IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 40, NO. 1, JANUARY 1993 13

Tuning of Continuous-Time Filters
in the Presence of Parasitic Poles
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Abstract— The parasitic effects and tuning limitations that
nonideal integrators have on continuous-time filters are discussed.
The nonideal integrator is modeled to have finite dc gain and
a single nondominant pole. The performance of an adaptive
tuning system on tuning a continuous-time filter with nonideal
integrators is compared to the popular approach of tuning enly
the poles of a transfer function. Simulation results are presented
showing that the adaptive tuning system significantly reduces
parasitic effects.

I. INTRODUCTION

T IS well known that integrated continuous-time filters must

be tuned in order to achieve accurate transfer-functions
over time [1]. The most popular technique used for tuning
continuous-time filters is the master-slave tuning method
[11-{8]. This method tunes “slave” biquad sections of a filter
by first tuning the pole frequencies and quality factors of
a “master” biquad and then relying on matching between
corresponding elements of the master and the slave biquads.
Previous work has shown that an adaptive tuning approach
offers several advantages over the master—slave method [9].
In addition to tuning the poles of the transfer function, the
adaptive technique tunes the zeros as well, thereby enabling a
closer match to the desired transfer-function. Unlike the mas-
ter—slave approach, there are no critical matching requirements
between integrated elements. Also, if the filter is constructed
using integrator blocks, as is the case with the filters considered
in this investigation, the finite dc gains of the integrators
are completely accounted for by the adaptive tuning system.
Furthermore, like the master—slave method, the adaptive tuning
system may be used to tune a filter without interrupting the
servicing of an input signal [9].

As the operating frequency of the continuous-time filter
is increased, the nonideal effects of parasitic capacitances
become more pronounced, and tuning becomes more difficult.
The presence of such parasitic elements, which give rise to
nondominant poles in the integrators, increases the effective
order of the filter by introducing parasitic poles and zeros in its
transfer function without adding any extra degrees of freedom
for tuning. Few tuning techniques [10] directly address the
problem of dealing with parasitic effects; rather, most methods
assume that the parasitic poles and zeros occur at frequencies
much higher than the frequencies of interest.
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This paper shows that the adaptive tuning method does
reduce the effects of parasitic elements in the integrators.
In Section I the model utilized in this investigation for the
nonideal integrator is described and the resulting problems
encountered in tuning the filter are discussed. Specifically,
the nonideal integrator is assumed to have finite dc gain and,
due to the parasitic capacitances at internal nodes, to have
acquired a single nondominant pole. It is shown that the
nondominant pole doubles the order of the tunable filter but
does not increase the number of parameters that may be varied
independently to tune the filter. In Section I, a brief review
of the adaptive tuning system is given. Lastly, in Sections IV
and V, simulation results are presented. Emphasis is placed
on low-pass transfer-functions for use in anti-aliasing filters.
It should be noted that since the adaptive tuning system tunes
the impulse response of the filter, it accurately adjusts both the
magnitude and phase of the transfer-function. Thus, although
the filters presented in the simulations do not have flat group-
delay responses, the consistent accuracy of the adaptive tuning
system makes later equalization of the group-delay feasible.
Although it is obvious that tuning the poles as well as the zeros
would result in better transfer-function matching in the absence
of parasitics, the simulation results illustrate that tuning the
zeros is necessary if the parasitic effects are to be minimized.
Furthermore, how tuning the zeros enables the minimization
of the effects of parasitics is explained in the paper. Lastly, the
simulation results also show that the type of transfer function
chosen to meet required specifications affects how accurately
the filter is tuned.

