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Continuous-Time LMS Adaptive
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Abstract —This paper presents an approach for implementing
continuous-time adaptive recursive filters. The resulting filters
should be capable of operating on much higher signal frequen-
cies than their digital counterparts since no sampling is re-
quired. With respect to implementation problems, the effects of
dc offsets are investigated and formulas derived so that these
effects can be estimated and reduced. As well, it is shown that
the dc offset performance is strongly affected by the choice of
structure for the adaptive filter. Finally, experimental results
from a discrete prototype are given where accurate adaptation is
observed and dc offset effects are compared to theoretical pre-
dictions.

I. INTRODUCTION

ECENTLY, the hardware efficient least-mean-

squared (LMS) algorithm was applied to state-space
adaptive recursive filters in digital form [1]. It is of inter-
est to modify this adaptive digital approach for use with
continuous-time adaptive filters since, in many applica-
tions, analog circuits have definite advantages over their
digital counterparts. For example, analog circuits are of-
ten used in applications requiring high-frequency signal-
processing capability and /or ones that require small inte-
grated-circuit area. With this motivation, this paper
presents a design methodology for the realization of con-
tinuous-time adaptive recursive filters using the LMS
algorithm. (For an overview of adaptive recursive filters in
the digital realm, the reader is referred to [2].)

With any adaptive filter, there is a requirement for a
programmable filter. This requirement is one of the rea-
sons that digital-signal-processing has dominated adaptive
filter implementations since most digital filters are inher-
ently programmable by modifying memory locations. In
the analog realm, programmable filters can be created by
making use of one of the many techniques that have been
proposed for realizing integrated continuous-time filters
[3]. To account for process and temperature variations,
these integrated filters have the ability to tune integrator
time constants implying an inherent programming method
that adjusts filter coefficients. This inherent programma-
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bility of integrated continuous-time filters was a strong
motivation for developing the work presented in this
paper. As an additional benefit, a recent publication
shows that the work presented here can also be used as a
basis for tuning integrated continuous-time filters [4].

Previous work related to adapting poles in continuous-
time filters can be traced back to solving optimization
problems with analog computers in the 1960’s [5], [6]. By
making use of gradient signals together with the LMS
algorithm, this analog computer approach results in iden-
tical block diagrams to those presented in this paper.
However, one major problem with this previous approach
is that it is only applicable to filters based on the direct-
form structure. The approach presented in this paper
extends that basic method to filters with arbitrary struc-
tures. It should be mentioned here that it has been shown
that the choice of structures can significantly affect the
performance of the overall system in the digital realm [1]
and it will be shown in this paper that dc offset effects are
also greatly affected by structure choice.

In more recent work on continuous-time adaptive re-
cursive filters, experimental results were given for a sec-
ond-order adaptive filter using the sequential-linear-
search (SLS) algorithm [7], [8]. The SLS algorithm is
similar to the LMS algorithm in that a steepest descent
search is performed to locate a minimum in the perfor-
mance surface. However, rather than using gradient sig-
nals, the gradient is estimated by changing a filter coeffi-
cient and then observing the direction of change in the
mean-squared value of the error signal. The problems
with this techniques are that only one coefficient can be
adjusted at a time and more importantly, it is difficult to
obtain an accurate measurement of a deviation in the
mean-squared error signal.

The outline of this paper is as follows. A general
approach for continuous-time LMS adaptive recursive
filters applicable to arbitrary filter structures is presented
in Section 11. In Section III, it is shown how this approach
is applied to statc-space systems and, in particular, a
single-row adaptive filter. In Section IV, the effects of dc
offsets are discussed and formulas developed to predict
these effects. As well, a simple method to reduce the dc
offset effects is presented. Finally, experimental results of
a discrete single-row adaptive filter prototype are pre-
sented in Section V showing the practicality of the ap-
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Fig. 1. Block diagram of an adaptive filter.

proach and comparing experimental and theoretical re-
sults for dc offset effects.

