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Analysis of AY. Modulators with
Zero Mean Stochastic Inputs
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Abstract—In this paper, a new framework for the analysis of
AX modulators with stochastic inputs is proposed. The frame-
work is based on assuming that the input to the one-bit quantizer
is a Gaussian random process with zero mean and is thus able to
interrelate the autocorrelation and cross-correlation of different
signals of the modulator. Two main equations describing the
behavior of two different AY topologies are derived. These
two equations are generally nonlinear and can be of arbitrary
order, hence approximations are used to study some interesting
cases. First, the nonlinear equations are linearized and solved
analytically for first-order modulator with white inputs and
numerically for colored inputs both with and without dithering.
Also, a numerical iterative approach is used for second and fourth
order modulators with white and colored inputs. In these cases,
the variance of the one-bit quantizer input is found as a function
of modulator input power. Next, the variance of the one-bit
quantizer input is calculated when large amplitude oscillations
are present assuming a large amplitude limit cycle to have a
sinusoidal autocorrelation. Finally, an attempt is made to estimate
the modulator’s critical input power level beyond which these
large amplitude limit cycles start.

I. INTRODUCTION

HOUGH at first look, AY modulators seem to be very

straight forward structures, they are difficult to analyze
rigorously. The main reason behind this difficulty is the
existence of a one-bit quantizer in a feedback loop introducing
strong nonlinearity. Since their introduction in the early 1960’s
[1], there have been many approaches to study the general
behavior of these modulators with the most popular approach
being a linear model method [2]. In this method, the quantizer
is replaced by a summation node injecting white noise inside
the circuit. With these assumptions, the whole modulator
becomes a simple linear circuit and straight forward linear
systems analysis can be applied. Although this method predicts
the in-band noise surprisingly well, it doesn’t describe other
important aspects of these modulators, such as their input-
dependent stability.

Another popular approach for analyzing AY modulators is
the describing-function method which uses a more advanced
model for the quantizer [4]. Ardalan and Paulos [6] achieved
good results by decomposing the input to the quantizer into
two parts, the signal component and the noise component,
and then defining two separate gains for each part and finally
adding a noise source to complete the quantizer model. Hein
and Zakhor [3] also used the describing-function method to
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evaluate the amplitude and dc bias of large amplitude limit
cycles in interpolative AY modulators with dc inputs. In [7],
the same method is used to study the effect of quantizer
hysteresis on the overall performance of a AY. modulator. The
main problem with the describing-function approach is that it
is suitable only for dc or sinusoidal inputs.

The third approach is an exact analysis. In this approach
a difference equation is found for the input to the quantizer.
Then by solving this equation and assuming that the quantizer
is never overloaded, one can derive the exact error spectrum
as well as SNR with respect to the input. Though completely
correct, this method is restricted to lower order modulators
(up to second-order) and simple inputs (dc and sinusoids) [8],
[91, [10].

Each of the above methods has its own advantages and
disadvantages. The major disadvantage is their lack of ability
to deal with higher order modulators as well as more general
inputs. In this paper, we introduce a new approach based
on an approximation which gets better as the order of AY
structure is increased. It is also better suited to stochastic
inputs. The motivation behind using this stochastic approach
is the observation that the output bitstream of a AY modulator
resembles a pseudorandom sequence, especially in higher-
order modulators. This pseudorandom sequence is fed back
and combined with the input. Hence, all the internal states
of the modulator as well as the input to the one-bit quantizer
also appear to be pseudorandom, particularly when the input is
a stochastic signal. In addition to assuming stochastic inputs,
we further require that the input to be zero-mean. Although
this restricts the cases where this method could be applied to,
there are several practical cases where the input is a zero-mean
stochastic input such as a multicarrier modulated signal [12],
speech signal, or the quantization noise of the first stage of
a cascaded multistage architecture being fed to the next stage
[11] when the first stage has a zero-mean input.