II. EFFECTS OF INTEGRATOR
NONIDEALITIES ON FILTER TUNABILITY

As mentioned above, each integrator in the tunable filter is
assumed to have finite dc gain and a single nondominant pole.
In actual circuits, parasitic elements such as stray capacitances
result in the integrator having multiple nondominant poles
[11]. The nondominant poles are not a major concern in low-
frequency applications since they would occur at frequencies
much higher than the unity-gain frequency of the integrator.
However, when the integrator is operated at high frequencies,
the parasitic effects of the nondominant poles become signifi-
cant and their effects cannot be ignored. In this investigation,
the effects of muitiple nondominant high-frequency poles are
approximated by a single nondominant pole at a frequency
comparable to the unity-gain frequency of the integrator. In
order to understand how the finite dc gain and the nondominant
pole affect the transfer function and limit the tunability of the
filter, each is considered separately.
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First, consider an integrator which has infinite dc gain but
has acquired a single nondominant pole, p. Instead of the ideal
transfer-function

1
Ting(s) = ~ M

the transfer function of the integrator becomes second-order,
1
Tine(s) =
s <% + 1)

where p is the frequency of the nondominant pole, and the
unity gain frequency of the integrator, wq is assumed to be 1
rad/s. Fig. 1 compares the transfer functions of the ideal and
nonideal integrators. As shown in Fig. 1(b) the nondominant
pole, p, results in a sharper roll-off at high frequencies and
excess phase lag at the unity-gain frequency, w,, of the
integrator.

If each integrator in the tunable filter has the transfer
function in (2), the order of the filter doubles. Specifically,
let the transfer function of an Nth-order tunable filter with
ideal integrators be expressed as

)

ooy (s —2).. (8= 2)... (s - 2n-1)
M=Ky o) Gopm) O

where K is the tunable gain coefficient, 3; are the tunable
zeros, and p; are the tunable poles.! Only N — 1 zeros are
shown as the filters considered here are assumed to have at
least one zero at infinity. Each tunable pole (or zero) in (3)
may be represented by

§=6+jw )

where & and @ are the variable parameters of the pole (or
zero). Now, if the integrators are nonideal as described in (2),
each s in (3) is replaced by s2/p+ s. Thus the poles and zeros
are obtained from

s A
—+s=0+4+jw (&)
p
or,
PP 4, 4.
=—=F=4/14+ - —-w. 6
s 7 t3 +po+gpw 6)

The above equation shows that the original pole (or zero) is
mapped to a pair of poles (or zeros) which are both adjustable
but are not independent as both are controlled by varying &
and @. Also, the tunability of the mapped poles (or zeros) is
further limited as it is assumed that the nondominant pole of
the integrator, p, is determined by the circuit topology and
is not easily controlled. Consequegtly, the Nth-order transfer-
function in (3) becomes a 2Nth-ofder transfer-function

(s —21a) ... (8= Zia) ... (8 = Z(N=1)a)
(8 = P1a)--- (5 — Dia) --- (5 — PNa)
X(S—215)...(8—éib)...(s—f(N_l)b)
(s=p1) .- (s —pPwn) ... (s —Bny)

T(s)=K

)

!Tunable quantities are indicated by “A.”
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Fig. 1. Frequency responses of (a) an ideal integrator; (b) an integrator with
a single nondominant pole and; (c) an integrator with a nondominant pole
and finite dc gain.

Here, p;, and p;; denote the pair cf dependent poles to which
p; is mapped by (6). Likewise, %;, and Z; represent the pair of
zeros corresponding to 2;. Therefore, the tuning system must
adjust a 2/N'th-order transfer-function which, although having
twice as many variable elements as the ideal tunable filter,
has no extra degrees of freedom due to the interdependence
of each pair of poles (and zeros).



KOZMA et al.: TUNING OF CONTINUOUS-TIME FILTERS

o
~e 1
Dph Dﬁl
- 4
N
~ j 03
\\ 3
~ i
~ P
} Frel »o
-p P AN
-~ N
/// ‘\
I d |
DH: Dp:

(b) ©

Fig. 2. Possible pole mappings due to nondominant pole in the integrator.

