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Abstract —Adaptive recursive filters are often implemented using di-
rect-form realizations. However, direct-form realizations are known to
have very poor sensitivity and roundoff noise properties, especially in
the case of oversampled filters. To aid in the search for better adaptive
filter structures, this paper presents a method to obtain the gradients
required to adapt general state-space filters. Unfortunately, the number
of computations for this general case is quite high. To reduce the
number of computations, two new state-space adaptive filters are intro-
duced. One application where these new structures are shown to be
useful is in oversampled filtering where an estimate of the final pole
locations is known and the adaptive filter is required only to “fine-tune”
the transfer function. It is shown that for this type of application, the
new adaptive structures can have much improved adaptation rates and
roundoff noise performance than their corresponding direct-form real-
izations.

I. INTRODUCTION

DAPTIVE FILTERS have gained widespread ac-
Aceptance as a tool for system designers. Typically,
adaptive filters are implemented as transversal FIR filters
and the simple LMS adaptation algorithm [1] is used to
adjust the zeros of the filter. However, since only the
zeros of an FIR filter are adapted, high-order filters are
often required to achieve satisfactory performance. In
many cases, the order can be reduced significantly through
the use of an adaptive IIR filter where both the poles and
zeros are adapted. For this reason, there has been consid-
erable interest in adapting recursive filters, as is evident
from the fact that numerous algorithms have been pro-
posed for direct-form realizations [2]-[7] and lattice form
[8], [9] as well as biquad form [10].

This paper proposes a gradient search technique for
adapting the poles and zeros of a general state-space
recursive filter. Being able to adapt arbitrary state-space
filters gives the designer the freedom to explore the
performance advantages of different structures [11]. Un-
fortunately, the computation requirements to adapt a
general state-space gradient filter is quite high. However,
it will be shown that the number of computations can be
reduced by adapting any single column of the feedback
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matrix, and in special cases, a single row. The importance
of these new structures is that in oversampled applica-
tions where final pole locations can be estimated, adap-
tive filters with much better adaptation rates and round-
off noise performance than those based on the direct-form
structure can be obtained. In other words, these new
structures will be useful in applications where an approxi-
mate shape of the final transfer-function is known and the
adaptive algorithm is required only to “fine-tune” the
filter. One example of this type of application is in fixed-
channel data equalization, where tuning of the adaptive
filter need account only for manufacturing tolerances.
The advantage of this approach over adaptive recursive
lattice filters is the reduced amount of computation re-
quired to obtain the gradients.

It should be pointed out that the adaptive algorithms
presented in this paper are all based on the steepest
descent adaptive algorithm G.e., gradient-based). Thus,
using a small enough step size (choosing this step size isa
nontrivial task; see, for example, [12]), the systems will
converge to a minimum in the error performance surface,
assuming filter instability does not occur. However, there
are problems associated with using gradient-based algo-
rithms when adapting poles, such as ensuring the filter
remains stable and the possibility of converging to a local
minimum. Ensuring the filter remains stable can be ac-
complished by using filter structures having a simple
stability check. On the possibility of converging to a local
minimum, it has been proven that increasing the filter
order will remove local minima when the number of free
parameters in the numerator of the adaptive filter is
equal to the order of the filter {13], [14]. On the other
hand, excessive filter order can cause difficulties with
parameter convergence and internal stability. Although
filter instability and global convergence are important
issues, the purpose of this paper is to concentrate on the
effects of using different structures in gradient-based
adaptive filter implementations. The results of this paper
indicate that when gradient-based adaptive algorithms are
used, there are some definite advantages in using filter
structures other than direct form. It is possible, of course,
that similar advantages might occur if global convergence
algorithms are also applied to structures other than direct
form.
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This paper is divided as follows. Some background on
state-space systems is presented in Section II. Also, re-
cently presented sensitivity formulas [15] relating the
change in the filter output to the system coefficients are
modified to a form more useful to our present needs.
These formulas are required in order to find the gradients
so that the performance surface of an adaptive filter may
be descended. Section III describes the adaptation algo-
rithm for a general state-space filter that, unfortunately,
is computationally intensive. Section IV presents a
single-column adaptation algorithm that reduces the com-
putations required. Column adaptation tests are devel-
oped to help one check whether a column of a particular
design can be adapted. In addition, a single-row adapta-
tion structure is presented. Finally, in this section, quali-
tative arguments are given indicating the reason that the
direct-form structure adapts slowly for oversampled appli-
cations, and a method is discussed for choosing the initial
system of the single-column or single-row adaptive filter.
A noise performance comparison among different filter
structures is presented in Section V to illustrate the noise
advantage of single-column (or row) adaptation. Simula-
tion results for a number of examples are given in Section
VI illustrating the possible convergence speed advantage.

II. STATE-SPACE SYSTEMS

This section will present some sensitivity formulas for
state-space systems [15] that will allow us to adapt the
coefficients of state-space filters. These formulas require
the definition of two sets of intermediate functions. Also
in this section will be a transformation of a state-space
system such that the two sets of intermediate functions
are exchanged.

