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Abstract—We develop a compensation method for con-
tinuous-time delta–sigma modulators valid for loop filters of
arbitrary order. Our approach, based on variable-structure
theory, accommodates multilevel quantization and dithering.
Stability is rigorously proved under the assumption of infinite
sampling rate and is accompanied by an analytic characterization
of performance. A slight modification of the basic compensator
provides a defence against parametric uncertainty through the
use of variable-integrator damping.

Index Terms—Analog, continuous-time filtering, delta–sigma
modulation, electronics, integrated circuits, sliding-mode, sta-
bility, variable-structure control.

I. INTRODUCTION

T HE BANDWIDTH requirements of emerging communi-
cation standards have prompted interest in the develop-

ment of data converter technologies. Although traditionally con-
fined to low-speed applications such as audio-range signal pro-
cessing and narrow-band communications, recent efforts have
demonstrated the feasibility of delta–sigma modulation tech-
niques for wide-band data conversion [1], [2]. A current trend
in area-efficient single-loop modulator integrated circuits oper-
ating at high sampling rates is the use of continuous-time loop
filters in combination with relatively coarse (often single-bit)
quantizers [3], [4].

In this paper, we develop compensation strategies suitable for
continuous-time modulators employing loop filters of arbitrary
order. This work is of both practical and academic interest. Our
approach is based on the use of variable-structure techniques
(for an introduction see [5] or [6]) which have received some,
though not extensive, attention in the design of analog elec-
tronic systems [7], [8]. Our methods provide two main benefits.
First, a “soft-reset” effect, i.e., stabilization with potentially less
degradation in signal-to-noise-ratio (SNR) than that of conven-
tional reset-compensation. Second, variable-integrator damping
to yield robust performance in the face of uncertainties in filter
components.

A. Background

The basic delta–sigma modulator architecture (Fig. 1) is
stableif the states of the loop filter are bounded and the input
to the quantizer is within specified limits, given any initial
condition within a subset of state space and any input signal
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Fig. 1. A basic delta–sigma modulator with dither input,d. The quantizer
element is a clocked device, and theloop filter, with state vectorxxx (vector signals
are denoted by bold lines in all figures), is a linear time-invariant (LTI) system.

Fig. 2. The compensated delta–sigma modulator contains the basic modulator
(within the dashed boundary) in addition to a set of stabilizing elements. The
detectorblock indicates the onset of large states by employing a user-defined
metric. The signalm prompts thecompensatorto return the system to desirable
operating conditions with a specific type of corrective action. The loop filter
is not LTI if its parameters or state are alterable through the action of the
compensator.

within certain bounds. Definition 1 (Section III) provides a
formal statement of modulator stability.

With the “accumulation error condition” described in [9], or
the invariant-set results of Schreieret al. [10], it is possible to
construct basic delta–sigma modulators which are stable. How-
ever, the accumulation error condition relies on the use of multi-
level quantization and may impose significant costs in terms of
area or power. For arbitrary inputs, the work of Schreieret al. is
only valid for modulators up to second order and therefore may
have limited utility.

A rule-of-thumb approach is often used to design modula-
tors for which the symptoms of instability arise less frequently
[11]. Nonetheless, the thrust to improve performance has made
instability in the basic delta–sigma modulator practically un-
avoidable. The onset of large states is typically handled on a
contingency basis as indicated in Fig. 2. In the case of a reset-
ting single-bit modulator, the loop filter is equipped with reset
switches on each integrator, thedetectormay simply count the
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Fig. 3. Architectural comparison of single-bit interpolative modulator (left) and variable-structure control system (right); the correspondingsignals have identical
labels. The modulator only lacks the stabilizing switching feedback,K(xxx). The blockH denotes a linear time-invariant system and� represents a constant gain.

number of consecutive “1” s or “0” s (the so-calledrun-length)
in to estimate the degree of quantizer overload, and thecom-
pensatortriggers the integrator reset switches to close or open
via the signal . Other stabilization strategies are also amenable
to this general form. To avoid confusion, we refer to the system
shown in the figure, including the basic delta–sigma modulator,
as acompensated modulator. Therefore, the complete architec-
ture may be stable, in spite of the fact that the basic modulator,
taken alone, is not.