Using the notation of p being mapped to 5, and p, possible
pole mappings are shown in Fig. 2. For example, a pair of
complex conjugate poles, p and px, are shown to be mapped
to two pairs of complex conjugate poles in Fig. 2(a). The pole
p is mapped to two dependent poles p, and p,. Note that p,
would normally be close to $ and thus it represents a deviated
version of p. On the other hand, p; is a new or extraneous
pole. Likewise, px is mapped to px, and p*, which are the
complex conjugates of p, and py, respectively. Note that the
deviated poles, p, and p+,, have higher Q’s than the original
poles, p and px. This higher Q-factor increases the peaking at
the passband edge of the tunable filter. According to (6), there
are two possible mappings for a single pole on the real axis.
If the initial pole is greater than —p/4, it is mapped to a pair
of poles on the real axis as shown in Fig. 2(b). Otherwise, the
pole is mapped to a pair of complex conjugate poles on the
dashed line at —p/2, as shown in Fig. 2(c).

Since there is no control over the nondominant pole, p, the
actual mappings in Fig. 2 cannot be predicted or controlled.
The tuning system is designed to tune p, but it actually adjusts
the pair of dependent poles p, and H,. Thus, although p is
tuned, the actual response is due to the mapped poles: p,
and py. Furthermore, should the nondominant poles of the
integrators, p, be large in comparison to the frequencies of
interest, it can be shown that the deviated poles, p,, approach
the initial pole, p, and the extraneous poles, p;,, would be
far enough to the left so that their effects are insignificant.
However, with high-frequency filters, the nondominant pole
is not large in relation to the pole frequencies of the filter so
that the effects of the extraneous poles, pj,, cannot be ignored.
Finally, although Fig. 2 illustrates the mapping of possible
pole locations, the mapping of zeros is identical.

The second nonideal effect that is considered is that of the
finite dc gain of the integrator, Ao. With finite dc gain, the
transfer function of the integrator is still first order but its

dominant pole is no longer at dc but at —1/A,. This shift in
the dominant pole causes each pole (and zero) of the tunable
filter to be shifted to the left. The adaptive approach completely
accounts for the finite dc gains of the integrators [9] because it
tunes both the poles and zeros. However, finite dc gain is still
considered in our investigation as it can be a serious problem
for other tuning methods.

The transfer function of an integrator with finite dc gain and
no nondominant poles may be expressed as

1

T; .
s-f—ALO

int(s) =

®)

Following the method used in (4) through (6), s is replaced
by (s + (1/Ap)) so that each pole (and zero) of the tunable
filter gets shifted as follows:
PRSP
s A o+ jw
1
s=064jo— T ©)
Combining the nonidealities of finite dc gain, Ag, and
one nondominant pole, p, results in the integrator having the
transfer function

_ 1
Tint(s) = '———(e N A%)) (% N 1) .

The effects of both the finite dc gain and the nondominant
pole are illustrated in Fig. 1(c). The finite dc gain causes each
pole (and zero) of an ideal Nth-order tunable filter ((3)) to be
shifted to the left ((9)), and the nondominant pole causes each
pole (and zero) to be mapped to a pair of dependent poles
(and zeros) ((6)). This corresponds to each pole (and zero) of
(3) being mapped to

(+1)(3+1) 5+ ji
S -_— — =0
Ag p !

which results in

p 1\ 4/ 1
T —_— — — A a0 12
:t2 <1+A0p) +p( A0+o+1w> (12)

so that the transfer-function of the tunable filter is 2/Nth-order.
The 2Nth-order transfer-function may be described by (7),
but now the pairs of dependent poles, p;, and p;;,, and zeros,
Ziq and Z;, refer to the mapping defined by (12). Fig. 2 still
represents possible pole (or zero) mapping but the mapped
poles, p, and Py, are now slightly shifted since the finite dc
gain, Ay, is included. For example, the dashed line now occurs
at —p/2 — (1/2A). Notice that the phase lead caused by
the finite dc gain does partially compensate for the phase lag
caused by the nondominant pole. Referring to Fig. 2, the finite
dc gain results in the deviated pole, p,, being shifted closer
to the desired location, p, so that the peaking at the passband
edge is reduced. However, for high-frequency applications, the
extraneous pole py is still close enough to the frequencies of
interest so that its effects are still significant.