An Nth-order state-space digital filter can be described
by the following equations:

x(n+1) = Ax(n) + bu(n)
y(n) =c"x(n) + du(n) (1)

where x(n) is a vector of N states, u(n) the input, y(n)
the output and 4, b, ¢, and d the coefficients relating
these variables. The matrix 4 is N X N, the vectors b
and ¢ are N X1 and d is a scalar. Using z transforms,
the transfer function from the filter input to the output is
easily derived as

Y(z)
U(z)

=c¢’(aA-A4)""b+d. 2)

From this equation, we see that the poles of the system
are determined by the 4 matrix (the poles are simply the
eigenvalues of A), whereas the zeros of the system are
related to all four of the state-space matrices.

We now define two sets of intermediate functions,
{F(2)} and {G(z)}, which were originally presented in
[16]. The first set, which we write as the vector F(z),
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consists of the transfer-functions from the filter input to
the filter states.

Xi(z)

E(Z)E'[H-

(3)

This definition leads to the formula
F(z)=(z2—A)""b. (4)

The second vector of functions, G(z), is defined as the set
of transfer-functions from the input of each of the delay
operators to the output. Thus if we inject a signal e/(z) at
the input of the ith delay operator, then

(%)

Using this definition, we have
GT(z)=cT(z - 4)7". (6)

To obtain gradient signals, we use the sensitivity formu-
las in [15] (which originally were obtained using a signal-
flow-graph approach) to relate the derivatives of the
output signal with respect to each of the system coeffi-
cients, to the intermediate functions.

Y (z)
= G X2 Q
Y(z)
= G2 U(2) ®
T x(a) ©
aY(z)
7d =U(z). (10)

From the preceding equations, it is obvious that the
gradient signals required to adapt the ¢ vector elements
are available as the output states, x(n), whereas the
gradient signal for the d scalar is the input signal, u(n).
However, to create the gradient signals required to adapt
the elements of the 4 matrix and b vector, a new system
is required, having the intermediate functions from the
input to the states equal to G(z) of the original system.
This new system can be found by utilizing a simple
transformation that exchanges the two sets of intermedi-
ate functions [16]. Specifically, given a system [A, b;¢, d]
with intermediate functions F(z) and G(z), we can create
a new system such that

Fiu(2)=G(z) and G, (z)=F(z) (11)

by arranging that coefficients of the new system are
related to those of the original system by

Anew = AT bnew =c cnew = b dnew = d' (12)

This result can be verified easily using the formulas in (4)
and (6).
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Fig. 1. Adaptive state-space filter. The filter is shown in two separate
blocks corresponding to the state-space describing equations.

LMS ADAPTIVE ALGORITHM FOR
STATE-SPACE FILTERS

IIL

A block diagram of a state-space recursive adaptive
filter is shown in Fig. 1, where the state-space coefficients
now change with each time step and, hence, are functions
of the time step “n.” The state-space system is shown as
two separate blocks that correspond with the state-space
describing equations. Specifically, the feedback matrix, 4,
and the input summing vector, b, implement the first
equation of a state-space system and create the state
signals, x(n), as the outputs of the first block. These state
signals together with the system input, u, are weighted
using the output summing vector, ¢, and the output
scalar, d, to obtain the filter output, y, at the output of
the second block. The error signal, e(n), is the difference
between the reference signal, 8(n), and the filter output,
y(n). During adaptation, coefficients of the adaptive filter
are changed to minimize the mean-squared error signal,
denoted as E[e%(n)]. With the use of gradient signals, the
steepest descent algorithm can be used to find a minimum
of the mean-squared error performance surface. The al-
gorithm for updating any coefficient, p, of the adaptive
filter using the steepest descent algorithm is

E [ez(n)]
dp(n)
where u is a step-size parameter that controls conver-
gence of the algorithm. With the LMS algorithm [1], the
instantaneous value of the squared error signal is used to
approximate the expected value. With such an approxima-
tion and using the fact that the error signal is the differ-
ence between the reference signal, 8(n) (which is not a

function of p), and the output of the adaptive filter, y(n),
we have

p(n+1)=p(n)—p (13)

dy(n)
ap(n)’
Now, as in previous publications [10], [12], we take the

inverse z-transform of the gradient results found in the
previous section' and substitute the resulting time-domain

p(n+1)=p(n)+2ue(n) (14)

!These results were for time-invariant linear systems, whereas the
adaptation algorithm makes the overall system nonlinear. The use of
these gradients is essentially a linearizing assumption, which is appropri-
ate for the practical case of a small step size, u.
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Fig. 2. Generating the gradients for a general state-space adaptive
filter.

equivalent formulas in 14). This results in the following
adaptation equations for the system coefficients:

A(n+1)= A,-}-(n)+2p,e(n)a,-j(n) (15)
b(n+1) =b/(n)+2ue(n)B(n) (16)
ci(n+1) =c;(n)+2ue(n)x,(n) (17)
d(n+1) =d(n) +2pe(n)u(n) (18)
where
;= g:(n) ®x;(n) (19)
B.= gi(n) Bu(n) (20)

and the symbol ® denotes convolution.

Note that the adaptation equations for the elements of
A and b involve convolution, whereas the elements of ¢
and d have straightforward equations. We can accomplish
these convolutions by using the transformation given in
the previous section. A new system is created with the
feedback matrix A7 and the input summing vector ¢. This
new system has the impulse response g,(n) at the output
of the ith state.

