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Design and Analysis of
Delta-Sigma Based IIR Filters

David A. Johns and David M. Lewis, Member, IEEE

Abstract—This paper presents design techniques for IIR filters
operating on oversampled delta-sigma (AX) modulated signals.
It is shown that AX-based IIR filters can be efficiently re-
alized by eliminating all multibit multipliers through the use
of re-modulating internal filter states. As well, noise results
are presented showing that linear noise analysis gives excellent
predictions of the noise performance over the frequency band
of interest. Finally, it is shown that latency and computational
complexity can be reduced in some VLSI applications where
digital representations of analog signals exist using oversampled
AY converters.

I. INTRODUCTION

HE USE of oversampled AY modulation is rapidly

gaining popularity as an effective method for building
high resolution analog-to-digital (A/D) and digital-to-analog
(D/A) converters [1]-{6]. While oversampled converters usu-
ally interface to digital signals at the Nyquist rate, it is useful
to consider signal processing directly at the oversampled rate
in an attempt to save valuable silicon area. For example, in
an application where both input and output signals are AX
modulated corresponding to external analog signals, filtering
at the Nyquist rate introduces two complementary filters—a
decimation and an interpolation filter. Filtering directly on the
oversampled signal would eliminate the need for both these
filters and could reduce circuit complexity if the AY based
filter is efficiently realized.

One technique for processing AY. modulated signals is to
make use of finite-impulse-response (FIR) filters [7]. However,
an FIR approach often leads to an excessive number of delay
stages (though only one-bit each) and additions when the
oversampling ratio is high and the filter order large. Since
infinite-impulse-response (IIR) filters can often meet the same
specifications with a lower order filter order than their FIR
counterparts [8], it is desirable to find efficient AY based IIR
filter realizations. In related work, a method for realizing IIR
filters operating on delta modulated signals has been proposed
[9]; however, since most oversampled A/D and D/A converters
are realized using AY modulation, there is a strong motivation
to extend that work.

In an effort to find efficient AY based IIR filters, a recent
publication briefly described a design approach where internal
filter states are remodulated using fully digital AYX modulators
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[10]. This paper expands on the idea presented in [10] by
presenting design techniques and a noise analysis. In Section
1I, the basic approach to AY. based IIR filters is described
using a first-order example where it is shown that  filter
structure is extremely important. Two approaches for realizing
higher order transfer-functions based on biquad and quasi-
orthonormal structures are presented in Section III with design
examples given in Section IV. In Section V, it is shown
that although nonlinear modulators are utilized, a linear noise
analysis gives excellent agreement with simulation over the
frequency band of interest. The use of multibit quantizers
are suggested in Section VI and stability for this type of
filtering is discussed in Section VIL Finally, a couple of
application examples are given in Section VIII where it is
shown that reductions in latency and computational complexity
are possible.

Before proceeding, some terms relating to oversampling
need to be defined. Throughout this paper, we shall assume
the frequency of interest to be from 0 to f,. The oversampling
ratio, OSR, is defined to be the ratio of the sampling frequency,
fs, to the Nyquist frequency, 2f,. Specifically,

fs
2fo’

For simplicity, throughout this paper we shall normalize fs
to unity.

OSR =

¢y

II. DELTA-SIGMA BASED IIR FILTERING

The essential building block that allows the construction
of AY based IIR filters is the attenuator circuit shown in Fig.
1(a). A one-bit input signal, @i(n), operating at the oversampled
rate is multiplied by a multibit constant coefficient, a;, and
the resulting multibit signal, y(n), is applied to a digital AX
modulator giving the output one-bit signal, §(n — 1). Here
and throughout this paper, an assumption is made that the
AY modulator introduces a unit delay at f, from input to
output as is the case in many modulators. Examples of signal
spectra are shown in Fig. 1(b) where the rising spectra above
f, is due to the modulation noise introduced by the modulator.
Modeling the modulator as a single delay plus an additive
noise source, e(n), as shown in Fig. 1(c), this circuit clearly
behaves as an attenuator over the frequency band of interest
with some additional noise. If the common (though sometimes
unjustified) assumption is made that noise arising from the
quantizer in the modulator is white over the frequency band
of interest, then the spectral density of e(n) will be white noise
shaped by the noise transfer function of the modulator.
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Fig. 1. Delta—sigma attenuator. (a) Circuit implementation. (b) Signal spec-
tra. (c) Equivalent model over the frequency band of interest. The signal e(n)
represents the shaped quantization noise introduced by the modulator.
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Fig.2. A digital second-order delta~sigma modulator. The block ¢(-) denotes
a one-bit quantizer implemented by taking the most significant bit.