(10)

amn
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II. THE ADAPTIVE TUNING SYSTEM

The adaptive tuning system is based on the adaptive filter
model-matching configuration shown in Fig. 3 [9]. Tt has
been shown that the ideal reference filter is not required if
a pseudorandom noise signal is used instead of u(t) and a
precalculated reference signal replaces 6(t). For simplicity,
however, the system shown in Fig. 3 is used in the simulations
presented in the following sections.

The tunable filter may be realized by any structure that
allows the poles and zeros to be varied. In this paper we
have chosen to use an implementation based on the adjoint
of an orthonormal ladder filter, described in [12]. For an
ideal Nth-order transfer-function, N arbitrary poles and zeros
may be obtained by adjusting 2N + 1 coefficients. Since it
is assumed that there is at least one zero at infinity, one of
these coefficients is set to zero. For the nonideal filter, the
specified zero at infinity gets mapped to a pair of dependent
zeros at infinity so that the remaining 2N variables determine
2N poles and 2(N ~ 1) zeros. The adaptive algorithm used to
adjust the coefficients is a least mean square (LMS) algorithm
which minimizes the mean square error (MSE) value of the
error signal, e(t). It is important to notice that the adaptive
algorithm performs impulse response matching to minimize
the MSE value of e(t). Consequently, both magnitude and
phase responses are matched. Also, since there is typically
more power in the passband of a filter, the adaptive algorithm
places more emphasis on tuning the passband (and hence the
poles) for a white noise input. Thus, it is expected that there
should be better passband than stopband matching. Finally,
dc offsets appear to be the most critical problem with the
adaptive tuning method. This problem can be corrected by a
median-based offset cancellation technique described in [13].

IV. COMPARISON BETWEEN TUNING ONLY
POLES AND TUNING BOTH POLES AND ZEROS

The first example compares the performance of the popular
tuning approach where only the poles are tuned [1]-[8], and
the adaptive method where both the poles and zeros are tuned
[9]. The desired filter is specified to have a fifth-order transfer-
function with a 0.1 dB equiripple passband extending from 0
to 1 rad/s. The desired poles and zeros are:

poles: — 0.1581 + 51.0785,
—0.4347 + j0.6830, and — 0.5531

zeros: 0 £ j3.2059, and three at co.
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Fig. 4. Transfer-functions of the ideal filter and the filter with nonideal

integrators.
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Fig. 5. Group-delay response of the ideal filter and the filter with nonideal
integrators.

The solid curves in Figs. 4 and 5 depict the desired transfer-
function and group delay response, respectively.

The integrators of the tunable filter are modelled to have
finite dc gain and a single nondominant pole as defined in (10).
It is assumed that the finite dc gain of the integrator is 100.
This is equivalent to having 0.5° phase lead at the unity-gain
frequency of the integrator. As this phase lead does partially
compensate for the phase lag caused by the nondominant pole
of the integrator, the nondominant pole was placed at ten times
the passband edge of the desired transfer function so that
its effects are still damaging. The nondominant pole at ten
times the passband edge corresponds to the integrator having
approximately 5° excess phase at the unity-gain frequency of
the integrator.