To implement the preceding adaptation equations, the
filter structures shown in Fig. 2 can be used to obtain all
the required gradients of the system coefficients for a
general adaptive state-space filter. The transposed filter
with u(n) as its input is used to update the elements of
the b vector, whereas each of the other transposed filters
is used to adapt the elements of a column of the A4
matrix. As can be seen, the number of computations
required to obtain the gradients for this general state-
space filter is quite high: N +2 times that of the filter
itself.

It is interesting to note that for the specific case where
the state-space filter is in the form of the direct-form
structure, the gradient equations obtained with this inter-
mediate-function approach are identical to those ob-
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tained in [6], [7], and thus both approaches result in the
same final configuration. This is to be expected, since
both methods are finding the derivative of the output with
respect to the filter coefficients.

IV. Repucep COMPUTATION STATE-SPACE
ADAPTIVE FILTERS

To reduce the computations, we note that given an
independent set of intermediate functions, F/(z), any set
of desired zeros can be obtained by changing only the ¢
vector and d scalar. This allows one to keep the b vector
constant while adapting the remaining state-space system
coefficients. Of course, equivalently the ¢ vector could be
held constant while the b vector is allowed to change.
However, it can be seen from the preceding update equa-
tions that the gradient signals required to adapt the ¢
vector are immediately available, whereas obtaining the &
vector’s gradient signals requires an extra state-space
filter. For this reason, we normally choose to adapt the ¢
vector rather than the b vector.

To reduce further the number of computations, we
note that N? elements of the 4 matrix are being adapted,
where N elements are sufficient to define N poles.
Therefore, we look for structures that can be adapted to
any set of poles by changing only N elements of the 4
matrix.

4.1.

Recall that each of the transposed filters of Fig. 2
provides all the gradients required to adapt a single
column of the 4 matrix. Therefore, if we choose to adapt
a modified direct form where only the elements of the last
column are adapted, only one transposed filter is re-
quired. For the modified direct-form filter, the 4 matrix
has the form

Single-Column Adaptive Filters

00 - 0 0 a

1 0 0 0 a,
a=|0 1 00 e (21)
0 0 - 1 0 ay_,
00 - 0 1 ay

However, we do not have to restrict ourselves to the
modified direct form to obtain computational savings.
From control theory, the pole assignment theorem [17] is
given next.

Pole Assignment Theorem: The pair (m7, 4) is observ-
able if, and only if, for every complex-conjugate set of N
complex numbers there exists a vector k such that the
eigenvalues of (4 + kmT) are the given set of N complex
numbers.

Thus given an 4 matrix and choosing m to be the basis
vector v, (a basis vector, v;, consists of all zeros except for
the unit element in the ith row), this theorem states that
we can obtain any desired set of poles by changing only
the ith column of A4 if (v], 4) is observable (we discuss
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Fig. 3. Generating the gradients for a single-column adaptive filter.

observability in the next section). Therefore, the poles of
an arbitrary A matrix can be adapted using only one
transposed filter to obtain the necessary gradients re-
quired to adapt a single column of 4. A block diagram
showing how the gradients are obtained for a single-col-
umn adaptive filter is shown in Fig. 3.

4.2. Column Adaptation Tests

The pole assignment theorem states that (v[, A) must
be observable to adapt the ith column. (Here m has been
replaced with v;, which restricts discussion to the case of
adapting a single column.) To check that this observability
constraint is satisfied, the control literature has a number
of different tests that could be used. (For a discussion of
observability tests, see [18].) Unfortunately, the usual tests
are not easily applied to a filter structure with unknown
matrix elements. For this reason, as well as to gain some
insight, two simple tests are presented herein that allow a
designer to check whether the preceding matrix pair or a
filter structure satisfies the observability constraint. If the
first test is satisfied, then the particular column of A4
cannot be adapted; if the second test is satisfied, then the
column can be adapted. In most applications, one of
these two tests will be satisfied; however, if this is not the
case, then one of the many observability tests can be
applied.

For both of these tests, consider a given 4 matrix
where one desires to adapt the ith column of 4 to obtain
arbitrary pole locations. Define the vector of functions,
Gy(2), as

Goi(2) =v](d - 4)™". (22)
This vector of functions is visualized most easily as the
intermediate G functions of the state-space system having
a feedback matrix, 4, and an output summing vector, v;;
in other words, with the jth element of G,(z) being the
transfer function from the input of the jth delay operator
to the ith state. To derive the two column adaptation
tests, an observability independence theorem [18, th. 9-13,
p. 432] is used which states the following: The pair (v7, 4)
is observable if, and only if, the elements of G,(z) are
linearly independent (over the field of complex numbers).

The two column adaptation tests are:

Column Adaptation Test 1: If any of the elements of
G((2) is zero, then the ith column of A4 canmot be
adapted to arbitrary pole locations.
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The proof for this test comes from the fact that the
elements of G,,(z) are not independent if one of the
elements is zero. Since the elements of G(z) are not
independent, the observability independence theorem
implies that the pair (vT, A) is not observable. Therefore,
by the pole assignment theorem, the ith column of 4
cannot be adapted to realize arbitrary poles.

Column Adaptation Test 2: If any of the elements of
G,,(2) is of order N (when canceling poles and zeros are
eliminated), then the ith column of 4 can be adapted to
realize arbitrary pole locations.