This structure leads to low hardware complexity since i(n)
is a one-bit signal and thus the multiplier can be efficiently
realized as a 2-input multiplexor with @(n) acting as a control
input selecting either a; or —a, (simply changing the sign-bit
is not sufficient as 2’s-complement arithmetic is assumed in
order to realize efficient adders). This multiplexor approach
results in the 1 x k£ multiplier requiring about 4k transistors in
CMOS technology for a k-bit coefficient. For comparison, a
k x k multiplier requires about 28%? transistors. All multipliers
shown in this paper are of this multiplexor type—a critical
requirement since they must operate at the oversampled rate.
The hardware complexity of the modulator depends on the
modulator order and architecture. Although many modulators
are possible, examples and results throughout this paper will
be based on the second-order modulator shown in Fig. 2 [11].
Here, the input and output signals are multibit and one-bit,
respectively, and assuming the use of 2’s complement arith-
metic, the implementation of this modulator can be simplified
to contain only two adders. This low complexity is obtained
by recognizing the fact that since the value added is either
the positive or negative maximum value, the first and third
adders require only the addition of a 1-bit signal to the two
most significant bits of the k-bit signal. The end result is that
the first and third adders can be implemented using only two
logic gates each.

For a noise analysis, we make the common (though some-
times unwarranted) approximation that the quantizer is mod-
eled as linearly adding white quantization noise. Specifically,

r—

the quantizer in Fig. 2 is replaced by

§n — 1) = va(n = 1) + ny(n) @

where ng(n) is the equivalent quantization noise. With this

linear circuit model, the output signal, §(n — 1), can be shown

in the z- transform domain to be equal to

(z - 1)?
22

N,

7Y () =27V (2) + o(2)-

3
Thus, the output signal, z‘lff(z), is equal to a delayed
version of the input signal plus shaped quantization noise
as in Fig. 1(c). For this second-order modulator, the noise
transfer-function of (3) is seen to be equal to (z — 1)2/22.
To realize AY based IIR filters, high-speed k x k multipliers
can be eliminated by using the approach described above for
the attenuator circuit. However, care must be taken in choosing
a suitable filter structure since oversampled transfer-functions
are a natural consequence when using AY¥ modulation. Specif-
ically, consider two possible realizations for a first-order
low-pass filter as shown in Fig. 3. Substituting the modulator
model shown in Fig. 1(c), the output signals are found to be

bl 1—a1

Xa(2) = I—WU(Z) + I_WE(Z) @)
bl S —a3
Xo(2) = 1_—(1_*7‘;)2—_1[1(2) + WE(Z) 6))

where X,(z) and X,(z) are multibit states and E(z) is the
modulation noise. The equivalent equations for the one-bit
states X,(2) and X,(2) are

5 blz‘l N 1
Xa(z) = mll)z—_lU(Z) + ij(z) (6)
Xy(2) = r:—(llhfa—l)z_lﬁ(z) + ﬁﬂz)- @)

Defining X (z)/U(z) to be the signal gain and X(z)/E(z)
to be the noise gain for the multibit signals, we see that both
structures have the same signal gains but different noise gains.
Since for oversampled transfer-functions the pole nears unity
and thus the coefficient a1 is near zero, clearly the structure
in Fig. 3(b) will result in a much lower noise gain than that
of Fig. 3(a).2 Similar noise performance is also true for the
one-bit signals, )Z’a(z) and X’b(z), as seen from (6) and (7).
Another interesting result seen from (5) and (7) is that for
frequencies above the pole-frequency, the spectral density of
the noise in X;(z) approximates E(z) while the noise in X (z)
has a spectral density approximating a1 E(z)/(1 — z~1). This
result is due to the location of the integrator with respect to the
where the modulation noise is injected. Thus, while the noise
in the multibit output signal, X;(2), is reduced one order in
noise-shaping in comparison with X »(2), its total noise power
is reduced.