B. Compensation Strategies

The simplest means of ensuring that the states of the compen-
sated modulator are within desired ranges is to reset all integra-
tors if a threshold is exceeded. This guarantees stability but can
adversely impact performance. In the limit, as the frequency of
resets tends to infinity, we observe a noise transfer function of
unity, and a signal transfer function of zero. Thus, while reset-
ting provides stability, it can, in principle, also yield the worst
possible resolution.

Various compensation strategies have been proposed to im-
prove robustness without significantly degrading performance.
State-limiting strategies which attempt to confine integrator out-
puts to “stable regions” of state-space as suggested in ([11], Sec-
tion 4.6) may be difficult to implement since such regions are
not known for arbitrary inputs. The approach of Moussavi and
Leung guarantees stability for discrete-time modulators using a
local-feedback strategy and digital partial-cancellation of stabi-
lizing signals [12]. However, the validity of the technique in the
case of continuous-time loop filters is not proved.

In this paper, we applyvariable-structuremethods in the de-
velopment of stable compensated modulators. Variable-struc-
ture theory is a branch of systems control in which switching
elements are used for stabilization and tracking. Our approach
may be viewed as a “natural choice” for modulator stabilization
for the following reasons. First, as shown in Fig. 3, the interpola-
tive delta–sigma modulator and the variable-structure control
system have similar form. Second, variable-structure control al-
gorithms only require switching elements and fixed-gain am-
plifiers and can therefore be implemented inexpensively. Third,
variable-structure methods are suitable for systems with discon-
tinuous dynamics so that analytically proving stability for arbi-
trary-order loop filters is possible.

II. OVERVIEW OF PROPOSEDCOMPENSATORS

Each of the architectures presented in this section is based
on the compensated modulator form of Fig. 4. Throughout the

Fig. 4. The general form of our proposed modulator compensation
architectures. The quantizerQ( �) may be multi-level. The blockS
determines appropriate settings for thek gains (Figs. 7 and 12) based on the
sign of� and the signs of loop filter states. An estimate of the magnitude of the
state vectorxxx enables the use of operatingmodesdescribed in Section II-C.

paper we assume that thenominalloop filter, denoted by , has
the controllable-canonical form realization shown in Fig. 5 (the
state-model for is assumed to be given by ,
described in detail in Section 3). This “direct” form is often
used in continuous-time implementations ([13], [14]). Although
other realizations are amenable to the formal methods applied
in this work, they are not considered to simplify our presenta-
tion. We augment with switching feedback elements to
obtain the effective loop filter shown in Fig. 6. These gains
are distributed across the filter to help minimize the effects
of nonidealities on modulator resolution.

A. Soft-Resetting (SR) Compensator

The first contribution of this paper is a stabilization method
best described as a mild form of resetting. Once activated, our
“soft-reset” can ensure that from any initial condition within
a specified set: 1) quantizer overload is avoided; 2) states are
bounded; and 3) states enter a neighborhood of the origin and
remain until compensation is deactivated. As long as the input
signal is within its predetermined bounds, it does not affect
this process. In addition, as with conventional reset-compensa-
tion, soft-resetting can guarantee that loop filter states substan-
tially shrink, providing a defence against oscillatory instabilities
which may not be as effectively countered by other stabilization
techniques. Unlike conventional resetting, soft-resetting yields
appreciable modulator performance under permanent activation
(this property is demonstrated in Section II-B).

Thedetector(shown in Fig. 4) outputs under normal
operating conditions and sets if corrective measures are
required. The implementation details of this block are left to
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Fig. 5. Nominal loop filter structure, based on controllable-canonical form.

Fig. 6. Effective loop filter structure for use with compensation strategies proposed in this paper. Switching feedback elementsk are shown in Figs. 7 and 12.