The proof for this test comes from the fact that if any
of the elements of G,(z) is of order N, then the ele-
ments of G,,(z) are independent. This would not be true
for a general set of rational functions, but it is true when
they are restricted to be the G functions of an N th-order
system. This fact can be proved by showing that a depen-
dent set of G,,,(z) implies that none of the elements are
Nth order. Assume a given feedback matrix 4 and an
output summing vector v; (sizes N XN and N X1, re-
spectively) where the elements of G,(z) are dependent.
A transposed system consisting of AT and the input
summing vector v; can be created with the set of interme-
diate F,(z) functions equal to the set of Go(z) func-
tions. This transposed system realizes the first equation of
the state-space system and uses N delay operators. How-
ever, since the elements of F,(z) are dependent (F,(z)
= G,,(2)), one state output can be written as a linear
combination of the other states and, thus, one delay
operator can be eliminated, leaving the same F,(z) func-
tions. However, it is well known that an Nth-order trans-
fer function cannot be created from less than N delay
clements and, thus, all the F,(z) (and hence Go(2))
must be less than Nth order. Thus in the case where one
of the G,[(z) elements is Nth order, the set must be
independent. Since the elements of G,,(z) are indepen-
dent, the observability independence and pole assignment
theorems can be applied to prove the stated test.

As an example of applying these tests, consider the
fourth-order 4 matrix:

0 a, O 0
a
0 0 0
0 ay

A= (23)

This system is a cascade of two biquads—(a,,, @51, G2)
implement the first biquad and (a4, @43, 4,) make up the
second biquad, while a,, is the feedforward term from
the first to the second biquad (see Fig. 4).

Consider the case where one wishes to adapt the first
column. It is clear from Fig. 4 that the transfer function
from the input of the third or fourth delay operators to
the first state is zero. This implies that the last two
elements of Gy,(z) are zero. Therefore, according to
column adaptation test 1, column one cannot be adapted
to realize arbitrary poles. This result should come as no
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biquads. Only the 4 matrix branches are shown.
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Fig. 5. Generating the gradients for a single-row adaptive filter.

surprise, since adapting the first column cannot affect the
poles of the second biquad because only feedforward
terms are added from the first to the second biquad. In
addition, a similar test shows that the second column
cannot be adapted to realize arbitrary poles.

Now, consider the case of adapting the fourth column.
In this case, the elements of G,,(z) are the transfer-func-
tions from the inputs of the delay operators to the fourth
state. Since the transfer-function from the input of the
first delay operator to the fourth state is fourth order,
column adaptation test 2 implies that the fourth column
can be adapted to give arbitrary poles. Finally, a similar
test also shows that the third column can be adapted to
realize arbitrary poles.

4.3. Single-Row State-Space Adaptive Filter

A situation where only one extra filter is required to
obtain the gradients to adapt a single row of the feedback
matrix, 4, occurs when the input summing vector, b,
equals a basis vector, v;, and the state-space coefficient d
is zero. In this case, the transfer-function from the filter
input to the filter output is equal to G,(z). Therefore, to
implement (15) for the ith row, only one other system is
required that has the functions F(z) at the state outputs.
This extra system is created using the b vector and A4
matrix of the original system. A block diagram showing
how to obtain the gradients for a single-row adaptive
filter is shown in Fig. 5. Note that if the d coefficient is
small, then the gradient signal obtained with this method
will be a close approximation to the actual gradient signal.

Of course, to make full use of a single-row adaptive
filter where b =v,, it must be possible to adapt the ith
row to obtain arbitrary pole positions. To determine
whether the ith row is adaptable, one can use the control-
lability pole assignment theorem [17]. In addition, the
column adaptation tests described earlier for adapting a
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column of the feedback matrix can be modified easily for
checking whether a row may be adapted.

Note that in the specific case where the state-space
filter is in direct form, the resulting realizations using
single-row adaptation are the same as that obtained for
direct-form gradient adaptation in [12]. This method of
obtaining gradients requires significantly less computa-
tions than that originally proposed in [6], [7]. Also note
that the nonzero element of the input summing vector
does not have to equal 1. If the nonzero element is not
unity, then the preceding results still hold but the gradi-
ents for the ith row will be scaled. Finally, note that the
input vector must have only one nonzero element and the
d coefficient must be close to zero for single-row adapta-
tion. These restrictions are not present for single-column
adaptation.

4.4.  Choosing the Initial System to Adapt

Two reduced computation state-space adaptive recur-
sive filters have been described: single-column and single-
row structures. However, it is not yet clear what ad-
vantages these types of adaptive filters have over the
traditional direct-form structure, or how one chooses the
initial system to adapt. The advantages of using these new
structures will be addressed in this section along with a
method of choosing the initial system.

There are two main advantages of using single-row or
single-column adaptive filters over direct-form structures.
Both of these advantages occur in oversampled applica-
tions where final pole locations can be estimated. One
advantage is that the final adapted filter could have much
better noise performance. This noise improvement can be
obtained by choosing a much better structure than the
direct form to implement the estimated pole locations.
Then, if minor modifications are made to one column, or
row, of the feedback matrix, the good noise properties of
the structure should be maintained. The second advan-
tage of using these new structures is a much improved
convergence rate.