! Although the realization in Fig. 3(b) has two delaying stages, there are
redundant states so that only a first-order transfer-function is realized.

21n simulations, the structure in Fig. 3(a) did not work at all. Most likely
this was due to the excessive noise gain and the fact that the noise model of
Fig. 1(c) is an approximation.
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Fig. 3. First-order delta—sigma filter. (a) Direct-form structure with poor
noise performance. (b) An integrator-based structure having good noise
performance.

Note that since the only noise source in this filter is due to
the modulator (the adders are noiseless if no overflow occurs),
the dynamic range of this filter will not depend on the number
of bits in the adders but rather on the oversampling ratio and
the noise shaping ability of the modulator. The number of
bits in the adders determined the number of bits representing
the coefficients which, in turn, determine the transfer-function
accuracy. However, care must be taken to ensure that the
internal state ;,(n) does not exceed the modulator’s maximum
input level and thus dynamic range scaling is important here.
Also note that since the AL modulated signals are binary, the
circuit complexity of Fig. 3(b) can be reduced. Specifically,
since the signal at node (® takes on only one of 4 possible
values, the adder and two multipliers can be more efficiently
realized as a 4-input multiplexor [12]. If the modulator in Fig.
2 is used, this simplification results in the requirement of 3
multibit adders plus some minor logic to realize a first-order
filter.

III. HIGHER ORDER FILTERS

Due to the requirement that only single-bit states are mul-
tiplied by constant coefficients in AY based IIR filters, the
criteria for choosing a filter structure is different than that
of traditional IIR filter design. This section will present two
suitable structures where the number of modulators required
is equal to the filter order. There are two main reasons for
keeping the number of modulators low. One reason is that
each modulator may require a significant amount of silicon
area, especially if the modulator’s order is higher than two.
The second reason is to minimize the number of noise sources
since, as discussed above, the only sources of noise are in the
modulators.>

3.1. Biquad Design

Perhaps the most common method of realizing higher order
transfer-functions is through the use of a cascade-of-biquads
approach. A general biquadratic transfer-function can be writ-

30f course, one should ensure the resulting filter structure does not have
excessive noise gains as in the direct-form structure.
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Fig. 4. A general biquad structure using two delaying integrators. Note that
input summing is used to form the transfer-function zeros.

Fig. 5. A general biquad AX-based IIR filter. The output can be either the
one-bit signal §(n — 1) or the multibit signal y(n).

ten as
ngz2 + nyz + ng
224+ piz+po

Assuming the modulator introduces a unit delay, the general
biquad structure should be based on two delaying integrators
as was the first-order filter in Fig. 3(b). One such biquad
structure is shown in Fig. 4 where input summing is used
to obtain the correct transfer-function zeros. While output
summing is typically used in biquad designs, input summing
is used here to eliminate the need for an extra modulator in
forming a one-bit output signal. The symmetrical coefficients,
a1 and —a,, are used to maintain good dynamic range scaling
for the internal multibit states. This scaling is important in
oversampled functions and is accomplished by making the
integrators have equal time-constants, similar to the approach
used in continuous-time filtering.

After some signal-flow-graph manipulations, a biquad AX-
based IIR filter can be obtained based on the structure in Fig.
4 as shown in Fig. 5. The delayed input signals are a result of
moving the summing node associated with the bs coefficient
to the other side of a delay stage. Fortunately, delaying the
signal (n) requires a trivial amount of extra circuitry since
@(n) is a one-bit signal. The transfer-function for the filter in
Fig. 5 can be shown to be given by

T(Z) Y(Z) _ b222 + (bl - 2b2)z + (boal -b + bz)
ﬁ(z) o 22— (2—ax)z+(1+a¥—az)

T(z) = ®)

i

9
Equating the coefficients in (9) with those in (8) results in
the following design equations:

az =p1 +2 (10)

a1 =+potp+1 (1

by = ny (12)

by = n1 + 2ny (13)
1

bo = E‘(no + nq + na). (14)
1
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Fig. 6. An Nth-order delta—sigma IIR filter using the quasi-orthonormal
structure.