It has been noted in the literature that overloading the
quantizer causes the quantization noise to increase which in
turn may cause odd order harmonics to appear [2]. As well, in
practical implementations, large internal states would result
in harmonic distortion due to clipping effects. Thus, it is
important to have estimates of the signal variance at various
nodes throughout a modulator given input signal and dithering
statistics. In this paper, a formulation is proposed which allows
one to estimate the signal variance of the 1-bit quantizer input.
Although the main results are all given for statistics of the 1-
bit quantizer input, the results can be easily generalized to all
internal state statistics. Also, it is worth mentioning that in
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many architectures, the output of the last integrator before the
quantizer has the largest variation.

To make the stochastic framework more tractable, we will
make some simplifying assumptions. First, we assume that all
AY internal states as well as the input signal are wide-sense
stationary (WSS) random processes. Second, we assume that
the quantizer input is a Gaussian random process with zero
mean. We will study the validity of this assumption in more
detail in Section II.

This paper is organized as follows. Section II contains a
discussion on the validity of the Gaussian probability density
function (pdf) assumption for the quantizer input. We show
through simulation that dithering improves the Gaussianity
assumption. Next, in Section III, two main equations describ-
ing the behavior of two different AY topologies are derived.
These equations relate the quantizer input variance and the
autocorrelation and cross-correlation for various signals both
with and without dithering. These two equations are nonlinear
and difficult to solve in the general case, hence approximations
are made in the remainder of the paper to study some interest-
ing cases. In Section IV, the nonlinear equations are linearized
and solved analytically for a first-order modulator with a
white input. The same linearized equations are then solved
numerically for a first-order modulator with a colored input,
a second-order modulator with white and colored inputs, and
a fourth-order modulator again with white and colored inputs.
In Section V, a large amplitude limit cycle is assumed to have
a sinusoidal autocorrelation. With such an assumption, the
two equations are solved to estimate quantizer input variance
as a function of the modulator’s input power. Finally, an
attempt is made to estimate the modulator’s critical power
level beyond which large amplitude limit cycles are started.
All of the theoretical results derived in Sections IV and V
are compared to simulation results to verify their credibility.
Finally, concluding remarks are given in Section VI.

II. GAUSSIANITY ASSUMPTION

The main assumption throughout this paper, and used else-
where in the literature, is that the input to the one-bit quantizer
is a Gaussian random process with zero mean [5], [6]. As we
are considering zero-mean inputs to the modulator, it is easily
seen that the input to the one-bit quantizer will also be a zero
mean random process'. In this section we will have a close
and thorough look at the Gaussianity assumption.

A. Fundamentals

Consider a typical interpolative A% modulator as shown in
Fig. 1. A nonrigorous argument on z(n) appearing Gaussian
would be as follows. Suppose that v(n) has an arbitrary pdf.
Then if the order of H;(z) is high enough and the samples of
v(n)’s are relatively independent, the pdf of z(n) will tend
to be Gaussian similar to the application of the central limit
theorem. However, one can argue that the samples of v(n)’s
are not necessarily independent and identically distributed

'Note that by assuming all internal states to be zero-mean random pro-

cesses, one implicitly assumes that all initial states are zero-mean random
variables as well.
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u(n) v(n) y(n)

H;(2)

Fig. 1. Interpolative AT modulator. Note that d(n) is a dither signal which
may or may not be present.

(i.i.d.) and hence the Gaussianity assumption may be stronger
or weaker for different inputs. This conjecture was observed
true as it was seen through simulations that increasing the
power of u(n) resulted in the pdf of z(n) to be more Gaussian.
Fig. 2(a) and 2(b) show two typical pdf’s for a fourth-order
interpolative modulator with a white Gaussian input having
two different power levels for u(n) and no dithering. As can
be seen, the situation improves when a higher power for u(n)
is used. In fact, the best situation was observed to be when the
input power is high enough to put the modulator at the verge
of instability. The authors believe that by increasing the input
power, the samples of v(n) become more independent and
hence the central limit theorem’s condition is better satisfied.