Fig. 7. The switchable feedback gain element for the soft-resetting compensator. It is defined ask (m;xxx) = �k +" sgn(�) sgn(x ), where�k is a real constant
and" > 0. Thusk = �k + " andk = �k � " . The zero-gain switch position corresponds to no compensation. The parameter" is needed to counter
parametric uncertainties and to speed convergence ofxxx(t).

the designer. Switching is based on specific rules expressed in
the switching logic block, , which only requires the signs of
the states and the sign of . The damping element

is illustrated in Fig. 7.
The functioning of the SR-compensated modulator can be

explained with the aid of Fig. 8. Once the SR compensator is
triggered, the loop filter state vector moves such that the mag-
nitude of the loop filter output decreases monotonically. The
states eventually enter the set (a closed neighborhood of the
origin) and remain as long as . Throughout this process,
all loop filter states are bounded. Operation as a basic modulator
resumes when is cleared to 0. Note that the compensator may
be triggered from any point (initial condition) in the state space
since the soft-reset is globally stabilizing.

B. Performance of SR-Compensated Modulator

We now develop analytic SNR formulas to estimate the per-
formance of the SR-compensated modulator. In the following
discussion, we assume that soft-resetting is permanently on. Our
results therefore cannot determine the SNR loss from a transient
application of soft-resetting, but are relevant to long-term acti-
vation of the SR compensator. The analysis provides us with in-
sight into the SR compensator from a signal-processing perspec-
tive. Simulations support our theoretical findings. Model param-
eters, including noise transfer function (NTF) out-of-band-gain
(OOBG) and oversampling ratio (OSR) settings, are provided
for reference in Table I and the performance of compensation
methods in Table 2.
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Fig. 8. State-space depiction of soft-resetting action, second-order case
shown. The hyper-plane� = 0 corresponds to a loop filter output of 0. This
set is contained within a region
 whose width,�, is described in the
Formal Development Section. The path of the system state,xxx(t), is illustrated
both before and after the activation of the soft-reset. The planes� = �M

correspond to quantizer overload limits. The bold trajectory,�xxx(t), represents
the solution to (49), known as the “sliding-mode” solution, initialized at the
point on� = 0 nearest toxxx(t) at the timexxx( � ) intersects
 . As shown in
Section III,xxx(t) must enter and remain within a neighborhood of the origin
(contained within
 ), denoted here by
 .

Fig. 9. Linear approximation to SR-compensated delta–sigma modulator
intended for performance analysis. It is assumed thatm is permanently held at
1 and that the effect of dither can be ignored.

We proceed with the linear approximation to the SR-com-
pensated modulator of Fig. 9. The loop filter is obtained
by fixing the detectoroutput of the SR-compensator to 1,
and by setting the (discussed in the caption of Fig. 7) all
equal to 0. We assume that quantization noise is described by
a uniformly distributed zero-mean stochastic process with vari-
ance which can be shown to equal where
denotes the spacing between adjacent quantization levels. As
shown in Appendix A, the effective noise-transfer function of
the SR-compensated delta–sigma modulator is given by

(1)

regardless of the number of integrators. Thus, unlike conven-
tional resetting, soft-resetting provides spectral noise-shaping
(albeit first order!). The variable denotes theth entry of
the matrix. We obtain the quantization noise power spectral
density (PSD)

(2)

Fig. 10. Variations in NTF OOBG of delta–sigma modulators for lowpass
continuous-time loop filters of order N based on integrator scaling coefficient
uncertainty. The loop filter is realized in controllable-canonical-form. Device
matching is assumed and deviations of up to 20% are applied. The entries of the
ccc -matrix are free of error.

where represents the Dirac delta function. Hence the
shaped quantization-noise PSD is given by

(3)

Integrating, we estimate the shaped quantization noise power as

(4)

Assuming a sinusoidal input signal with amplitudeand fre-
quency (and so an in-band signal power of

), we may express the SNR of the SR-compen-
sated modulator as

(5)

From (5), it is evident that more aggressive nominal NTFs
should yield higher SNRs under soft-resetting because
tends to increase with OOBG. Since (in
which denotes sampling frequency), resolution should
also increase with oversampling ratio. In addition, the use
of multi-bit quantization, rather than single-bit quantization,
should also improve SNR. Typical values for these parameters
(assuming single-bit quantization) suggest that should be
somewhere in the range of 4- to 8-bits.
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TABLE I
SYSTEM AND SIMULATION PARAMETER SETTINGS FOR THEFIFTH-ORDER SR-COMPENSATEDMODULATORS USED IN Section II-B.
ALL NTF OOBGs REFER TOTHOSE OFDISCRETE-TIME PROTOTYPEFILTERS. NOTE THAT � DEFINES THEQUANTIZER OUTPUT

