthonormal ladder system has a passband perfor-
mance somewhat between the performance of the ladder
simulation and the biquad cascade. The stopband perfor-
mance of the orthonormal ladder system is slightly worse
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Fig. 4. Eighth-order example: Plot of ideal transfer-function along with
the expected stopband transmission, 7, (w), for a 1-percent component
standard deviation. Also shown is the standard deviation in passband
response, D(w).

than that of a cascade of biquads. The noise figures for the
ladder, orthonormal, and cascade filters of this fifth-order
example are 47, 65, and 117, respectively.

An eighth-order elliptic passband filter example pre-
sented in [3] was also investigated. For this eighth-order
example, the resulting curves are shown in Fig. 4. We see
from these curves that the orthonormal ladder filter still
performs quite well in the passband and upper stopband
but is slightly worse than the other two designs in the
lower stopband. The reason for the poorer sensitivity per-
formance at dc is explained as follows. The cascade design
contains two passband filter biquads and therefore varying
any of the components will not affect the two zeros at dc.
Similarly, the ladder simulation will have good perfor-
mance at dc because we are simulating a ladder whose
structure ensures two zeros at dc. However, the orthonor-
mal ladder filter creates the two dc zeros by an output
summing network and thus the zeros will shift away from
dc with component variations. The noise figures for the
ladder, orthonormal, and cascade filter for this eighth-order
example are 73, 100, and 151, respectively.

These two examples indicate that an orthonormal ladder
filter has a passband sensitivity performance as least as
good as a cascade of biquads (often much better) and a
slightly worse stopband performance. The dynamic range
performance of orthonormal ladder filters appears to fall
between that obtained with LC ladder simulations and
cascade designs.

VL

This section will discuss what we feel are important
application areas for orthonormal ladder filters other than
as a general filter synthesis technique. The first application
area is programmable filters. When changing a filter circuit
from one transfer-function to another, it is important that
the performance of the circuit not be severely degraded.
Since we have shown that the orthonormal ladder structure

APPLICATION AREAS
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is inherently scaled for optimum dynamic range, the cir-
cuit’s elements can be changed to new values while main-
taining the circuit’s good dynamic range.

Similar to programmable filters is the field of adaptive
filters. In this case, the filter’s parameters are dynamically
changed to minimize some error criteria. If one has an
algorithm to adapt the poles of the system then, as above,
an orthonormal filter can be adapted and maintain good
dynamic range. However, there is another property of
orthonormal ladder filters which lends itself well to adap-
tive filters. The fact that the integrator outputs are all
orthogonal with white noise at the input is quite impor-
tant. It is shown in [12] that with an adaptive linear
combiner, adaptation is much faster if all the inputs to the
linear combiner are orthogonal. Thus if the 4 and &
elements remain fixed and the ¢ vector of the state-space
system is used as a linear combiner, the adaptation process
converges quickly. One reason to consider analog adaptive
filters is to process signals with much higher frequency
contents than is now possible with digital filters [13]. The
authors are currently investigating this application with
encouraging results.

VIL

We have presented a new filter structure called or-
thonormal ladder filters. These filters are easy to synthe-
size through the use of singly terminated LC ladders. As
well, orthonormal ladder filters are automatically L, scaled
for optimum dynamic range by the very nature of their
structure. Also inherent in their structure is the fact that
the integrator outputs are all orthogonal when the input is
excited by white noise. We have also shown that orthonor-
mal ladder filters can realize any stable transfer-function
and have a performance comparable to a cascade of bi-
quads. We feel that orthonormal ladder filters should be
useful as a general design method and may be useful in the
implementation of programmable or adaptive filters.

It was also shown that a singly terminated LC ladder
driven through its resistor has orthogonal states. As well,
the L, norm of the ladder states were shown to have a
simple relationship to the elements of the ladder.

CONCLUSIONS
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