To illustrate the differences in expected convergence
rates, we need to consider the error performance surface
of the different filter types. Unfortunately, determining
the performance surface is not a trivial matter for adap-
tive IIR filters. However, some insight can be gained by
approximating the error performance surface by a
quadratic function of the adaptive coefficients (as in [12])
in a close neighborhood of the operating point. As a
further simplification, assume that all feedforward coeffi-
cients are fixed so that only the performance surface due
to feedback coefficients will be investigated. The elements
of the correlation matrix, R, corresponding to this approx-
imate performance surface can be shown to be

R,-]-=E[a,~aj (24)
where a; is the gradient signal used to adapt the ith
feedback coefficient. This approximation indicates that
one can estimate problems with the performance surface
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Fig. 6. Direct-form IIR filter and gradient signals.

by estimating the degree of correlation between gradient
signals. A higher degree of correlation between gradient
signals indicates a more ill-conditioned error performance
surface and thus slower convergence properties.
Consider the direct-form adaptive filter shown in Fig. 6,
where the gradient signal used to adapt the a; coefficient
is shown as a; [12]. Note that although this direct-form
adaptive filter requires much less computation to obtain
gradient signals than the method proposed in [6], [7], the
gradient signals are the same in both cases and, thus, the
following reasoning holds for both types of direct-form
adaptive filtering. Assuming the coefficients are varying
slowly, at an instant of time the transfer-function from the
input, u(n), to the filter output, y(rn), can be written as

¥(z) N(z)
U(z)  D(z)

_bozV 4+ b2V 4 b, 2N 24 - by

= 25
N—ayz¥Nl—ay 2N — o — g (25)

where N(z) and D(z) are the numerator and denomina-
tor polynomials, respectively. The transfer function from
the input, u(n), to the signal v(n) is easily seen to be

V(z) N(z)zV
U(z) D*z)

(26)

In the case of an oversampled low-pass application
where N(z) and D(z) make up a low-pass transfer-func-
tion with poles clustered around z=1 and the input
signal, u(n), has a white noise characteristic, v(n) will be
an oversampled low-pass signal. Since the gradient signals
«; are simply delayed versions of this low-pass signal
sampled very quickly, it is clear that the gradients, a;, will
be highly correlated. In fact, in the limiting case, as the
system oversampling ratio goes to infinity, the gradient
signals will be correlated perfectly. Note that this reason-
ing also predicts that for applications where the signal
v(n) continues to have a white noise characteristic, the
direct-form IIR filter should adapt quickly. Finally, note
that in applications where final pole locations can be
estimated, this information is of limited use with a direct-
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form adaptive filter since there is no obvious method of
shaping the performance surface. The only value of esti-
mating final pole locations is in starting the adaptive filter
closer to the minimum.

Now, consider the single-row adaptive filter shown in
Fig. 5 used in an oversampled low-pass application where
estimates of the final pole locations are known. In this
case, a state-space system can be designed having its poles
equal to the estimated pole locations (only the A4 and v;
are required) such that the set of state outputs, x(n), is
orthonormal for an input signal having a white noise
characteristic [19]. This is in contrast to using a direct-form
state-space system where the states would be highly corre-
lated in this oversampled application, as discussed earlier.
Of equal importance, however, is the fact that in this type
of application, the set of states x(n) will have most of its
power around the pole locations and thus will remain
approximately orthonormal for an input signal that has a
relatively flat spectrum response around the pole loca-
tions and low power elsewhere. This type of frequency
characteristic is the spectrum one would expect for the
output signal y(n) in this oversampled application with
white noise at the input, u(n). Therefore, for the perfor-
mance surface around the estimated pole locations, one
expects the set of gradient signals, a;(n), to be approxi-
mately orthonormal. This approximately orthonormal set
of gradients'leads to much improved convergence rates,
as will be shown in some simulation results presented in
Section VI.

Unfortunately, it is not as simple to make a qualitative
argument concerning the performance of the single-col-
umn adaptive filter. However, it has been observed that
using the same method of choosing the nonadaptive ele-
ments as in the single-row case and adapting the last
column, good adaptation performance has resulted. Some
examples of simulation results for the single-column
adaptive filter are also given in Section VL.

Finally, it should be mentioned that the design of
orthonormal filters for arbitrary pole locations often re-
sults in dense matrices; therefore, this paper will make
use of a variation of an orthonormal ladder filter structure
presented in {20]. (For design details, see the Appendix.)
We shall refer to realizations obtained with this approach
as “quasi-orthonormal filters” since the resulting realiza-
tions approach true orthonormal filters as the ratio of the
sampling frequency to the passband edge is increased. Of
course, one is not restricted to using the quasi-orthonor-
mal structure, and the authors are currently investigating
the effect of using other state-space structures.

V. RounNDoFF NOISE COMPARISON

In this section, the possible noise performance im-
provement of using a single-row adaptive filter over a
_ direct-form adaptive filter will be demonstrated through
the use of an example.

First, a measure for comparing the noise performance
of different filter structures needs to be defined. Our
noise measure, N,,, is a slight variant of the measures
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presented in [21], [22],
N, = trace (KWQ)

where K and W are defined as

(27)

K = AKAT + bb” = i (Ab)(4*b)  (28)
k=0

W=dATWA+cle= Y (cd¥)"(cdb)
k=0

(29)

and Q is a diagonal matrix, where Q; is zero if the
elements of row i of A consist only of 0’s, 1’s, and —1’s.
Otherwise, Q;; is 1.