LIMITS f+�;��g. A SINGLE-BIT QUANTIZER IS USED IN EACH SIMULATION

TABLE II
PERFORMANCE OFCOMPENSATIONMETHODS

C. Variable-Integrator Damping and Soft-Resetting (VIDSR)
Compensator

Figs. 10 and 11 illustrate that significant variations in the NTF
OOBG can result from small deviations in-matrix entries or
errors in integrator scaling coefficients (in an actual electronic
circuit, scaledintegrators of the form are used; for con-
tinuous-time filters, the parameter is often a function of a
transconductance , and a capacitance). In general, sensi-
tivity increases with loop filter order. For a typical integrated
circuit technology, tolerances in ratios without tuning can
be more than 30%; such parametic uncertainty can have disas-
trous effects on the stability of practical implementations. For
example, for a seventh-order modulator, if the OOBG changes
from 1.5 to 1.7 (an increase of about 13%), the stable input range
reduces by more than 50% (determined from simulation).

By using modified switching elements as shown in Fig. 12
and adopting a slightly more complex detection scheme, the
soft-resetting compensator can be generalized into the VIDSR
compensator. That is, in addition to the soft-resetting effect, the
VIDSR compensator permits the adjustment of the system NTF;
setting each to a small positive value perturbs each pole of
the loop filter, and hence each zero of the NTF, slightly away
from dc (along the real-axis). It is therefore possible to “tune
down” the NTF OOBG from its nominal setting to a lower value
and thus counter parametric uncertainty without the need to ad-
just integrator scaling coefficients or parameters. Although
variable-integrator damping can be employed independently of

Fig. 11. Variations in NTF OOBG of delta–sigma modulators for lowpass
continuous-time loop filters of order N based on mismatching uncertainty in
elements of theccc -matrix. Peak mismatch errors of up to 10% are applied.
The loop filter is realized in controllable-canonical-form. Integrator scaling
coefficients are free of error.

soft-reset compensation (indeed, it may be used in conjunction
with conventional resetting), our point is that we incur only a
small cost in adjusting the SR compensator to accommodate
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Fig. 12. Modified switchable feedback gain elements to accommodate variable-integrator damping. The� blocks denote attenuators. The�1 gain (fori = 1)
enables us to “weight” the control in favor of integrators closer to the quantizer and thus minimize the effects of nonidealities at the modulator output. This additional
gain is required becausek andk have values which are potentially close to zero [see (15)].

TABLE III
SYSTEM AND SIMULATION PARAMETER SETTINGS FOR THESEVENTH-ORDERVIDSR-COMPENSATEDMODULATOR USED IN Section II. NOTE THAT � DEFINES THE

QUANTIZER OUTPUT LIMITS f+�;��g (A SINGLE-BIT QUANTIZER IS USED FORSIMULATION )

TABLE IV
VARIABLES �c AND �a REPRESENTVARIATIONS IN THE NON-ZEROENTRIES OF THEccc AND A MATRICES, RESPECTIVELY, OF THE MODEL OFTable III.

THE ACTUAL PARAMETER VALUES ARE OBTAINED THROUGH ITERATIVE RANDOM SEARCHESASSUMING THAT VARIATIONS ARE UNIFORMLY DISTRIBUTED

RANDOM VARIABLES. THE SEARCHESMAXIMIZE THE NTF OOBGsFORm = 1. AS ISCONVENTIONALLY KNOWN, THE NTF OOBG SHOULD BE, IN GENERAL,
LESSTHAN 1.8TO OBTAIN A SUFFICIENTLY WIDE “STABLE INPUT RANGE.” THUS, AS CAN BE SEEN FROM THE TABLE, THE VARIABLE-INTEGRATORDAMPING

FEATURE OF OURCOMPENSATORPERMITS TUNING OF THE NTF IN SPITE OFLARGE PARAMETRIC UNCERTAINTIES. IF THE ENTRIES OFccc ARE DETERMINED BY

PASSIVE DEVICE MATCHING, THEN CASE 3 SUGGESTS THEUNCERTAINTIES THAT ONE MIGHT EXPECT IN PRACTICE

loop filter tuning. In an actual continuous-time modulator in-
tegrated circuit, the ability to tune the loop filter is essential.