II. LMS ApapTive RECURSIVE FILTERS

A block diagram of an adaptive filter is shown in Fig. 1.
The system has two inputs—the filter input, u(t), and the
reference signal, §(¢). As well, an error signal, e(¢), is
created as the difference between the programmable fil-
ter’s output, y(¢), and the reference signal. Describing the
LMS algorithm qualitatively, the goal of the adaptive
filter is to minimize the mean-squared value of the error
signal by slowly adjusting (in comparison to the signal
frequency) the transfer function! of the programmable
filter through the adjustments of the filter coefficients, p,.
In other words, defining an error performance surface as
the mean-squared error value for varying filter coeffi-
cients, the LMS algorithm results in a steepest descent
search to find a minimum in that surface.

By minimizing the mean-squared error value, adaptive
filters can be used in a variety of applications such as
channel equalization, noise cancellation, and others [9].
However, one application worth noting is the “model-
matching” application as it is often used for testing pur-
poses. In this application, a sufficiently exciting input
signal, u(z), is injected into the adaptive filter as well as to
an external reference filter. The reference signal, 8(¢), is
then taken as the output of the reference filter. With this
setup, after adaptation, the transfer function of the pro-
grammable filter should match that of the reference filter
or be some approximation of it. It should be mentioned
here that for the purposes of this paper, we assume the
input signal and reference filter to be stationary. Al-
though nonstationary inputs are the usual case in most
applications and their effects can sometimes dictate the
performance of LMS filters, the performance degradation
for these types of inputs are beyond the scope of this
paper.

To derive the LMS algorithm, we first look at the
discrete-time case where a steepest descent algorithm in
the mean-squared error performance surface can be im-

lAlthough the use of linear transfer functions does not strictly apply to
adaptive systems since they are nonlinear systems, this idea of varying
transfer functions is essentially a linearizing assumption that is appropri-
ate for the practical case of slow adaptation.
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Fig. 2. Signal-flow-graph where the arm T.m,, is shown separately from
the rest of the system.

plemented by realizing the following equation.

E|e?
"f(”+1)=1),-(n)—#6([6%)]).

i

M

Here, E[®] denotes expectation and w is a small positive
parameter that controls the rate of convergence. Since
the partial derivative of the mean-squared error signal is
not practical to obtain, the instantaneous squared error is
used as an approximation of the mean-squared error
resulting in the LMS algorithm. Making this substitution
and using the fact that e(n) = 8(n)- y(n), the following
LMS update equation is obtained [9].

pn+1)=p(n)+2ue(n)e,(n). (2

In the above equation, ¢(n) is a gradient signal defined
as

dy(n)
ap;

b (n)= (3)

p;=pln)
Note that although the instantaneous gradient may often
indicate the wrong direction, the average value of the
gradient will be correct.

This discrete-time algorithm can be extended into the
analog domain quite naturally as [10]

Pt =2u [ e(r)o,(7)dr (4)

where ¢,(r) is the equivalent analog gradient signal. Note
that when p,(1) becomes a constant value at a minimum
in the performance surface, the average value of the input
to the integrator must be zero. Since the average value of
the input to the integrator is defined as the correlation
between the error and gradient signals, this simple obser-
vation explains the well-known fact that the gradient
signals must be uncorrelated with the error signal after
adaptation is successfully completed.