Another interesting case to study is dithering. Consider the
interpolative architecture with dithering (d(n)) added to the
one-bit-quantizer input as shown in Fig. 1 [15]. Assuming that
d(n) is independent of z(n), we conclude:

fz(x) = fo(2) * fa(2)

where * is the convolution operator and f.(z), f.(z) and
fa(x) are the pdf’s of x(n),z(n) and d(n), respectively.
One can predict that the above convolution will smooth any
raggedness of f,(z) if f4(z) is wide enough, a fact verified
by simulation results as shown in Fig. 2(c) and 2(d). Here, the
applied dithering is uniformly distributed on —%, %] where
the output levels of the modulator are L. Note that even for
the low power case, the pdf is nearly Gaussian while for the
high power case, the pdf appears extremely close to Gaussian.

However, there is another issue to be resolved. A true
Gaussian random process, z(n), also has a characteristic
that if one chooses any arbitrary set of random variables,
{z(n),z(n+1),...,z(n+k)}, they are jointly Gaussian for all
n’s and k’s. Throughout our formulations, which appear in the
following sections, the joint Gaussianity of {z(n),z(n + k)}
for all n’s and k’s is important. In other words, we need z(n)
and z(n + k) to have a 2-D Gaussian pdf so that the input
and output autocorrelations of a one-bit quantizer satisfy the
ArcSine Law as follows [17].

Ry, (k) = g—ffi X Arcsm(ln;z:gé;)

0]

@

As well, the input-output cross-correlation will then satisfy
the following,

Ruy(k) = ‘/#I(O) x L x Raa(k)

3
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Fig. 2. Pdf of z(n) for L =
= 0.001. (d) With dithering, input power = 0.1.

where R..(k), Ryy(k) and R,,(k) are quantizer input au-
tocorrelation, quantizer output autocorrelation and quantizer
input-output cross-correlation, respectively.

To verify this joint Gaussianity assumption, we examined
the 2-D pdf of {z(n),z(n + k)} for the same fourth-order
interpolative modulator having a white Gaussian input, both
with and without dithering. The results for the modulator
without dithering are shown in Fig. 3(a) and 3(b) and those
with dithering are shown in Fig. 3(c) and 3(d). Although not
shown here, it was found that the Gaussianity assumption
improved for larger values of k.

By examining the results carefully one can see that the
Gaussianity assumption is improved when dithering is applied
and the input signal has high power. In summary, one can best
rely on the Gaussianity assumption when the above conditions
are met and one should be aware that this assumption is
unreliable when those conditions are violated. To illustrate
the errors, Fig. 4 shows the comparison between simulated
and calculated results for the autocorrelation Ry, (k) for the
same fourth-order modulator. Here, we see good agreement for
k # *1,%2, whereas for k£ = 1, +2 there is a discrepancy
between the two results. These results show that for & =

1. (a) No dithering, input power = 0.001. (b) No dithering, input power =
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+1, 2 the 2-D Gaussianity assumption for z(n) and z(n+k)
is poor whereas the assumption is reasonable for other values
of k.

B. Gaussianity Assumption Method versus
Linear Model Method

In this section a comparison is made between the Gaus-
sianity assumption method and the linear model method [2].
Specifically, it is shown that under certain conditions, the
Gaussianity assumption is approximately equivalent to the
linear model.

Defining e(n) = y(n) — z(n), one has the following
autocorrelation and cross-correlation relationship

Rwy(k) - Ryx(k) (4)

Inserting (2) and (3) into (4) results in

R..(k) = Ryy(k) + Rex(k) —

2
R..(k) = % X Arcsin(f;milg;) + Rex (k)
-2 X L X Ryy(k) &)

7R (0)
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Fig. 3. Joint probability density function for a fourth-order modulator with white Gaussian input. (a) No dithering, input power = 0.001. (b) No dithering,
input power = 0.1. (¢) With dithering, input power = 0.001. (d) With dithering, input power = 0.01.

for kK = 0 we find:

2
a§:a§<1_2L — |+ L* (6)
o

T

where R;;(0) is defined to be o2 for notational convenience.
Based on (6) the following corollaries can be derived.
Corollary 1: The minimum value for o2 is (1 — 2) L2
Proof: Differentiating (6) with respect to o2, we derive

d 2
—o0l=1-Li|— =00}
do? nol
202 2
== =0 = (1 - —)L2. Q)
™ n ™

Note that based on the linear model method, o2 = %2, whereas
according to corollary 1 the minimum value for o2 is (1—%)L2
which is slightly greater than %2
Corollary 2: 1f 02 = %, then z and e are uncorrelated.
Proof: The cross-correlation between e and z is as
follows.

Rez(k) = E[(yk+n - zk+7l)‘r"]
2

R LT

1) Ryz (k). (8)

Letting R..(0) = 2£2, we see that R..(k) = 0.

™
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Fig. 4. An example of quantizer output autocorrelation.

Corollary 3: If o2 = 2%2-, then the error signal’s spectrum
would be much wider than that of the quantizer input.

Proof: Replacing 02 = 2E into (5) we have:

Reo(k) = — u(k)+iArcsm(2L2 M(k)). ©

As |%’ﬂ(%| < 1, we can use a Taylor expansion for approxi-
mating —Arcsm[ﬁ(%]. Using a third-order approximation,
we have

3
Arcsin(z) =z + % + 0(z%) (10)

and therefore,
2

%AICSIH(2L2 R, (lc))

72 Reo (k) \°
+ i w(k)+0(( /(2L2)> ) an

Replacing (11) into (9) we derive

= R..(k)

3
Reo(k) ~ 24Lﬁ:(k). (12)
Or in the frequency domain,
2
iw m iw iw iw
See(e ) ~ Wsm(e )* S”(e )* Sm(e ). (13)

Hence, the error signal’s spectrum is at least three times wider
than that of the input signal to the quantizer.

Based on corollaries 1-3 we conclude that the linear model
assumptions will be most accurate when o2 = 27%2 For this
value of o, the error signal is uncorrelated with respect to the
mput of the quantizer, its variance is (1 — 2) L2 which is near

3 and finally it is much whiter than the input signal. Also, it
should be noted that when 02 = 2=, the quantizer descnbmg
function for stochastic inputs, defined as DF = =2¢ [4], is
equal to 1, which is another assumption made in the linear
model method.

u(n) H,(2) x(n)

L ‘ y(n)
-L

d(n)

Hy()
w(n)

Fig. 5. Equivalent block diagram for an interpolative modulator.

III. GENERAL FORMULATION

In this section, we consider two general topologies for AL
modulators covering all single quantizer architectures—the
interpolative [13] and error-feedback architectures [14], [16].
Although these topologies are related,? they are considered
separately here to simplify the application of results. Also,
in both cases, general relations are found for both with and
without dithering.

A. Interpolative Modulators

To simplify the derivations, consider an equivalent block
diagram for the interpolative topology as depicted in Fig. 5
in which,

Ryw(k) = Ryy(k) * hi(K) * hi(—k) (14)

Rz (k) = Ry (k) * hi(k) (15)
and for the input summation node one has:

u(n) * h(n) + d(n) = w() +3(n)  (16)

which in terms of autocorrelations and cross-correlations
would result in (note that Rg, (k) = 0)

Ry (k) * hi(k) * hi(—k) + Raa(k)

Replacing (2), (3), (14) and (15) into (17) we derive the
following formula.

R (k) * hi(k) * hi(—k) + Raa(k)

2L2 oo (k)
= Arc [R (0):| hi(k) * hi(—k) + Rez(k)
* wRi(o_) X L X Ryy (k) * [hi(k) + hi(=k)]. (18)

The above formula in its most general form is a nonlin-
ear difference equation, in which given R,,(k), R4q(k) and
hi(k), Rzo(k) should be found.