We now illustrate the use of the VIDSR compensator for the
on-line reduction of the NTF OOBG. Throughout this section,
simulated data are obtained with the seventh-order single-bit
modulator described by the (nominal) system parameters of
Table III.

We recall that in the SR-compensated modulator, there are
only two modes: (basic operation) and (soft-re-
setting). In the VIDSR scheme, thedetectorblock incorporates
a number of operational modes. A VIDSR mode is defined by
two coordinates: 1) a set of values for , and
) a corresponding noise transfer function (and OOBG). Each

mode corresponds to a distinct value for the output of thede-
tector, . Table IV shows mode and settings for the sev-
enth-order single-bit modulator of Table III, corresponding to
different uncertainty bounds on system parameters. A threshold
of 10.0, based on the 1-norm, , is used to
indicate the need for a transition to a subsequent mode.

Between transitions, the soft reset is maintained until the
norm reduces to a lower threshold (in this case 1.0). The mode
variable increments with each threshold-crossing following
a soft-reset. Thedetectorblock must estimate the norm in order
to direct mode selection.

Fig. 13 illustrates the self-tuning capability of the VIDSR-
compensated modulator. We simulate worst-case loop filter pa-



ZOURNTOS AND JOHNS: VARIABLE-STRUCTURE COMPENSATION OF DELTA–SIGMA MODULATORS 47

Fig. 13. Segment of simulation data for the VIDSR-compensated
seventh-order modulator. Soft-resetting is deactivated with the rising edge of
the mode transition signal. The modulator input signal, centred within the signal
band (a sampling frequency of2�-rad/s is applied), is0:15 sin((�=128)t).
Please note that the graph of the 1-norm has been median filtered to improve
the quality of the plot.

Fig. 14. Peak SNR of tuned VIDSR-compensated modulator. The NTF OOBG
was tuned down from 8.17 to 1.48, as shown in Case 3 of Table IV, before the
plot was generated.

rameters corresponding to % and %,
i.e., Case 3 of Table IV. To ensure a smooth transition between
modes and to shrink states which may have surged, soft-reset-
ting is applied immediately after a given threshold is exceeded.
As shown in the figure, the system settles to a mode of ,
tuning itself to reduce the aggressiveness of the NTF and thus
providing a method to compensate for uncertainty in loop filter
parameters. Once tuned, the system achieves the SNR versus
input signal power characteristic of Fig. 14, attaining a peak res-
olution of over 92 dB.

Fig. 15. Generalized delta–sigma modulator system with state vectorxxx, initial
conditionxxx , scalar inputsr andd, and scalar outputs� andy.

III. FORMAL DEVELOPMENT

In this section, we prove the stabilizing effect of SR-compen-
sation. We emphasize that an implicit assumption made in our
development is that the sampling period of the system is zero.
This infinite-sampling rate condition simplifies our formal de-
velopment considerably, and is typical of stability proofs of vari-
able-structure systems. In practice, finite sampling rates are gen-
erally acceptable as long as the sample period is much shorter
than the fastest time constant associated with the plant. For over-
sampled systems, this is usually the case.

A. Preliminaries

We define the set and make use of
the following norms. Given , we set

(6)

Given and , we define

(7)

and

(8)

The variables and represent the-th scalar components
of and , respectively. The notation denotes some norm
on .

Definition 1 (Stability of ): The system of Fig. 15,
namely, , is -stable, where , if

and for
any and satisfying , and

, for some finite real positive constants
and .

B. Setup

We now define the delta–sigma modulator, under soft-reset
compensation, as follows. The filter is described as

(9)
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in which and . We assume that there exist
finite real positive constants and such that

and . The state model parameters
and are

given by

...
...

...
...

. . .
. . . (10)

(11)

and (12)

(13)

where and denotes
a diagonal matrix (the -element is given by the first argu-
ment, the -element by the second argument, and so on).
We set to

(14)

where . We require that be defined
such that its magnitude over the set be less than
, i.e., . The feedback elements are given by

(15)

in which . The sets and , depicted
in Fig. 8, are defined as

(16)

and

(17)

for and some
.