Note that this noise measure is valid when using a
modern digital signal processor that has a multiplier/
accumulator that does not truncate until writing out to
memory. Thus, the noise model used assumes each row of
a state-space system has one noise source due to trunca-
tion error rather than a noise source for each nonzero
element. The matrix Q makes an adjustment for rows
where no truncation errors are introduced. In the case of
a direct-form filter, there are N —1 rows where no trun-
cation errors are present.

With a noise measure to compare different filter struc-
tures, we may now proceed with an example. The exam-
ple used will be an oversampled transfer-function, typical
in many practical applications. It is well known that
direct-form filters have poor noise performance for such
applications. The example transfer function is that of a
third-order low-pass filter with a sampling frequency/
passband frequency ratio of about 32. The same transfer
function is used in the simulation results of Section VI;
the poles and zeros are given in the last row of Table I in
Section VI. Three different filter realizations are investi-
gated with respéct to noise performance.

The first realization is of the direct-form type, having
the following state-space system description:

0 1 0 0
A= 0 0 1 b={0
0.8889 —2.7432 2.8523 1
¢T=[0.01003 -0.01884 0.01088] d =0.005312.
(30)
The K and W matrices for the direct-form realization are
13522 13395 13017
K=|13395 13522 13395 (31)
13017 13395 13522
0.0382 —0.0800 0.0426
W=| —0.0800 0.1679 —0.0898 |. (32)
0.0426 —0.0898 0.0483

One can easily calculate the noise measure, Ny, for this
filter to be 652.

The next two filter realizations are obtained using the
quasi-orthonormal filter structure described in the Ap-
pendix.

Implementing the described oversampled transfer func-
tion by a quasi-orthonormal filter, the following state-
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space system is obtained:
0.1188 0

1 0
A=[—0.1188 1 0.1567} b=[ 0 J

0 -0.1567 0.8523 0.2168
cT=[0.4755 0.0859 0.2168] d=0.005312. (33)

The K and W matrices for this structure are

0.2202 -0.01746 —0.05179
K= -0.01746 0.2941 —0.04854 (34)
—0.05179 —0.04854 0.2456
1.6698 1.0369 0.4573
W=11.0369 1.4300 0.9107 (35)
0.4573 0.9107 1.02656

Note that the K matrix indicates the structure is close to
being orthonormal. The noise measure N,,, for this filter
is 1.04, which is not much worse than the Mullis and
Robert’s optimal filter [21] that has a noise measure of
0.73. (The noise measure for the optimal filter can be
calculated from the eigenvalues of KW.) Thus the quasi-
orthonormal design approach appears to be a good struc-
ture for oversampled filters. Of course, this low-noise
measure of 1.04 would be obtained only if the exact pole
locations were known, a situation where an adaptive filter
is not required.

We now proceed to investigate the case where a single
row of the feedback matrix A4 is adapted to move the
poles from an initial position to their final position. Using
the same design procedure as described earlier, a quasi-
orthonormal state-space realization was obtained with all
its poles at 0.9. The poles of this filter were then adapted
to the pole locations of the desired transfer function by
changing only the last row of the 4 matrix. The ¢ vector
and d scalar were also changed to obtain the desired
zeros. The following state-space system was obtained.

1 0.0577 0 0
A=]-0.0577 1 0.1633| b=| 0
—0.1686 —0.2163 0.8524 0.309
c7=[0.6984 0.0579 0.0352] d=0.00531. (36)

Finally, the following K and W were found for the pre-
ceding system.

—0.0187 —0.1846
—-0.0187  0.6493 —0.0814 (37)
-0.0814  0.7709

—0.1846
4.8721 1.4571 1.0212

W=114571 0.6479 0.4300 |.
1.0212 0.4300 0.5054

0.1149
K=

(38)

The noise measure, N,,, for this filter is 1.4, which is
slightly worse than the preceding case but is still orders of
magnitude better than the figure for the direct-form im-
plementation. Thus, it appears that low roundoff noise
adaptive filters may be obtained if one has a good esti-
mate of the final pole locations. Of course, if the starting
pole locations are farther from the final pole locations,
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Fig. 7. System identification application used for simulations.

one would expect a higher noise figure. Other examples
of roundoff noise improvement will be presented in the
next section.

VI. SmmMuLAaTION RESULTS

This section will present computer simulation results of
the preceding structures used as adaptive filters. The
simulations are based on system identification applica-
tions where an Nth-order adaptive filter is required to
adjust its coefficients to match an Nth-order reference
transfer function. A block diagram of the application used
for these simulations is shown in Fig. 7. For convenience
in calculation and in keeping with the conventions of the
literature, we monitor coefficient convergence. Note that
in the general case, for instance, when there is a pole-zero
cancellation in the reference filter, mean-squared error
minimization does not necessarily imply coefficient con-
vergence.

To illustrate the advantage of the new structures for
oversampled applications, the reference filter will have
varying ratios of sampling frequency to passband edge
frequency. All the reference filters are derived from a
third-order elliptic low-pass analog prototype with the
following s-plane poles and zeros.

poles = { —0.3226, —0.1343 + j0.91920}
zeros = { + j2.2705, 00} . (39)

The passband of the prototype has a 3-dB ripple with the
passband edge normalized to 1 rad/s.