It is seen from the above adaptation equation that
although the signal e(r) is readily available, the gradient
signal, ¢(z) must be obtained. To obtain these gradient
signals, one can make use of a sensitivity formula that
relates the change in the output signal to a change in a
single arm of a signal-flow-graph [11], [12]. Specifically,
consider the system represented by the signal-flow-graph

in Fig. 2 where 7,,, is a filter coefficient in the linear
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Fig. 3. Block diagram of a LMS gradient adaptive filter. (a) Overall
system. (b) Details of the LMS block.

system (shown separately) and T;/(s) is the transfer func-
tion from node i to node j. For this system, it can be
shown that
aT,,,(5)
371 = um(S)Tny(s)' (5)
mn

Since U(s) does not change as fm,, changes, we can also
write

(s) T T U 6
afmn - um(s) ny(s) (S) ( )
In the time domain, this sensitivity formula becomes
ay(t
%)ﬂm(r)@tw(z)@u(t) (7)

where the symbol ® denotes convolution and t,-]-(t) is the
impulse response of the transfer function T,(s). This
sensitivity equation states that the necessary gradient sig-
nals can be obtained for arbitrary linear systems by apply-
ing the input signal to a cascade of systems with the
proper transfer functions. This approach (also used in the
digital domain [13]) leads to the general block diagram
shown in Fig. 3. It should be mentioned here that the
choice of structure for the programmable filter deter-
mines the complexity of the gradient filter(s) as well as
the performance of the adaptive system [1]. Also of inter-
est is the gain block, k, which as we shall see, is intro-
duced to reduce the effects of dc offsets. Finally, for
simplicity, it is assumed that the ith filter coefficient is a
linear function of the controlling voltage, p;, created at
the output of the coefficient update integrator in Fig.
3(b). In fact, for an analog programmable filter, the ith
coefficient will most likely be some monotonic nonlinear
function of the controlling input voltage. However, it is
not difficult to see that this nonlinear function will not
affect the steady-state values of the coefficients.
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1II. STATE-SPACE ADAPTIVE FILTERS

Although the above approach can be used for arbitrary
programmable filters, it is not always clear how much
extra circuitry will be required to obtain the necessary
gradient signals or which filter coefficients should be
allowed to change in order to obtain arbitrary poles and
zeros while keeping the number of filter coefficients to a
minimum. For these reasons, we choose to implement the
programmable filter as a linear system that has a one-to-
one correspondence with state-space systems for which
these issues are mathematically well understood. It should
be emphasized here that most filter structures (e.g., di-
rect-form, cascade, ladder-simulation, etc.) are special
cases of state-space filters.”

An Nth-order state-space linear time-invariant system
is described by the following equations:

sX(s) = AX(s)+ bU(s)
Y(s)=c"X(s)+dU(s) (8)

where U(s) is the input signal; X(s) is a vector of N
states, which in fact are the integrator outputs; Y(s) is the
output signal; and A4, b, ¢, and d are coefficients relating
these variables. The transfer-function of the above system
is easily shown to be

T(s)=c"(sI—A) 'b+d. (9)

From (9), we can see that the poles of the system are the
eigenvalues of 4 whereas the zeros of the system are
related to all four of the system coefficients. It should be
mentioned here that not all N2 coefficients of A should
be adapted independently. In fact, the number of degrees
of freedom in the coefficients of A should equal the filter
order; otherwise, coefficient drift or improper adaptation
might occur.

To obtain the gradient signals, the approach described
in [1] can be easily modified for continuous-time use
resulting in the following coefficient-update formulas for
the state-space coefficients.

A,(1) =20 [Ce(r)a(7) dn (10)
b(1)=2u [e()B(7) dr (1)
Ci(t)=2pf()te(7')xi(7')d7' (12)
d(z)=2u[0’e(7)u(7)d7 (13)

where all the required gradient signals, a; (1), B(t), x(¢),
and u(¢) can be obtained by realizing the systems shown
in Fig. 4. In Fig. 4, the programmable filter is shown as
two separate blocks corresponding to the state-space de-
scribing equations. Specifically, the feedback matrix, 4,