Including finite dc gain and a nondominant pole in each
integrator results in a tenth-order transfer-function, shown by
the dashed curves in Figs. 4 and 5. Fig. 6 shows a pole-zero
plot of the ideal filter and the filter with nonideal integrators.
Each pole is mapped to two poles: five deviated poles, which
are close to the desired pole locations, and five extraneous
poles on the left. The peaking at the passband edge in Fig. 4
arises from the higher Q-factor of the deviated poles. The
five extraneous poles do not correspond to any desired poles
and must therefore be cancelled for exact matching. The finite
zeros on the jw axis are mapped to two pairs of dependent
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Fig. 6. ldeal and mapped poles and zeros.

ze10s (%14, 21p) and (8%14, £%15), none of which is on the
jw axis and thus the notch is lost. The zeros at Z1p and Zxqp
do partially cancel the effects of the five extraneous poles but
this is clearly not enough to completely eliminate their effects.
Finally, instead of three zeros at infinity, the nonideal system
has six zeros at infinity which results in excess stopband
attenuation.

The first simulation restricts the adaptive algorithm to only
vary the poles of the filter. Specifically, the poles of the adjoint
of the orthonormal ladder structure are tuned by varying N
parameters in the circuit realization. Although this affects
the finite zeros of the filter, the effect is no different than
that encountered in the master-slave approach where the zero
locations are affected by the changes made in the poles’ wo
and Q. Note that although zeros may change when poles
are tuned with the master-slave method, the zeros do not
necessarily change in an optimum fashion from the point of
view of minimizing the effects of parasitics, as the zeros are
not directly adjusted.

Fig. 7 shows the pole and zero locations of the tuned
filter, and the dashed curves in Figs. 8 and 9 illustrate its
frequency response. The results confirm that both passband
and stopband are not exactly matched to the desired transfer-
function as tuning only poles simply does not give enough
degrees of freedom. As illustrated in Fig. 8, the passband peak
is reduced, as the deviated poles are moved to the left, but
the ripple certainly does not meet the given specifications. As
well, the effects of the extraneous poles on the left cannot be
eliminated by just adjusting the poles. These extraneous poles
cannot be cancelled as zeros are not tuned, and they cannot
be pushed away as they are dependent on the deviated poles
which the adaptive algorithm uses to match the response of
the desired poles. Furthermore, the excess zeros at infinity still
give too much attenuation at high frequencies and the notch
is not matched as zeros are not directly varied. This suggests
that tuning the zeros is necessary to better match the desired

locations of poles and zeros of tuned filter:
Propra® = ~02681£j105S0  p1,* By, = 974204710550

Prebra® = ~0584TL/0IBIS  jay®, fop = —9.4652£/09815 jo
Pra = ~05737 by = ~9.4362 3% —300
Do 2,0 = 06882427317 2,%. %, = ~10.69822/2.7317 X —o0
220 221 1300 230 Ba 20p =
33
X X
[}
—{— T -5 o
-0 5
.
24
X X
 ideal poles 31
X ideal zeros
{J tuned poles
X zeros of tuned filter

Fig. 7. Pole-zero plot when only the poles are tuned.

magnification of passband

Gain [dB]

T T
Freq (radis}

Fig. 8. Magnitude response when only the poles are tuned.

Group Delay [s)

00 05 10 15
Freq. {rad/s]

Fig. 9. Group-delay response when only the poles are tuned.

transfer-function by matching the desired zeros and cancelling
the effects of the extraneous poles.

The second simulation allows the tuning of both the poles
and zeros. The locations of the tuned poles and zeros are



18 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 40, NO. 1, JANUARY 1993

locations of poles and zeros of tuned filter:
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Fig. 10. Pole-zero plot when both poles and zeros are tuned.

magnification of passband

Fig. 11. Magnitude response when both poles and zeros are tuned.

shown in Fig. 10, and the tuned transfer-function and group-
delay response are represented by the dashed curves in Figs. 11
and 12, respectively. Although the ideal and tuned passbands
are not identical, the magnification in Fig. 11 shows that
the responses are nearly indistinguishable. Also, the notch is
accurately tuned. Since the adaptive algorithm places more
emphasis on tuning the passband, consider the poles first. Fig.
10 shows that the five deviated poles are tuned to match the
desired pole locations. As in the previous case, the effects
of the five extraneous poles on the left must be cancelled
for accurate matching. However, unlike the previous case, the
tuning of zeros does allow more degrees of freedom to cancel
the effects of these extraneous poles.