Solving (18), one can compute R, (0) or equivalently the
variance of z(n) which we also define as o2 for notational
simplicity. The benefit of estimating o2 is that one can find
the probability of the quantizer being overloaded. For example,
if the output levels of the quantizer is =L, then the quantizer-
input threshold levels before overloading would be +2L.
Hence if 0, = %, 99% of times there is no overloading.

2 The interpolative topology can be modified to cover the error-feedback
topology by adding an extra filter on the input signal and vise versa.
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Fig. 6. Error-feedback topology.

As mentioned earlier, this method can also deal with state
(i.e., integrator outputs) statistics. Using the definition of
intermediate functions [i8], Fi(z) = 57((:—)) in which s;(n)
is the ¢*P state of H;(z) and v(n) is the input to H;(z) and
assuming d(n) = 0 (Fig. 1), we conclude that:

k) = R, (k)
fi(k) * fi(—k).

R,,,,(k) * hq(k) * hi(—
Ry.s.(k) = Ry, (k) *

B. Error-Feedback Topology

(19)
(20)

Fig. 6 depicts the error-feedback topology. Based on a
similar approach as that of the previous section, the general
equation for the error-feedback topology is found to be given
by:

Ruu(k) + Rdd(k * hE(k) * he(_k)
= Rus(k) 4 | Bua(k) (1 ~2L #)
212 Rez(k)
+ —Arc ( (0))] k) x g(—k)

_(/ xL-—l) 2o (k) % [g(k) + g(—k)] D

where G(z) = H.(z) — 1.

IV. QUANTIZER INPUT VARIANCE

One technique used in solving general nonlinear equations is
the linear approximation method. In this section, we apply this
method to (21) and (18) and compare results with simulations.

The main idea is the use of a first-order Taylor expansion
for Arcsin(z) noting that the absolute value of the argument
in our case is always less than 1. Hence,

R..(k)

169

Inserting (22) into (21) we have

Ryu(k) + Raa(k) * he(k) * he(—k)

[ 2 )
Rm(k)(l—ZL s

B (\/g xL- 1) Ry (k) * [g(k) + g(—F)]. (23)

Linearizing the above equation enables the use of linear
transformation techniques, such as the Fourier-transform, to
solve the equation. Taking the Fourier-transform of (23), we
have

= R, (k) +

* g(k) * g(=k)

Suu(€™) + Saa(e™) He(e™) Ho(e™™)

2, 212
w0  mwo?

x

= Spz(€™) + Spa(e™) (1 - 2L

x G(e*)G(e™™)

_ ( Fi‘zL - 1) Soo(e™)[G(e™) + G(e™™)]. (24)

x

Rearranging (24) and factoring it with respect to Sy (e™),
we derive (25) shown at the bottom of the page, which can
be simplified to (26) also shown at the bottom of the page.
Using the inverse Fourier-transform, one can compute R, (k).
Specifically,

2 1 7
x=Rzm(0)='2?/_7r

The same kind of calculations can be carried out for the
interpolative topology. For the sake of brevity, only the final
result is presented here as follows.

o Seo(€™)dw.

27

uu(e“”)H(e’”) ("‘“)+de( “)

(14 Ly/2eHile)) (14 Ly [ Hile™))
(28)
Example 1: Consider (26) for a first-order AX modulator

Sa:x (eiw) —

gArcsi (R“ k)) _2_ x . (22) with G(z) = —z~1, a white Gaussian input (S,,(z) = 02), a
™ R¢2(0) R4 (0) white dithering signal (S44(z) = ¢2) and output levels of +1.
sz(eiw) = S;l/u(e!w) + de(etw)He(ezw)He(e—'Lw) (25)
1+ (1= /35 x L) G(e*)G(e=) = (/77 x L=1)(G(e®) + Gle=)
w tw iw —iw
5une™) = Suale™) + Saale™) He(e™) He(e™) )

[+ o) (o (= D)
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Hence H.(z) = 1 — 21 and (26) simplifies to
() = 03 + 31— )1 - &)