C. Assumptions

Stability is proved on the basis of the following conditions.

1) All zeros of the nominal loop filter, , obtained from
by setting to , have negative real parts, i.e.,
is strictly minimum phase.

2) .
3) .

Note that it can be shown from the first two assumptions that all
coefficients of the numerator polynomial of are greater
than zero. The initial condition , in this context, refers to the
point at which the SR compensator is activated. In this section,
we are only concerned with the behavior of the modulator during
a soft-reset.

Fig. 16. Quantizer model.

Lemma 1 (Quantizer Model):The function
defined as

(18)

is 1) bounded and 2) equal tofor .
Proof: We note that and

that

(19)

This lemma allows us to treat any multi-level quantizer
as a single-bit quantizer, , plus a bounded disturbance,

. That is, , as shown in Fig. 16.
Lemma 2: Suppose that . The modulator

under soft-reset compensation cannot exhibit finite-escape-time
trajectories, i.e., it cannot have solutions for which there
exists a such that in

.
Proof: We write the dynamics of the modulator (under

soft-resetting) in as

(20)

and note that outside , which suggests that for

(21)

Since

and

(22)

(23)

Similarly, for . We assume, without loss of
generality, that for the following discussion. Therefore,

(24)

We may write (20) as the equivalent integral equation:

(25)
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Note that since is continuous in its arguments, any
satisfying (25) must be continuous in. We may write the-th
component of as

(26)

where , and is the -th element of . Thus,

(27)

for some . Therefore,

(28)

In the region is uniformly Lipschitz continuous;
specifically, we can show that there exists an such that

(29)

for all , for all .
Suppose that there exists a such that

(30)

where for all . From our Lipschitz con-
dition, we may infer the existence of a solution on
Since the solution must be continuous on , we can apply
Gronwall’s Lemma [15] in view of (28) which gives us a bound
on the solution,

(31)
Therefore,

(32)

which contradicts (30), since the solution must have no jump
discontinuities in view of (25) and the continuity of .
Therefore there can be no finite-escape-time trajectory in

.
Theorem 1: The modulator under soft-reset compensation is
-stable.

Proof: We define

(33)

and differentiate with respect to time

We now substitute for using (15) to obtain

(34)
Continuing

We write by setting

and

(35)

We note [see (36) at the bottom of the page] and that
for .

Since

(37)

(36)
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then if , equivalently, if , then
. We also have

To ensure that is less than zero, we set

(38)

Since , we note that
. Therefore, since , we have

that if

(39)

By Lemma 2, cannot escape to infinity in finite time in
. Given that is initially in the set , we can

determine a time for which for all ,
as follows. We have shown that

(40)

Noting that

(41)

(42)

and introducing

(43)

we have

(44)

(45)

Since

(46)

Integrating both sides of this expression with respect to time on
the interval gives (with a slight abuse of notation)

(47)

Setting and solving for reveals that
must intersect before a time

(48)

That is, for all . Once must
remain within for all subsequent time since for all

.

We now consider the evolution of within . We define
as the time at which first intersects . Therefore

. Since outside cannot leave . To
show that is bounded, we will show that is
bounded, where denotes the sliding-mode trajectory of the
stable system

(49)

which we initialize to . The
trajectories of (49) and the modulator under soft-reset compen-
sation are illustrated in Fig. 8 for the second-order case. For
details concerning our use of themethod of equivalent control,
please see Appendix B. The system is exponentially stable
because is strictly minimum phase; a proof of this is pro-
vided in Appendix C.

The following is adapted from Utkin ([6]). From the method
of equivalent control, we can write the dynamics of our modu-
lator in (9) under soft-reset compensation as

(50)

for . We let denote the state transition
matrix associated with (49). Thus the solution to (50) may be
written as

(51)

Re-expressing the integral of (51) using integration-by-parts, we
obtain

(52)

The solution to (49) is written simply as

(53)

Therefore, from (52) and (53) we determine the bound on
for as

(54)

where denotes the induced Euclidean norm. Since (49) is
stable, and are bounded. Thus, we
have that

(55)

for some , for all . Therefore, is
bounded.
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Fig. 17. Model-matching set-up to find the effective NTF. We seek the inputuuu

which renders the nominal loop filterH (s) equivalent to the first-order system,
Ĥ (s). Note thatuuu is a vector-input.