’In some cases, it is necessary to use a generalized state-space
description to maintain a one-to-one correspondence between the filter’s
signal-flow-graph coefficients and the state-space elements [14].
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Fig. 4. Generating the gradient signals for a general state-space adap-
tive filter,

and input summing vector, b, implement the first equa-
tion of a state-space system and create the state signals,
x(n), as the outputs of the first block. These state signals
together with the system input, u, are weighted using the
output summing vector, ¢, and the output scalar, d, to
obtain the filter output, y, at the output of the second
block. For the gradient filters, each of the blocks with 47
and ¢ also implement the first equation of the state-space
system and are part of the transposed system (also called
the adjoint) of the programmable filter. The transposed
filter with u(n) as its input is used to obtain the gradients
necessary to adapt the b vector while each of the other
transposed filters is used to obtain gradients to adapt a
single column of the 4 matrix. The gradients required to
adapt the ¢ vector are the states, x,(t), of the pro-
grammable filter.

As described in [1], rather than adapting elements
occurring in arbitrary locations in a state-space system,
one can significantly reduce the number of computations
involved by choosing to adapt the ¢ vector and a single
column or row of the 4 matrix. It was shown that in
applications where estimates of final pole locations are
known (or equivalently, only the fine-tuning of a transfer
function is required), these single column or row filters
can significantly improve the dynamic range and adapta-
tion performance over the traditional direct-form struc-
ture. It should be mentioned here that these same filters
can obtain arbitrary pole and zero locations assuming an
observability or controllability condition is met. In the
case of a single-column filter, it is clear from Fig. 4 that
only one transposed filter is required to obtain the neces-
sary gradient signals. The case of a single-row adaptive
filter is shown in Fig. 5 where all the necessary gradient
signals are shown to adapt the Nth row and ¢ vector. The
b vector contains only one nonzero element in the Nth

row and is shown as the basis vector v,. Note that no
transposed filters are required since a single row rather
than column is being adapted.

IV. Tue ErrFecTs oF dc OFFSETS

For analog adaptive filters, it is well known that dc
offsets present in the LMS integrators (shown in Fig. 3(b))
can affect system performance [15]. The dc offsets at
these locations cause the filter coefficients to be incorrect
resulting in an error in the programmable filter’s transfer
function at all frequencies (not just at dc). To account for
the effects of these offsets, analytical results have been
derived for the LMS linear combiner case where only
zeros are adjusted [15]-[17]. The purpose of this section is
to show that these same formulas can be used to give
approximate results for the adaptive IIR case where both
poles and zeros are adapted. In addition, the analysis of
dc offset effects will be extended to account for adaptive
filters making use of the sign-data LMS algorithm. The
sign-data LMS algorithm is a variation on the standard
LMS algorithm and is often used in practice due to its low
circuit complexity [18).

4.1. dc Offset for the LMS Algorithm

With a dc offset term present at the ith coefficient-
update integrator, the LMS update formula (4) above
becomes

(14)

where m, is the dc offset at the ith coefficient-update
integrator.

At steady state, the coefficient signal p, is a constant
value implying

pi(1) = 2#[0[[1‘3(7)4’;(7) +m,| dr

Elke(t)y¢,(t)+m,]=0. (15)
Since m; is a dc level, we can write
—m,
Ele(t)d,(1)] = P (16)

Now making the assumption that only small coefficient
changes occur due to dc offsets, at a minimum the error
signal can be written as

N ay(t)
e(t)=8(t)—y*(1)- X —?Alh

i=1

(17)

where y*(¢) is defined as the optimum output that causes
the minimum mean-squared error, and Ap; is defined to
be the change in coefficients from their optimum values
due to dc offsets. Making use of vector notation, we write
the gradient signals, (y(¢)/(dp,), as the vector ¢(¢) and
the change in coefficients, Ap,, as the vector q. Also,
since we are interested in finding the excess mean-squared
error due to dc offsets (as opposed to overall mean-
squared error), without loss of generality, we make the
assumption that the optimum filter output, y*(t), equals
the reference signal, 8(¢). Therefore, the excess error
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signal can be written as
e(1)=-&"(1)q. (18)

Writing the dc offsets as a vector m in (16) and combining
it with (18) results in

E[6(n¢7 (] = (19)

Now, defining a gradient correlation matrix, R, as

R=E[6(1)o"(1)]

and solving (19) results in the following formula relating
the change in coefficients, g, to the dc offsets and the
gradient correlation matrix.