Recognizing that the signals at nodes & and take on
only one of either 4 or 8 values, respectively, multiplexors
can again be used to reduce the hardware complexity of this
general biquad to only 7 multibit adders together with some
minor logic assuming the modulator shown in Fig. 2 is used.
Thus, in general, an Nth-order filter (if N is even) would
require 3.5 adders.

3.2. Quasi-Orthonormal Design

An alternate structure for realizing oversampled transfer-
functions with good noise and sensitivity performance is to
use a quasi-orthonormal state-space structure [13], [14]. For
high oversampling ratios, the quasi-orthonormal structure has
two main advantages. One advantage is that the structure is
inherently scaled for optimum dynamic range in terms of
an L, norm making it extremely useful for programmable
applications. Secondly, it has a unique representation for a
given transfer-function (within scaling factors of +1) and a
performance comparable to an optimum biquad cascade design
where pole-zero pairing and cascade ordering need to have
been carefully chosen. Making use of this structure* results in
the Nth-order IIR filter shown in Fig. 6. Each multibit state
signal, z;(n), is applied to a AY modulator resulting in a
one-bit signal ;(n — 1).

Note that making use of 8-input multiplexors as before, the
hardware complexity of this structure requires 3N multibit
adders, which is slightly less than that for a cascade-of-biquads
design.

IV. DESIGN EXAMPLES

Simulations were performed for a number of different filters,
structures, and modulators. For the sake of brevity, results
are described here for only an eighth-order bandpass and
three fifth-order low-pass filters using the quasi-orthonormal
structure with the modulator depicted in Fig. 2. The bandpass
filter had an oversampling ratio of 128 while the fifth-order

“In fact, the transposed structure was used which transforms an output

summing stage to the shown input summing stage consisting of the b
coefficients.
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TABLE 1
COEFFICIENT VALUES FOR QUASI- ORTHONORMAL
AYX FiLTERS. OSR 1S THE OVERSAMPLING RATIO

Coeff Low-pass Bandpass
OSR = 32 OSR = 64 OSR =128 | OSR = 128

ay 0.0221814 0.0113349  0.0057310 | 0.0092571

az 0.0161338 0.0079576 0.0039475 0.0017366

as 0.0186953 0.0092801 0.0046218 0.0101197

ay 0.0259125 0.0127442  0.0063178 0.0021232

as 0.0304938 0.0149179  0.0073764 | 0.0098791

ag — — — 0.0031290

az — — — 0.0104593

as — — — 0.0045269

by 0.0221042 0.0111391 0.0055940 | 0.0000390

by 0.0010365 0.0002694  0.0000688 -0.0026590

by 0.0056275 0.0028927 0.0014681 —0.0000388

by 0.0001224 0.0000313 0.0000079 0.0010142

bs 0.0004097 0.0002061 0.0001034 0.0000110

be _ — — 0.0000619

by — — — —0.0000011

bs — — —0.0000588

filters were all based on a single prototype filter but frequency
scaled to three different oversampling ratios; OSR = 32, 64,
and 128. The coefficient values for these filters are given in
Table I where it is clear that the coefficients approach zero as
the oversampling ratio is increased.

To measure the frequency responses, sine waves at varying
frequencies were first passed through a AY modulator, then the
filter, and finally an FFT and Hanning window of the resulting
one-bit stream indicated the magnitude response at the sine
wave’s frequency. Although this method of measurement is
much more computationally intensive than using an impulse
response (as in [7]), it allows more power at each frequency
and therefore gives a better estimate of the frequency response
for a given oversampling ratio. In Fig. 7, the frequency
responses for the four filters are shown along each individual
signal-to-noise ratio (SNR). The SNR was determined by
the ratio of the output power of a single sinusoid (peak
values of ii for quantizer output levels of +1) at the upper
passband edge of the filter to the total output noise power
over the frequency of interest. Here, we see that the signal-to-
noise performance improves for higher oversampling ratios,
as expected.

It is of interest to compare the dynamic range of these filters
to that of a single AY modulator. The simulated values of SNR
for the signal #i(n) for oversampling ratios of 32, 64 and 128
were 51, 65, and 80, respectively. Comparing these values with
the SNR values of Fig. 7, we see that about a loss of about 1
dB occurs in the fifth-order filters while a loss of 5 dB results
in the higher-Q eighth-order filter.