To obtain oversampled digital filters with varying band-
widths, the bilinear transform [23] was applied to the
analog prototype

1+(T/2)s
FT1(1/2)s

where T is the sampling period. Using the fact that the
analog prototype’s passband edge is normalized, one can
use the well-known prewarping equation to find a rela-
tionship between the sampling period, T, and the ratio of
the sampling frequency, w,, to the passband frequency,
w,. For purposes of comparison, four values of the sam-
pling period, T, are used: 2, 0.8, 0.4, and 0.2. These
correspond to ratios of sampling frequency to passband
edge frequency of approximately 4, 8, 16, and 32, respec-
tively. In all cases, the digital transfer functions were

(40)
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TABLE 1
ADAPTATION RATES AND NOISE MEASURES FOR FILTERS
OF VARYING BANDWIDTHS

]

@, Transfer Initial Direct Row Column
[,Tp Function Poles Adapt Adapt Adapt
poles Step Size
0.5122 0 u 0.01 0.0025 0.0028
0.06429+;0.8625
Iterations for
¢ 0 Convergence 16K 60K SO0K
2zeros
-10 Noise Measure
o6rs18j07377 | © Ny 08 82 82
poles Step Size
0.7714 0.7 " 0.00028 0.03 0.015
0.6920+/0.5904
Iterations for
8 0.7 Convergence 500K 60K 35K
zeros
-10 Noise Measure
009597409954 | 07 Ny 4.8 24 50
poles Step Size
0.8788 0.8 W 0.000025 0.01 0.00375
0.8872+0.3379
Tterations for
e 0.8 Convergence SMEG S0K 30K
zeros
-10 Noise Measure
06581207529 | 08 Ny 49. 16 28
poles Step Size
0.9375 09 M 0.000001 | 0.0125 | 0.0015
0.957440.1775
Iterations for
2 0.9 Convergence >10MEG 40K 40K
zeros
-1.0 Noise Measure
09019¢j0.4318 | 0 ‘Nug 652. 14 26

scaled to have a gain of 1 at z=1. For each of these
values of T, three different structures for the adaptive
filter are used: direct-form, single-row, and single-column
adaptive filters.? The single-row and single-column adap-
tive filters start from the quasi-orthonormal structure and
then either the last row or column is adapted. The initial
pole locations of the adaptive filters are three coincident
poles on the real axis at a point chosen close to the final
pole locations. In all three cases, the initial pole locations
are the same, and the ¢ vector and d scalar are both set
to zero.

Of course, the step size u is an important factor in
controlling the adaptation rate. Therefore, a method is
required for choosing the step size for each simulation so
that a fair comparison can be made. First, it should be
pointed out that the same step size was used for all the
state-space elements and no power normalization was
used. To find the step size for a particular simulation,
first, a trial-and-error method was used to find a “diverg-
ing step size” that caused the simulation to go unstable
after 500 iterations. This diverging step size appeared to
vary by at most 20 percent for a particular simulation.
The step size then used for simulations was the diverging
step-size value divided by 4. One performance measure
used is the “iteration for convergence,” taken as the
number of iterations required to have the coefficients of
" the state-space system converge to four significant digits.

2For the single-row adaptive filter. it should be pointed out that the
state-space d element is close to zero and. thus. an approximate gradi-
ent is used.
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Fig. 8. Convergence times of different structures for filters of varying
bandwidths.

Table 1 lists the results of the different simulations.
Note that as the reference filter becomes more oversam-
pled, the direct form takes much longer to adapt than
either of the other two structures. Also note that the
noise measure, N,,, of the final adapted filter is higher
for the direct-form case than the other structures in the
cases of the high sampling frequency/passband edge ra-
tio. In the case of the lowest ratio, the noise measure of
the row and column adaptation structures is relatively
poor because the quasi-orthonormal filter has poor noise
properties at pole locations far from z =1. The graph in
Fig. 8 summarizes the convergence times for the varying
oversampled reference filters and different adaptive filter
structures. These results indicate that using structures
other than the direct form can result in much better
adaptation rates in oversampled applications. Note that
while these results for the third-order case show a dra-
matic difference between the single-row (or column) filter
and the direct-form structure, it is likely that this differ-
ence will be even greater for higher order filters.

To see why the direct-form filter performs so poorly at
high oversampled rates, we now compare the perfor-
mance surfaces corresponding to the simulation results
presented in the last row of Table I. However, whereas all
the coefficients in the bottom row of A and all the
coefficients in ¢ and d were varied in the simulation
results of the previous section, to obtain a contour plot of
a performance surface, we arbitrarily choose to vary only
two coefficients, 4,, and As,. All the remaining coeffi-
cients are fixed to their optimum values such that the
error signal can go to zero. This is equivalent to viewing a
cross section of the full performance surfaces for the
simulation results of the last row of Table 1.

Fig. 9 shows contour plots of the cross section of the
performance surfaces for both the single-row and direct-
form filters. It should be mentioned that the correspond-
ing heights for both plots are the same, but the axis scale
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Fig. 9. Examples of performance surface cross sections for different
ilter structures. (a) Single-row structure. Also shown are adaptation
paths for small (u = 1.00e — 6) and large (1 = 1.25¢ ) stepsize. Note
that for a small stepsize, the adaptation path follows the path of
steepest descent, as expected. (b) Direct-form structure (view ex-
panded 10 times).

for the direct-form filter is ten times smaller than that for
the single-row filter. This factor of 10 implies that the
direct-form filter’s surface is even more ill-conditioned
than that shown in Fig. 9(b). Comparing the two perfor-
mance surfaces of Fig. 9, it is clear that since the direct-
form filter’s surface is much more ill-conditioned than the
single row’s surface, one expects the single-row structure
to adapt faster, as was shown in the simulation results.
Note that in Fig. %(a), the adaptation paths for the single-
row filter are also shown, demonstrating that for small
step sizes, the adaptation path does indeed follow the
path of steepest descent. A larger step-size adaptation
path is also shown.