1

q=;R“m. (21)

To obtain the excess mean-squared error, llell?, due to dc
offsets, the definition of mean-squared error is used with
the following manipulations.

llel* = E[e(t)e(r)]
= E[q"d(1)o"(1)q]

(20)

1
= FE[mTR*TRR”m]

1
= FmTR_lm. (22)
Note from (22) that the value of the excess error due to
dc offsets is proportional to the inverse of the correlation
matrix, R. This fact implies that the excess error will
increase as the matrix R becomes more ill-conditioned as
a result of the gradient signals becoming more correlated.
This increased excess error is one reason to look for
adaptive recursive structures with near orthonormal gra-
dients. Also note that the level of the input signal affects
the excess error through R. Finally, note that the excess
root-mean-squared error value is inversely proportional to
the error amplifier gain, k, and therefore, this amplifier
can be used to reduce dc offset effects [16]. 1t should be
emphasized that the gain factor, k, has another effect; it
increases the adaptation rate, which could cause the
adaptive loop to go unstable. For this reason, it is usually
necessary to increase the time constant of the LMS inte-
grator by the amount of k. In other words, the step size,
w, should be reduced by the same amount that k is
increased.

It should be mentioned here that in the adaptive linear
combiner case, the correlation matrix is not a function of
the coefficients, p;, and thus the offset-induced excess
error does not depend on the final transfer function of
the adaptive filter. However, in the adaptive recursive
case, the correlation matrix is a function of the adaptive
filter’s transfer function, and therefore, one requires a
knowledge of the final transfer function to apply the
above offset-induced excess error formula. Since this final
transfer function is usually not known, one can only hope
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to obtain approximate results by estimating the correla-
tion matrix assuming some estimate of the final transfer
function. This further approximation should not be a
major hindrance for design purposes since dc offset esti-
mates themselves are rough approximations.

4.2. dc Offset for the Sign-Data LMS Algorithm

In the sign-data algorithm, the following update equa-
tion is used for the coefficient p;:

p(6) =20 [ [e(r)senlé(n)]]dr (23)

where sgn[®] represents the signum function. It is not
difficult to show that when dc offsets are present in a
system using the sign-data algorithm, the following equa-
tions result for the change in coefficients and excess
mean-squared error.

(24)
and

fell* = pmTIé*Tmi-lm (25)
where R is defined as before and the elements of the
signum correlation matrix, R are defined as
R, = E[sen[,(1)]#,(1)]- (26)
To apply these formulas for the case of white-noise
inputs, the matrix R can be easily obtained using impulse
responses; however, it is not clear how one can easily
obtain the matrix R. Fortunately, in the special case
where the input has a Gaussian white-noise zero-mean
characteristic, one can find a closed-form expression for
the elements of R in terms of R. Specifically, if the input
signal has a zero-mean Gaussian distribution, the joint
probability density function, ‘I’x,x,(xi’ x;), between the sig-
nals x, and x; can be written as [19].

1/2
1 /

471'2[R,-,R]-j— R?,

-1 R;; R,j -1 Xy 27
exp T[xlxz] R, R, [xz] - (27)
Using this joint probability function, the term R ;j can be

found by integrating the weighted probability density
function over both variables:

(Dx,x,(xi’x]) = (

Rij =f_wf—ngn[xl]x2®x,xJ(xi’xj) dx,dx,. (28)

Performing this integration leads to the following closed-
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form expression® for the elements of R.

12

2
2R},
TR,

i

(29)

In summary, for the case of zero-mean Gaussian white-
noise inputs, (29) can be used to obtain R and (25) can be
used to find the approximate offset-induced excess error
for adaptive IIR filters using the sign-data algorithm.
Note that this same formula gives exact results for the
adaptive linear combiner case using the sign-data algo-
rithm.