When adjusting the zeros, the adaptive algorithm must place
the zeros to match the five desired zeros as well as to cancel
the effects of the extraneous poles. The finite pair of complex

Z 6

-] .

] — ideal
i == tuned
2

2

<]

00 0?5 1!0 1.5
Frea. Irad/s

Fig. 12. Group-delay response when both poles and zeros are tuned.

conjugate zeros is matched rather accurately with 2;, and
3%1,. As seen in Fig. 10, the resulting extraneous Zzeros, Z1b
and $+#1, do give some cancellation of the poles on the left but
more cancellation is necessary. Now consider the remaining
three pairs of dependent zeros which, according to Fig. 6,
are initially at infinity. As stated before, the tunable filter is
forced to have at least one pair of dependent zeros at infinity.
This accounts for two of the three desired zeros at infinity.
Thus, instead of using two pairs of dependent zeros, (224, Z25)
and (234, %3p), to match two zeros at infinity, only one pair
of dependent zeros, (Z2q, Z2p), is used. Consequently, the
adaptive algorithm has a free pair of dependent zeros (334, 23b)
to be used for the sole purpose of cancelling the effects of the
extraneous poles. This pair is referred to as free because it
is not required to match any desired zeros. As shown by the
possible pole mappings in Fig. 2 and using (12), this pair of
dependent zeros is restricted to vary along the —p /2—(1/2A0)
dashed line or along the real axis. Fig. 10 shows that the free
zeros are tuned to —5.005 £ §3.2551 to further cancel the
extraneous poles. Finally, matching the third desired zero at
infinity is compromised as 24, and Z4 are pulled away from
infinity and placed on the —5.005 line. The result is a mildly
insufficient attenuation at high frequencies.

In summary, it is evident that better results are achieved
when the poles and zeros are tuned. Because the nonideal
integrators affect both the poles and zeros, the initial zero
locations are corrupted and must be adjusted. Tuning systems
which vary only the poles cannot account for incorrect zeros
and thus do not give good results. Furthermore, it was seen
that the tuning of zeros enables the reduction of the effects of
the extraneous poles, though at the expense of not matching
all the zeros. A special benefit is also seen when a free pair
of tunable zeros is obtained from using a pair of dependent
zeros to match two zeros at infinity. Therefore, in choosing
a transfer-function, it is better to have at least one pair of
zeros at infinity. The importance of tuning zeros is also seen
when tuning all-pole filters such as a fifth-order Chebyshev
filter. Simulation results show that the passband is accurately
matched by moving zeros at infinity to finite locations to
partially compensate extraneous poles. This would not occur
with a master-slave approach as both desired and extraneous
zeros remain at infinity. However, for the sake of brevity,
these results were not included.
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Fig. 13. Magnitude response of biquad example.

V. BIQUAD EXAMPLE

A common approach of applying tuning methods is to
realize the continuous-time filter by a cascade of biquads
and tune each biquad section individually [1]1-[8]. Hence,
using integrators modelled by the nonidealities discussed in
Section 1I, results from the adaptive tuning system and a
master—slave approach are compared here. The master—slave
approach is emulated by impulse response matching where the
pole frequency, quality factor, and dc gain are all adjusted.

The poles and zeros of the desired transfer-function are

poles: — 1.1862 =+ 51.3810

Zeros: 00, 00.

Figs. 13 and 14 respectively show the transfer-functions and
group delay responses of the ideal, initial, and tuned filters.
As before, the initial transfer-function represents the transfer
function that arises from having nonideal integrators. First
consider the results when only the poles and dc gain are tuned.
Notice that the ripple in the passband is much greater than 0.1
dB and that there is still too much stopband attenuation as the
zeros at infinity are not adjusted. On the other hand, better
matching is obtained when both poles and zeros are tuned.
The peak at the passband edge has been reduced but there is
still some discrepancy between the tuned and ideal transfer-
functions. Finally, note that the group delay responses of both
tuned filters are not accurate. Thus the results show that tuning
only the poles and dc gain give worse resuits than tuning both
poles and zeros, even in the second-order case.