T (R (- (- R)e)

o2+ 2(273(1 — cos(w)) .29

1+ (1 - mzyg) +2< % - l)cos(w)

Recalling & " S:.(e™)dw = 02, and using the following
relationships

L dw = ! (30)

2 J_. A+ Bcos(w) +A2—- B2

1 [7  cos(w)dw _ 1 A a1)

2r J_. A+ Bcos(w) B ByA2- B?

one can derive '
2 02 + 202 202
o; =
2 m2r§ - mzrg 2( ﬂgz - 1)
2a§<1 +(1- W?,g)z)

(32)

+ .
( Wii - 1) (2 1r¢27?: - ng)

Defining y = # into (32) and after some algebraic
manipulations, (32) can be simplified to
2 4

203y% + <0§ + —)y - —==0. 33)
m ™

Solving (33) for its positive solution results in
1/2

2
R 2 T (o242
Or = (32 (0u+ 7r) +0d> + 3 (au+ 7r)' (34)

For the case where there is no dithering (o4 = 0) (34) reduces
to

(35)

Making use of these two formulas, a comparison of theory
and simulation for the root-variance of the quantizer input
is shown in Fig. 7. Note that the results are in reasonable
agreement with each other.

Example 2: To check the accuracy of the theoretical pre-
dictions for nonwhite input signals, example 1 was repeated
with dithering and the input signal was low-pass filtered before
being applied to the modulator. Specifically, the low-pass filter
had the transfer-function 1%_21[—1 which has a dc gain of unity
and a pole at p. Such a low-pass filter results in the input
signal spectrum being given by

wy _ 2 (1 - p)2

Suu(e™) = oy, 1+ p? - 2pcos(w)’

Unfortunately, deriving an analytical result for this case is
extremely difficult and thus a numerical approach was used
for computing the root-variance of the quantizer input, o,.
The results are shown in Fig. 8 where it should be mentioned
that here the input power is aﬁ(i—;%). Once again note that the
simulation and theoretical results are in reasonable agreement.

(36)

1stOrder Modulator, White Input, With dithering
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Fig. 7. Quantizer input root-variance for a first-order modulator with a
white input having a variance of aﬁ. (a) With uniformly distributed dithering
between [—0.5, 0.5]. (b) Without dithering.

Example 3: A second-order modulator with G(z) =
—22~1 4 2~2 and quantizer output levels of £1 is considered
in this example. Once again, a numerical iterative approach
was used to compute o, due to the difficulty in deriving an
analytical formula. The results for white as well as colored
inputs are shown in Fig. 9.

Example 4: In this example, a fourth-order interpolative
modulator also used in [3], [11] is simulated where H;(z)
is given by

Yo g An(z = DN
(z—1)N = 30, Bu(z — 1)N-"

in which N = 4, (Ao,Al,A27A3,A4) = (08653,11920,
0.3906, 0.06926, 0.005395) and (By,Bs,Bs,Bs) =

Hi(z) = 1)
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1st Order Modulator, Colored Input(p=0.5), With dithering
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Fig. 8. Quantizer input root-variance for a first-order modulator with colored
input versus input power (a) p = 0.5, (b) p = 0.9.

(—8.347 x 107%2,-6.010 x 1073, —1.752 x 1074
—3.053 x 107%). Note that the poles are inside the unit
circle and the poles radii are 0.98. The simulated and
theoretical results are shown in Fig. 10 for both white and
colored inputs.

V. LARGE AMPLITUDE LIMIT CYCLES DURING INSTABILITY

In the AY modulator literature, the term limit cycle is
used to describe two distinct phenomena. One behavior is
the audible and annoying tones in the band of interest which
persist for a short or a long time-interval [15], [19]. The other
behavior is the large amplitude oscillation at the quantizer
input which occurs when the modulator is unstable [3]. In this
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Fig. 9. Quantizer input root-variance for a second-order modulator versus
input power. (a) White input. (b) Colored input.