V. NOISE PERFORMANCE

Since AX-based IIR filtering relies on re-modulating inter-
nal filter states where the states have significant modulation
noise introduced from other modulators, it is important to
investigate the noise behavior of the resulting filters. Specif-
ically, it will be shown in this section that a simple linear
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Fig. 7. Frequency responses for various AX-based IIR filters. (a)-(c)
fifth-order lowpass; (d) eighth-order bandpass.

noise analysis is successful in accurately predicting the noise
performance for these types of filters over the frequency band
of interest.

A linear noise model for a AX.-based filter can be obtained
by replacing each of the AY modulators with a delay stage
plus an additive noise source, e;(n), as was done in Fig. 1. As
well, one extra noise source, en41(n), can be used to model
the noise added by a modulator operating on the input signal
to create the one-bit signal, @(n). The noise spectral density,
Se(f), of e(n) is determined by the modulator choice.

Defining W;( f) to be the noise gain from e;(n) to the output
signal and assuming each of the noise sources, e;(n), to be
uncorrelated, the total equivalent noise gain, W(f), is defined
as

N+1

1/2
w(f) = (Z lwi(f)F) :
=1

Finally, the noise spectral density of the output signal, S(f),
is easily shown to be given by

S(f) = W(H)ISe(f)- (16)

As an example, consider the fifth-order filter with OSR =
32 described in Section IV where the second-order modu-
lator shown in Fig. 2 was used. Modeling the quantizer as
adding noise uniformly distributed between in [—1,+1], the
mean-square noise value equals % Assuming a two-sided
representation of frequencies for spectral density calculations,
all the noise power of a quantized signal sampled at frequency
fo = 1is folded into the frequency band (—1/2) < f < (1/2).
If the quantization noise is also white, then the spectral density
of the quantization noise is % This quantization noise is
shaped by the noise transfer-function, (1 — z~1)2, resulting
in the spectral density, S.(f), of e(n) for this second-order
modulator given by (as in [1])

5)

1 iom
Se(f) = Z=l1— eI

= %sinz (&;—f) )
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Simulated versus predicted in-band noise spectral densities for the
output signals, §(n) and y(n) for a fifth-order filter.

Fig. 8.

The expected noise spectral density of the output is then
determined from (16) using S.(f) found in (17) and W(f)
found from transfer-function analysis applied to the fifth-
order filter. A comparison between the expected and simulated
noise curves is presented in Fig. 8(a) and (b). The simulated
noise curves were obtained by averaging 256 periodogram
estimates each of length 4096 resulting in 64 FFT bins over the
frequency band of interest. Note that the output signal can be
considered to be either the one-bit signal, §(n), or the multibit
signal, y(n). In-band noise comparisons were also performed
for the eighth-order bandpass filter and gave similar agreement.
This excellent agreement indicates that the simple model of
Fig. 1(c) is valid for predicting the noise performance over
the frequency band of interest.

While in-band noise for these two output signals is ap-
proximately the same (within 5 dB), out-of-band noise is
significantly higher (about 30 dB higher) for §(n) as shown
in Fig. 9(a) and (b). Both the in-band and out-of-band noise
on y(n) are lower due to all the one-bit modulated signals
being filtered by the last integrator that forms y(n). This
filtering effect is clearly seen in Fig. 8 for frequencies above
the passband edge where the noise on y(n) rises slower than
that for §j(n). The in-band noise difference of 5 dB is much
smaller than the out-of-band noise difference of 30 dB simply
due to the fact that the noise is integrated over a smaller
frequency band. Clearly, if the output of this filter were to
go into a decimation stage, the output of choice would be
the multibit signal, y(n), where out-of-band noise has already
been reduced.