Although the adaptive tuning system does give better tuning
results than just tuning the poles and dc gain, the adaptive
method does not accurately tune the biquad as in the fifth-
order example. This occurs as a biquad does not have enough
degrees of freedom to cancel the parasitic effects. Fig. 15
depicts the ideal pole and zero locations as well as the pole
and zero locations of the filter in which both the poles and
zeros are tuned. As expected, the pair of deviated poles, P1a
and px1,, is placed close to the desired pair of poles. Each of

—ideal

-- initial (due to non-ideal integrators)
~=tuned (poles and zeros)

— tuned (poles)

00 os 10 5]
Freq. [rad/s]

Fig. 14. Group delay response of biquad example.
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Fig. 15. Pole-zero plot when both poles and zeros are tuned for biquad
example.

the poles, p1o and P*1q, has a dependent pole to the left so
that there is a complex conjugate pair of extraneous poles, p1p
and pxp, which must be cancelled by zeros. The adaptive
algorithm has two pairs of dependent zeros to match two
desired zeros at infinity and to attempt to cancel the effects of
the extraneous poles. Specifically, a pair of dependent zeros
is automatically placed at infinity thus giving a free pair of
dependent zeros to be used for cancelling the extraneous poles.
However, as shown in Fig. 2, this pair of dependent zeros
is restricted to vary along the —p/2 — (1/2A) dashed line
or along the real axis. Fig. 15 shows that the free zeros are
tuned to —5.005+ 75.6997. Obviously this does not completely
cancel the extraneous poles, p1p and px1p, so the final values
for the poles p1, and p*1, do not match the desired poles
exactly.

The results show that there are not enough degrees of
freedom to exactly tune a biquad to an ideal transfer-function.
As shown in Fig. 13, adaptive tuning does reduce the parasitic
effects; however, the passband is not as accurately tuned as
the fifth-order example discussed in the previous section. The
fifth-order transfer-function gives more opportunities for the
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adaptive algorithm to reduce the parasitic effects of the ex-
traneous poles by trading-off exact zero matching. Therefore,
higher order transfer-functions give more degrees of freedom
for tuning and thus have better resuits.

VI. CONCLUSIONS

This paper investigated the problems that arise in tuning
filters constructed using integrators with finite dc gain and a
single nondominant pole. The finite dc gain does not increase
the order of the tunable filter but shifts each pole and zero
to the left. Since the adaptive algorithm tunes both poles and
zeros, it has no problem dealing with shifts in the poles and
zeros. On the other hand, the single nondominant pole in each
integrator doubles the order of the tunable filter, by mapping
each pole and zero to a pair of dependent poles and zeros,
respectively, but does not increase the number of elements
that may be independently varied for tuning purposes. This
is a serious problem that becomes particularly harmful for
high-frequency filters.

Simulation results show that the adaptive tuning system is
superior to methods that tune only the poles of the filter. Zero
tuning not only corrects for erroneous zero locations but also
allows trade-off between exact zero matching and the placing
of the zeros such as to partially cancel the effects of the extra-
neous poles to achieve better overall passband performance.
The results also indicate that the type of transfer-function
chosen to meet specifications influences how accurately the
filter is tuned. Specifically, as shown by the resuits of the
fifth-order and biquad examples, there are more degrees of
freedom for tuning with higher order filters. It was also shown
that using a pair of dependent zeros to match a pair of desired
zeros at infinity gives a free pair of dependent zeros to be
used for cancelling the effects of the extraneous poles. This
all suggests a fruitful area of researchfinding the best filter
transfer-function from a tunability point of view.
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