0.133 0.167 0.2

section, the latter case is considered where an effort is taken
to estimate the quantizer input variance during instability. The
fascinating point about this limit cycle is that up to a certain
input power level, no limit cycle exists and the system is stable.
However, by increasing the input power above this critical
point, suddenly huge oscillations appear and the structure is
no longer considered stable.

To theoretically predict the behavior of these limit cycles,
suppose that large amplitude limit cycles are present, hence
the quantizer input, z(n), has a periodic behavior with fre-
quency wy. Also, assume the autocorrelation of x(n) can be
approximated by

R, (k) = Ry.(0) cos(wok) (38)
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4th Order Modulator, White Input, With dithering
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Fig. 10. Quantizer input root-variance for a fourth-order modulator versus
input power. (a) White input. (b) Colored input.

where wp is the resonance frequency of the modulator or
mathematically, ZH;(e*) = 180°. Inserting (38) into

(18) we derive g

2
= %Arcsin(cos(wgk)) * hi(k) * hi(—k)

+ 4 / #1(0) %X L x Ryz(0) cos(wok)

* [hi(k) + hi(—k)] + Ry (0) cos(wok).  (39)

2 . . o .
The term 2£- Arcsin(cos(wok)) is a periodic function, hence

its Fourier series representation can be computed as follows,
212
—Arcsin(cos(wok))
T

N1
21 cos[(2n + 1)wok]
= — —_—— 40
p nz:% @2n+1)? (40)
where N is the largest integer less than
to the oversampling ratio.> Therefore,

and is proportional

2

£Arc:sin(cos(wok)) * hy (k) * hi(—k)

& cos[(2n + 1)wok] ’
— H z(2n+1)wo
7r2 Z (2n+1)? )

(41)

Also,

R (k) * hi(k) * hi(—k)
= _1_ Suu(eiw)|Hi(eiw)‘ze*jwkdw
2 J_

(42)
cos(wok) * [hi(k) + hi(—k)] '
—Re{[ ( lwo)+H( zwo)]ezwok}

= 2|H;(e"°)| cos [LHi(e**)] cos(wok)  (43)

and noting that /H;(e*°) = 180° we conclude:

cos(wok) * [hi(k) + hi(—k)]

= —2|Hi(ei“’°)| cos(wok). (44)

Putting (41)—(44) into (39) we have
1 7 1 s —tw
> Suu(6")|Hi(e") [ e™* dw + Raa(k)
= Rm(O) cos(wok)

cos[(2n + 1)wok] | o
H i(2n+1)wg
7r2 Z (2n+1)2 (e )

— 2L |2 R (0)|Hi(e)| cos(wok).

T R44(0) “3)

Finally recalling that 02 = R,.(0) and putting £ = 0 into
(45), we derive the following relationship

o2 - 21)\/§‘H,~(ei“’°)|0'I

8L2 Z IH z(2n+1)w0 '
fopar (2n + 1)
1 tw zw _ —
-5 | sw )| Hi(e)|*dw ad) 0 (46)

where o2 is the variance of the dithering signal.
It is worth mentioning that the pdf of z(n), when limit
cycles are present, is no longer completely Gaussian. In
3Note that we are using the Fourier series representation of —Arcsm

(cos(wgt)) as an approximation for DFT. The typical high oversamplmg
ratios in AY modulators justify this assumption.
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Fig. 11. Typical pdf of quantizer input when limit cycles are present.

fact, through simulations we found that the pdf is better

approximated by
N2
= — -3
f=(z) K[(a) + b}e

A typical pdf for this case is depicted in Fig. 11. Therefore
the Gaussianity assumption is not completely valid here but is
reasonable enough for determining estimates of the variance
of the quantizer input.