VI. THE USE OF MULTIBIT QUANTIZERS

This paper has thus far assumed that the AY modulator
uses a two-level quantizer. The advantage of a two level
quantizer is that multiplication by +1 is easily accomplished
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Fig. 9. Out-of-band noise spectral densities for the output signals, §(n) and
y(n) for fifth-order example. Note that the noise for y(n) is much lower than
that for §(n).

with a multiplexer. However, it is useful to consider multibit
quantizers that also have simple implementations for a couple
of reasons. First, it is well known that quantization noise is
proportional to quantization step size and thus dynamic range
is increased by 6 dB as the number of quantization levels is
doubled. The second reason is that multibit quantizers tend
to follow the predictions of linear theory more closely than
their one-bit counterparts and are thus more likely to be stable
[1]. It should be mentioned here that multibit quantizers are
often avoided in data converters due to the possibility of
nonlinearity. However, perfect linearity can be maintained here
since the entire modulator is digital.

Since one of the features of the AX filter is to allow simple
multiplication by a quantized signal, it is instructive to look to
multiplier techniques. Booth recoded multipliers [15] recode a
multiplier into a smaller number of higher-radix digits. While
a Booth recoded multiplier of arbitrary order is possible, the
highest order Booth multiplier that allows multiplexer only
designs is the second-order Booth multiplier. This second-
order multiplier has a redundant radix-4 representation using
the digit set {—2, 1,0, 1,2}. Multiplication by any of these
digits can be accomplished by a 5-input multiplexer using
the multiplicand and its negative, and using a one-bit shifted
version for multiplication by +2. This suggests the use of a
five-level quantizer with output levels 0, +0.5, and +1 while
the threshold levels placed for convenience at :t% and i%.
Simulations have shown that a five-level quantizer results in
about a 13-dB SNR improvement which is close to the 12-dB
expected result due to the reduced quantization size.

It should be noted that the hardware complexity when using
S-level quantizers in the quasi-orthonormal structure becomes
5N multibit adders rather than 3N. This extra complexity is
a result of using 2 extra adders to realize the signals entering

each integrator rather than 8-input multiplexors generating
these signals as before. In summary, for some additional
hardware, a five-level quantizer would be almost equivalent to
increasing the oversampling rate by two for this second-order
modulator.

VIL. STABILITY

So far in this paper, we have modelled AY modulators as
single delay stages plus shaped quantization noise and then
used linear theory for both design and analysis. However,
an alternate viewpoint is to regard these systems as higher
order modulators with potentially multiple quantizers. For
example, note that the first-order AX-based IIR filter in Fig.
3(b) can be regarded as a third-order AY. modulator with
a first-order signal transfer-function. Thus, the question of
stability for this higher order modulator becomes important.
Unfortunately, while there have been some rigorous stability
analyses for specific modulators [16], [17] and a conservative
stability criteria for arbitrary modulators [18], the stability of
this third-order modulator is not easily determined. However,
some insight can be gained by the looking at the noise transfer-
function, NTF, which for the case of the filter of Fig. 3(b) using
the modulator of Fig. 2 is given by,

(z=1)°
22(z = (1 — a1))

Note that this NTF has the same noise transfer-function as
that of the second-order modulator except that an extra zero
and pole occur at +1 and 1 — a,, respectively. Since a; is
positive and close to zero as discussed earlier, it is clear that
this third-order NTF is approximately the same as the second-
order NTF except near dc. While this observation does not
guarantee stability of the third-order system given that the
second-order modulator is stable, it does indicate that the rule-
of-thumb stability criteria based on the NTF given in [19]-[21]
would be maintained. In higher order AX-based IIR filters,
multiple quantizers exist resulting in multiple noise transfer-
functions and thus rigorous stability criteria may be even more
difficult to find. Fortunately, simulations of biquad filters with
Q-factors as high as a few thousand indicate that stability of
these systems are determined by the stability of the equivalent
linear system assuming the modulators themselves are stable.
The authors are currently attempting to find either a proof
which justifies this conjecture or a rigorous test that certifies
the stability of these filters.