Remark: We note that if is sufficiently small, (55) sug-
gests that enters and remains within a given neighborhood
of the origin. This confirms that soft-resetting can provide a
state-shrinking effect.

IV. CONCLUSION

We have presented two compensation architectures for con-
tinuous-time delta–sigma modulators employing loop filters of
any order. These methods are based on variable-structure con-
trol techniques and offer 1) soft-resetting as an alternative to
conventional resetting and 2) measures to counter parametric
uncertainty. Although an infinite sampling rate condition is im-
posed, the power of our approach is that it accommodates ar-
bitrary inputs (with bounded peak magnitudes), dithering and
multi-level quantization. These compensators are intended for
high-order modulators employing coarse quantizers and may be
helpful in the design of wideband transceiver systems.

APPENDIX A
EFFECTIVENTF UNDER SOFT-RESETCOMPENSATION

We begin with the set-up of Fig. 17. Our task is to findsuch
that the th-order nominal loop filter is equivalent to .
We will prove that the NTF under soft resetting, i.e., theeffec-
tiveNTF, given by , is equal to . We
make the assumption that the switching offsetsappearing in
(15) are all zero; in practice, the are small, and the switching
feedbacks vary slightly about fixed “average” values. We in-
troduce the state-space systems

(56)

and

(57)

where and . All other param-
eters are defined as in Section 3. We assume that and

are initialized such that . We define the output
error as

(58)

Now differentiate the error with respect to time

(59)

(60)

and make the substitution to obtain

(61)

But we note that

(62)
If we substitute for each the corresponding given in (15)
with for all , we obtain

(63)

Therefore is equivalent to and we obtain the effective
noise transfer function

(64)

APPENDIX B
USE OF THEMETHOD OFEQUIVALENT CONTROL

Variable-structure theory conventionally requires that the
system under consideration have an equal number of outputs
(switching surfaces) and control inputs. The proposed modu-
lator architecture is multi-input, single-output. In this section
we present the technical details of how variable-structure
theory can be made to accommodate our design, and why the
so-called “sliding-mode” solution ([5]) is indeed given by
the linear system of (49).

We can write the dynamics of a delta–sigma modulator in the
expanded form

(65)

where and . Assuming that the system
is undergoing a soft-reset, we have

(66)

and (67)

...
(68)

Our augmented system includes additional “dummy”
outputs. According to Utkin ([6]), a sliding mode solution exists
on if , for all . From (65) we
obtain (also noting that the sliding-mode solution corresponds
to setting and )

(69)

(70)
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(71)

(72)

Thus a sliding mode exists on . From the state model
of , we have that and

. Under these circumstances, we may, as
indicated by Utkin in [6], arbitrarily assign components
of the control vector so that the solution obtained from
setting can be found using themethod of equivalent
control. Thus, for the purposes of determining the sliding mode
solution, is identical to the single-input single-output system

(73)

if we set the first components of to zero. Here, the
scalar denotes our single control input (the-th component
of ) to be used as the “equivalent control,” as shown below.
Following the method of equivalent control, we obtain

(74)

(75)

(76)

Substituting this expression forinto (73) yields the linear time-
invariant sliding mode dynamics of (49) when combined with
the constraint that . If is strictly minimum phase, then

is bounded and goes to zero exponentially as . A
proof of this statement is given in Appendix C.

APPENDIX C
STABILITY OF SLIDING MODE FROM STRICT MINIMUM PHASE

ASSUMPTION ON

In this section we show that the dynamics of (49) are expo-
nentially stable if is strictly minimum phase. We first note
that

...
...

...
...

. . .
. . . (77)

Therefore, the sliding mode dynamics are actually of order
. The first state variable, , can be expressed as the linear

combination

(78)

From inspection of (77), the dynamic system formed by states
has poles given by the roots of the polynomial

(79)

Now, the zeros of are given by the roots of the numerator
polynomial of its transfer function (which is readily obtained
from its state model ). This polynomial is

(80)

Since and have the same roots, the zeros of are
the eigenvalues of the sliding mode dynamics. Thus if is
strictly minimum phase, the sliding mode dynamics are expo-
nentially stable.
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