4.3. dc Offset Example

In this section, the advantages of choosing a good filter
structure for dc offset effects will be demonstrated by an
example. The performance measure used to compare the
dc offset effect for different filter structures is denoted as
T’ and is defined as follows.

2N
- TR-TRR-!
L= X v/R""RR 'v;.

i=1

(30)

Here, 2N is the number of adjustable filter coefficients
and v; is a basis vector where the unity element is in the
ith row. Qualitatively, this performance measure, [,
gives the value of the excess mean-squared error averaged
over all the different combinations of sign values for
coefficient-update integrator dc offsets having a magni-
tude value of one.

For the dc offset example, consider a model-matching
application where the normalized reference filter is a
fourth-order bandpass filter with a pair of zeros at each of
dc and « and poles at —0.05331+ j1.0106 and —0.04684
+ j0.8880 (each pole-Q is about 10). The companion form
filter which realizes this transfer function can be de-
scribed by the following state-space coefficients.

0 1 0 0
| o 0 1 0
A4=1 0 0 1 ’
| —0.81 —0.18027 —1.82506 —0.2003

)
| o
b= 0

1 0.1989

¢™=[0 0 12346 0], d=0. (31)

Using the above system in an adaptive filter application
would result in eight variable coefficients consisting of the
bottom row of 4 matrix and the entire ¢ vector. Calculat-
ing the necessary 8 X8 R and R matrices and applying
(30) results in the value of the performance measure, I,
to be 3585.

31t was pointed out by a reviewer that the same result can more easily
be obtained through the use of Price’s theorem [20] of which a version
more suited to our present needs is given in [21].
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Fig. 5. Generating the gradient signals for a single-row adaptive filter,

Now consider realizing the same transfer function using
an orthonormal ladder structure [22]. Such an adaptive
filter implementation would result in the following state-
space coefficients.

0 0.9357 0 0
4—| —0.9357 0 0.1561 0
0 —-0.1561 0 0.9618 |’
.0 0 -0.9618 —0.2003
[0
| o

b= 0

| 0.2525

¢cT=[-0.606 0 0101 0], d=0.  (32)

For this structure, the variable coefficients would be the
entire ¢ vector and each of the 4 matrix elements with
the constraint that the shown symmetry is maintained.
The performance measure, I'j;, for this orthonormal
structure is calculated to be only 66! This number implies
that one could allow approximately seven times the
amount of dc offset in the orthonormal design as com-
pared to the companion form design and yet achieve the
same dc offset performance. Although these numbers are
application specific, it is clear that the choice of filter
structure significantly affects the dc offset performance.

V. DiscrRETE PROTOTYPE AND EXPERIMENTAL
REsuLTs

To verify many of the theoretical derivations and check
the practicality of this analog adaptive filter approach, a
third-order discrete prototype was constructed and tested.
The prototype is based on the single-row form shown in
Fig. 5 and, for evaluation purposes, the poles of the
programmable filter are placed at low frequencies—in
the 1-KHz range. The basic structure of the feedback
systems used in both the programmable and gradient
filters is the orthonormal ladder structure [22]. For fur-
ther design details of the discrete prototype, the reader is
referred to [23].

The block diagram of the prototype is shown in Fig. 6.
There are six coefficients used to adjust the transfer func-
tion of the programmable filter: A;;, i=1-3 and ¢,
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Fig. 6. Block diagram of a third-order single-row analog adaptive
filter.

i=1-3. As shown, three pole coefficient update blocks
are used to adapt the A5; coefficients while the ¢, coeffi-
cients are adapted using three zero coefficient update
blocks. Note that these coefficient update blocks use the
sign-data LMS algorithm to simplify the multiplication
between the gradient and error signals. The gradient
signals needed to adjust the c; coefficients are simply the
states, x,(¢), of the programmable filter whereas to adjust
the a, coefficients, the gradient signals, a;(t), are ob-
tained as the outputs from a gradient filter. Note that the
gradient filter is identical to the feedback circuit used in
the programmable filter.