Before concluding this section, it is of interest to com-
pare the total amount of computations for the single-row
filter with respect to the direct-form structure. Here, we
shall use the number of multiplications by coefficients
other than one or zero as a measure of computational
complexity. Since the two structures each have 2N coeffi-
cients that are being varied, the number of multiplies per
iteration for the LMS update equations will be the same.
However, to obtain the necessary gradient signals, the
total number of multiplies will be different for the two
structures. As seen for the direct-form filter in Fig. 6, the
number of multiplications per iteration to obtain the
gradient signals is 3N +1. Assuming the single-row filter
uses a quasi-orthonormal structure as the initial system, it
is not difficult to show that the total number of multiplies
per iteration to obtain the gradient signals is 7N —5.
Therefore, for the preceding third-order case, the single-
row filter requires 16 muitiplications, whereas the direct-
form structure requires 10 mulitiplications, a factor of only
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1.6 difference. However, it is clear from the simulation
results that the total computations to convergence for the
single-row filter will be much smaller than that of the
direct-form filter in the oversampled case. It should be
mentioned that the single-column filter will use the same
number of computations per iteration as the single-row
filter.

VII. CoNCLUSIONS

An algorithm was presented for adapting a general
state-space filter. This algorithm required N +2 state-
space filters to obtain all the gradients required for adapt-
ing an Nth-order system. Single-column and single-row
adaptive filter structures then were introduced where only
two state-space filters are required to obtain the neces-
sary gradients. It was shown that in applications where a
good estimate of the final pole locations is known, single-

column or single-row adaptive filters can result in im-

proved convergence rates and significantly better round-
off noise performance as compared with direct-form
implementations. These new adaptive filters are espe-
cially effective in the practical case of oversampled sys-
tems where the adaptive filter is used to “fine-tune” a
transfer-function.

It should be mentioned here that all the gradient sig-
nals required for the adaptation methods proposed in this
paper can be obtained as the outputs of filters. Thus the
algorithms presented are applicable in both the discrete-
and continuous-time domains. Although this paper pre-
sents theory concerning digital adaptive filters, the au-
thors are currently investigating fully integrated analog
adaptive filters. As a final comment, it should be men-
tioned that since the presented algorithms are all gradi-
ent-based using IIR structures, the issues involving filter
instability and global convergence should be solved before
these techniques become useful realizations.

APPENDIX
QuaAsI-ORTHONORMAL DESIGN PROCEDURE

A state-space orthonormal design technique was pre-
sented for continuous-time circuits [20]. The structures
resulting from this technique have the advantages that
they are inherently L, scaled for dynamic range and have
good sensitivity and noise performance. As well, the feed-
back matrix is nearly skew-symmetric and sparse. This
final property is particularly interesting since an orthonor-
mal digital filter is usually dense. In this section, we
present a procedure to obtain, for oversampled transfer
functions, a nearly orthonormal state-space digital filter
with a sparse feedback matrix.

The design uses the fact that the forward difference
transformation applied to a state-space system simply
shifts poles and zeros by +1 and changes the feedback
matrix by adding one to each of the diagonal elements.
Specifically, given a state-space system

sx = Ax + bu

y=cx+du (A1)
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if the forward difference transformation s=2z—1 is ap-
plied, the following system is obtained:
zx=(A+I1)x+bu
y=c'x+du (A2)
where the poles and zeros in the z plane are simply
shifted versions of the poles and zeros in the s plane.
Using this transformation property, the quasi-orthonor-
mal design procedure is as follows.

1) Shift both poles and zeros in the z plane by —1.

2) Obtain an orthonormal state-space system for the
shifted poles and zeros using the approach in [20]
for continuous-time designs.

3) Shift the poles and zeros of the state-space system
by +1 by adding one to each of the diagonal
elements of the feedback matrix A4.

Note that this design technique is exact in the sense
that it produces exactly the desired transfer function;
however, it does not exactly reproduce the orthonormal
states of the continuous-time filter. With this approach,
the resulting filters approach orthonormal behavior as the
ratio of the sampling frequency to passband edge is in-
creased. Specifically, the diagonal elements of K will
become asymptotically equal and the off-diagonal ele-
ments will approach zero. It should be noted, however,
that the diagonal elements will be a factor of 27 less than
unity. This factor arises because unit-variance white noise
in discrete-time systems spreads noise power over the 2
circumference of the unit circle, whereas noise in continu-
ous-time systems is defined as having unit power density
over 1 rad/s. Thus a quasi-orthonormal system obtained
as described earlier will asymptotically have mean-square
output levels a factor of 27 below the mean-square
variance of the discrete-time white input. Of course, a
simple scaling of the input vector can be used to obtain an
arbitrary mean-square level. Finally, note that this design
method always will result in a sparse tridiagonal structure
for the 4 matrix.
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