NTF = (18)

VIII. APPLICATION EXAMPLES

Perhaps the most obvious application for AX¥-based IIR
filtering is to eliminate both the decimation and interpolation
filters when applying digital IIR filtering on analog signals
as shown in Fig. 10. The approach in figure 10(a) makes
use of decimation and interpolation filters such that a near
Nyquist rate DSP can be utilized while that of Fig. 10(b)
operates solely at the oversampled rate using the technique
described in this paper. By eliminating the decimation and
interpolation filters we can expect two benefits—a reduced
input/output latency and a reduction in circuit complexitv
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Fig. 10. Alternate DSP realizations for filtering on analog signals. (a)
Traditional Nyquist-Rate filtering. (b) Oversampled AY based filtering.
Dgec, Dnyqs Dint, and Day indicate the number of additions required per
sample at the Nyquist rate for the various blocks.

The extra latency in the Nyquist rate filter is a result of the
near brickwall decimation and interpolation filters required
to reduce aliasing and imaging. The potential complexity
reduction is a function of the IIR filter orders being realized.
As a rough figure of merit to compare complexity for these
two approaches, we define Dgec, Dnyq; Dint, and Dasx to be
the number of additions required per sample at the Nyquist rate
for the various blocks as shown. Although various structures
can be used for the Nyquist rate filter, generally 3N k X
k bit multiplications are required for a good performance
Nth-order filter. Thus, the value of D,y,q is seen to be
approximately 3N k where we assume a k x k bit multiplication
requires k additions. The values of Dge. and Djpe are fixed
for a given application and depend on a variety of issues
such as implementation choice, phase and noise requirements,
etc. Finally, for an Nth-order AX-based filter, Dax equals
5N x OSR assuming second-order modulators with 5-level
quantizers are used. Thus as a rough comparison, the total
number of additions/sample for the Nyquist rate approach is
given by

Tnyq = Dgec + 3N x k + Dipe (19)
while the total for the oversampled approach is
Tax = 5N x OSR. (20)

We see from (19) and (20) that Tax; will be greater than Ty
for large values of N since OSR is always larger than k. What
is not so clear is the potential complexity trade-off for lower
orders of N.

As an example, consider an 18-bit A/D converter with
OSR = 64 described in [3]. For this converter, a 4096
tap FIR decimation filter was used resulting in Dge. =
4095. Assuming an interpolation filter of roughly the same
complexity as that of the decimation filter, T,yq for the
Nyquist rate approach would be given by 8190 + 54N. For
the oversampled approach to meet an 18-bit performance using
second-order modulators and 5-level quantizers would require
OSR = 128 resulting in Tay = 640N. Comparing (19) and
(20) for this example results in the oversampled approach
requiring less additions/sample when the filter order, N, is
less than 14. As well, the latency due to both the decimation
and interpolation filters is 64 samples at the Nyquist rate. In
summary, processing directly at the oversampled rate will be
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Fig. 11. A multi-input A/D converter where each input requires pro-
grammable gain and filtering.

advantageous in low to medium orders of filtering and where
extra latency cannot be tolerated.

As a second application, consider the multi-input A/D
converter shown in Fig. 11 where the inputs are individually
filtered and summed together. Examples of this application
are wideband beamforming or audio mixing boards. The
traditional approach would require four decimation filters
whereas only one is required if the necessary signal processing
can be performed at the oversampled rate. Using the same
numerical values as in the previous example, the oversampled
approach would require less additions/sample when the total
order for all four filters combined is 20 or less.

IX. CONCLUSIONS

Design techniques for realizing IIR filters operating on
oversampled AY modulated signals were presented. It was
shown that efficient VLSI realizations can be obtained if
multibit multipliers are eliminated by re-modulating internal
filter states. A first-order example demonstrated that filter
structure is critical since oversampled transfer-functions must
be realized and structures were suggested for higher order
filters. In terms of hardware complexity, it was shown that
only 3N adders together with some minor logic are required to
implement an Nth-order filter using second-order modulators.
Through examples, it was seen that the noise performance
for AX-based IIR filters resulted in a small reduction of
dynamic range over a standard modulator. Noise analysis
and simulated results were also presented showing that a
linear noise analysis gives an excellent prediction of noise
performance over the frequency band of interest. It was
also suggested that with some extra hardware, a five-level
quantizer would result in an extra 13 dB of dynamic range.
Stability was then discussed where although linear analysis
again appears to be sufficient, clearly a more rigorous criteria
or justification is needed. Finally, example applications were
presented demonstrating that this type of filtering should prove
useful in VLSI technologies where interfaces to analog signals
are required.
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