Referring to Fig. 6, we see that the sign of the gradient
signal is multiplied by ke(¢) where k is the amplification
constant applied to the error signal to reduce the offset
effects as discussed above. Experimentation confirmed
the reduction in offset-induced excess error when increas-
ing the gain factor, k. It should be pointed out that this
gain factor was arbitrarily chosen to be 82 for the discrete
prototype and will be difficult to realize for high-frequency
circuits. This difficulty in implementation is one of the
major reasons for developing the dc offset formulas. With
these formulas available and a known tolerance on dc
offsets, a designer can choose the minimum error gain
factor, k, necessary to meet specifications.

Referring again to Fig. 6, it is clear that multiplier/
summer circuits are required for the programmable and
gradient filters. The circuits realizing these multiplier /
summer stages are based on a MOSFET linearization
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technique originally proposed for creating fixed continu-
ous-time integrated filters [24]. Of course, as discussed
earlier, many different techniques could be used to obtain
these variable filter coefficients in an integrated version.

Since single-row adaptive filters require some estimate
of final pole locations, it was decided to choose compo-
nent values so that the nonadapting coefficients corre-
sponded to those used in the reference filter of the first
experiment discussed below. Thus the following normal-
ized state-space filter was implemented where the coeffi-
cients to be adapted are shown as variables.

0 098361 0 0
A=|-098361 0  1.2307(, b=| 0
A, Ay, Asy 0.7737

], d=0. (33)

This normalized state-space system and others to be de-
scribed were all denormalized such that time-constant
values were placed around the 1-KHz range.

c"=[c;, ¢

5.1. Model-Matching Experimental Results

In order to test the adaptive filter, the model-matching
application was employed where a white-noise source was
applied at both the inputs of the adaptive and reference
filters. In the first experimental example, the reference
filter was a third-order low-pass filter with finite transmis-
sion zeros and a pair of complex poles with natural
frequency and pole-Q equal to 1.3 and 3.3, respectively.
The normalized state-space system for the reference filter
was

0 0.98361 0 0
A=|-098361 0 12307 |, b=| 0©

0 ~1.2307 —1.8805 0.7737

¢T=[1.5779 0 0.4563], d=0. (34)

Note that except for the coefficients that adapt, this
system is the same as that in (33) and therefore, after
adaptation, the coefficients A;;, A,,, and A4;; should
correspond to 0, —1.2307, and —1.8805, respectively,
while ¢,, ¢,, and ¢, should correspond to 1.5779, 0, and
0.4563, respectively. Thus this example corresponds to the
case where a good structure (the orthonormal structure)
has been chosen and one knows the exact location of final
poles. Although this is not a realistic case, it is the first
experimental result presented.

Fig. 7(a) shows the close matching of the spectra of the
reference and adaptive filters after approximately 1 s of
adaptation. To determine the level of mismatch between
the two spectra, the spectra of the error and reference
signal are plotted together in Fig. 7(b). Note that the
error signal is approximately 40 dB below the level of the
reference signal indicating a close level of matching.

In a more realistic experiment, the circuitry for the
adaptive filter was left unchanged and adaptation was
performed to two different reference filters as shown in
Fig. 8. In Fig. 8(a), the reference filter was a third-order
notch filter with the complex poles having a natural
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(a)

®

Fig. 7. Experimental results for third-order low-pass reference filter. Vertical scale = 10 dB/div, Horizontal scale = 500
Hz /div. (a) Signal spectra for (1) and y(z). (b) Signal spectra for 8() and e(r).