Example 5: The same fourth-order AY. modulator as in
example 4 is used for this example. Here, the input is assumed
to be a zero-mean Gaussian random process with the following
spectrum

()

2 iwy |2
Suu(eiu) — - U:|H1(e )| 5 . (48)
o J o [Hi(e®)|"dw

In other words, the input signal has the same spectral shape

as the feed-forward filter. Typical quantizer waveforms for

» = 0.237 (limit cycle present) and o, = 0.199 (no limit

cycles) are shown in Fig. 12(a) and (b), respectively. Using

(46), og was found and the results are compared versus

simulation results in Fig. 13. Once again, the accuracy between
the results is reasonable.

Finally, an attempt is made to estimate the critical input
power level (0 critical) beyond which instability occurs. As
long as (38) is a valid solution to (18), there exists a limit
cycle throughout the system. Whenever such a solution fails
to satisfy (18), there can’t be any sustained Cosine solution.
To have a valid solution to (18), the quadratic equation (46)
should have a real valued solution which in turn implies the
following inequality.

i / Suu(e®

8L2 N2 ‘H (61(2n+1)w0)|
Z (2n +1)?

w)IHi(eiw)Fdw

2
-2 b - o3

49)

Assuming H;(z) is heavily attenuating the higher harmonics of
the resonant frequency, (49) can be approximated as follows.

1

g Suu

|H(e“ | dw
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Fig. 12. Example of the quantizer input. (a) Limit cycle present. (b) No limit
cycles (Note the difference in the vertical axis scales).

8L% 2IL?

> (% -2 e - o2

(50)

w2 ™

Naming the normalized input spectrum as SPSF™(e™), we
have

Suu(e™) = oL 8un™ (™) 1))
where o2 is the input power. Hence,
2 oy |2
: (3 -2 )l o
Ju critical — (52)

L [T Snorm(eiw)| Hy(ei)|*dw

Based on (52) we see that among the equi-power input
signals, those with more power inside the passband of the loop
filter make the system less stable. In fact, for these signals, a
larger portion of the signal power lies inside the filter passband,
hence the denominator of (52) is larger, i.e., 03, critical 18 1€SS.
In other words, a system exhibits limit cycles at lower levels
of input signal power when its power is concentrated at low
frequencies. Conversely, if the input signal has most of its
power outside the passband of the loop filter, very large levels
of input power can be applied. An interesting example of
this case is the cascaded multistage modulator architecture,
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where the input to the second stage is the quantization error
of the first stage [11]. Though the input to the second stage
has much more power than the input to the first stage, the
second stage is not necessarily prone to instability since both
stages have the same in-band power from their inputs. To
verify the credibility of (52), simulations and predicted values
are compared in Fig. 14 for inputs with different bandwidths.
As one can see, both simulation and theory indicate that
by widening the input signal’s spectra, oy critical 1S getting
larger. The theoretical results predict simulations well for low
bandwidth inputs, however, the matching between simulation
and theory deteriorates at higher bandwidths.

VI. CONCLUSION

A qualitative approach based on a stochastic point of view
was presented to study the behavior of AY. modulators.
Assuming that all the signals throughout the modulator are
random processes with zero means, two main equations were
derived for two different topologies relating the autocorrelation
of the signal at the quantizer input to the autocorrelation
of the input signal, a dithering signal, and the loop filter

parameters. These equations are general and apply to arbitrary
AY modulators having zero-mean stochastic inputs with an
arbitrary spectrum.

An analytical solution was found for the case of the first-
order AY modulator having a white input both with and
without dithering and the results are in good agreement with
simulation. Also the same modulator was considered with a
colored input where the equations were solved numerically
and again the results are in agreement with simulation results.
This same numerical approach was also applied to a second
and a fourth-order modulator to verify applicability of the
proposed method to higher-order modulators. In all these cases
the standard deviation of the one-bit quantizer input is found
as a function of modulator input power. Next, based on the
same method, numerical results were derived for the quantizer
input variance when large amplitude limit cycles are present
assuming a large amplitude limit cycle to have a sinusoidal
autocorrelation. Numerical as well as simulation results were
presented. Finally, an attempt was made to estimate the critical
power level for the input signal’s power beyond which the
modulator starts having limit cycles.
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