(b)

Fig. 8. Experimental results for notch and bandpass examples. In both
cases, signal spectra for () and e(r) are shown. Vertical scale = 10
dB /div, Horizontal scale = 500 Hz /div. (a) Third-order notch reference
filter. (b) Second-order bandpass reference filter.

frequency and pole-Q of 1.6387 and 4.85, respectively.
These poles are significantly different than the previous
example, yet as seen in Fig. 8(a), the adaptive filter
successfully matched the reference filter. Finally, as shown
in Fig. 8(b), the third-order reference filter was modified
to a second-order bandpass filter (with a pole-Q of 0.7)
implying the adaptive filter must match a lower order

system. For this example, a zero and pole become coinci-
dent causing the adaptive filter’s transfer function to be
reduced from third to second order. With this type of
cancellation, one could argue that the cancelled pole-zero
pair might move about in the s-plane and possibly go into
the unstable region of the plane. However, this was not
observed during experimentation although the setup was
left running for well over an hour.

5.2. dc Offset Experimental Results

In this section, predicted excess mean-squared error
due to dc offsets is compared with experimental results.
As the discrete prototype makes use of the sign-data
algorithm, the sign-data excess error formula (25) will be
used for predicting the offset effects.

Before proceeding with the comparison, note that (25)
predicts the excess rms error that would result from a
known dc offset applied to an initially offset-free circuit.
However, unknown dc offsets always exist in the discrete
prototype and therefore must be taken into account as
follows. First, measure the rms error, ||kell,,,, due to the
unknown dc offsets, m,, always present in the circuit.
Next, apply a known set of dc offsets, m,, to the circuit
and measure the rms error, | kel ,, due to m; + m,. Then
apply the opposite polarity of known offsets, —m,, to
measure ||kell, due to offsets consisting of m, —m,. Fi-
nally, the following relationship can easily be derived to
determine the rms error, |lke|l,,,, due to a set of m,
offsets alone.

Ikellz,, = 1/2likell; +1/2llkell ~ llkellZ,.  (35)

Using the above approach, experimental versus theoret-
ical results for dc offsets are compared in Table 1. For
these results, the reference and adaptive filters corre-
spond to (33) and (34) respectively, and each row of Table
I corresponds to a known dc offset vector of +0.122¢;,

1A/ SDAT
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TABLE 1
A COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS
ror INniEcTED de OFFsETs. WHEN No dec OFFsETS APPLIED,
llkellm, EQuaLs 0.2 Vrms. THE iTH Row CORRESPONDS TO
dc OFFSETS ON THE iTH INTEGRATOR

Experi-
Corresponding mental Theoretical Percentage

i Coefficient llkell, llkell, llkellm, lkellm, Error

1 cy 1.1 0.7 0.9 0.77 17

2 <, 031 036 0.27 0.281 -4

3 Ccy 033  0.26 022 0.22 0

4 Az 0.4 0.34 031 0.275 13

S Ay 0.7 0.51 0.58 0.575 1

6 Ay 0.7 0.46 0.56 0.538 4

where v, is a basis vector with a value of unity in the ith
row.*

To measure the rms voltages of the amplified error,
llkell, a digital-readout true rms meter was used where it
was not a simple matter to obtain the rms value of the
output error signal due to the presence of low-frequency
signal components. However, we see from Table 1 that all
measurements agree within 20% of the theoretical predic-
tions, a reasonable degree of accuracy considering that all
circuit nonidealities other than integrator dc offsets have
been ignored and that rms measurements involving noise
signals are used.

V1. CoNCLUSIONS

A design approach for continuous-time LMS adaptive
recursive filters was presented. These analog adaptive
filters should be capable of higher frequency operation
than their digital counterparts. However, nonideal effects
such as dc offsets exist that are not present in digital
realizations and so formulas were developed to predict
the effects of these dc offsets for both the LMS and the
sign-data LMS algorithms. As well, it was shown that the
choice of filter structure and amplification of the error
signal can reduce the dc offset effects. Finally, experimen-
tal results with a discrete prototype verified operation of
the adaptive technique and the dc offset formulas de-
rived.
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