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Variable-Structure Compensation of Delta—Sigma
Modulators: Stability and Performance

Takis ZourntosMember, IEEEand David A. JohnsFellow, IEEE

tinuous-time delta—sigma modulators valid for loop filters of
arbitrary order. Our approach, based on variable-structure ¥'——~1 loop
theory, accommodates multilevel quantization and dithering. filter
Stability is rigorously proved under the assumption of infinite
sampling rate and is accompanied by an analytic characterization * X
of performance. A slight modification of the basic compensator
provides a defence against parametric uncertainty through the
use of variable-integrator damping.

Abstract—We develop a compensation method for con- /Ld
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=) quantizer

Fig. 1. A basic delta—sigma modulator with dither inpdt, The quantizer
Index Terms—Analog, continuous-time filtering, delta—sigma elementis a clocked device, and thep filter, with state vecto# (vector signals
modulation, electronics, integrated circuits, sliding-mode, sta- aré denoted by bold lines in all figures), is a linear time-invariant (LTI) system.

bility, variable-structure control.
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HE BANDWIDTH requirements of emerging communi-

cation standards have prompted interest in the develop- F “ X
ment of data converter technologies. Although traditionally con- i E
fined to low-speed applications such as audio-range signal pro-
cessing and narrow-band communications, recent efforts have
demonstrated the feasibility of delta—sigma modulation tech-

nigues for wide-band data conversion [1], [2]. A current trend

in area-efficient single-loop modulator integrated circuits oper- ; detector
ating at high sampling rates is the use of continuous-time loop
filters in combination with relatively coarse (often single-bit)

guantizers [3], [4]. Fig. 2. The compensated delta—sigma modulator contains the basic modulator

n this paper, we develop compensation strategies suitable " 1 deshed bourdany) n addton o cetof staiizng clements The
continuous-time modulators employing loop filters of arbitraryetric. The signak» prompts theompensatoto return the system to desirable
order. This work is of both practical and academic interest. Qgﬁerating qorjditions with a specific type of corrective action. The I_oop filter
approach is based on the use of variable-structure teChniQ?&%eigt';'_ts parameters or state are alterable through the action of the
(for an introduction see [5] or [6]) which have received some,

hough n xtensiv ntion in th ign of anal lec-
:r(;)#ig sys(t)érﬁst[eﬂ,S[S?., gltjtre mte(ihodstpreojgz?woom:inab(;?];‘ifgithm certain bounds. Definition 1_.(Section Ill) provides a
First, a “soft-reset” effect, i.e., stabilization with potentially les orm.al stattiment of quulator Stab'“.tY' N . .
degradation in signal-to-noise-ratio (SNR) than that of conve —W'th the accumulation error cgndmon d(?;crlbed n [9], or
tional reset-compensation. Second, variable-integrator damp{hi'nva”ant'set results of Schreieral. [10], it is possible to

to yield robust performance in the face of uncertainties in filtéf struct basic delta—5|gma modg!ators Wh'Ch are stable. HOV.V'
components. ever, the accumulation error condition relies on the use of multi-

level quantization and may impose significant costs in terms of
area or power. For arbitrary inputs, the work of Schreieal.is

A. Background !
i ) ) ) only valid for modulators up to second order and therefore may
The basic delta—sigma modulator architecture (Fig. 1) jgve limited utility.

stableif the states of the loop filter are bounded and the input A pyle-of-thumb approach is often used to design modula-
to the quantizer is within specified limits, given any initiakors for which the symptoms of instability arise less frequently
condition within a subset of state space and any input signah]. Nonetheless, the thrust to improve performance has made
instability in the basic delta—sigma modulator practically un-
Manuscript received August 21, 2000; revised June 6, 2001 and July 16, 20avoidable. The onset of large states is typically handled on a
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Fig. 3. Architectural comparison of single-bit interpolative modulator (left) and variable-structure control system (right); the correspgmalsgave identical
labels. The modulator only lacks the stabilizing switching feedbB(;). The blockH denotes a linear time-invariant system @ngpresents a constant gain.

number of consecutive “1” s or “0” s (the so-calleth-length

in ¢ to estimate the degree of quantizer overload, andtime-
pensatortriggers the integrator reset switches to close or open
via the signak. Other stabilization strategies are also amenable
to this general form. To avoid confusion, we refer to the system
shown in the figure, including the basic delta—sigma modulator,
as acompensated modulatoFherefore, the complete architec-

ture may be stable, in spite of the fact that the basic modulator, - sgn(-) ‘— M

taken alone, is not. P 9y y
: m detector c

B. Compensation Strategies T comenater ¥

The simplest means of ensuring that the states of the compgeig- 4. The general form of our proposed modulator compensation
sated modulator are within desired ranges is to reset all integeghitectures. The quantizeR(-) may be muilti-level. The blockSTy,

. . . o rmines appropriate settings for thegains (Figs. 7 and 12) based on the
tors if a threshold is exceeded. This guarantees stability but (gééﬁofa and the signs of loop filter states. An estimate of the magnitude of the

adversely impact performance. In the limit, as the frequency @hte vector enables the use of operatinipdesdescribed in Section I1-C.

resets tends to infinity, we observe a noise transfer function of

unity, and a signal transfer function of zero. Thus, while resgiaper we assume that theminalloop filter, denoted by, has

ting provides stability, it can, in principle, also yield the worsthe controllable-canonical form realization shown in Fig. 5 (the

possible resolution. state-model forH, is assumed to be given A, by, co, 0),
Various compensation strategies have been proposed to #fascribed in detail in Section 3). This “direct” form is often

prove robustness without significantly degrading performanagsed in continuous-time implementations ([13], [14]). Although

State-limiting strategies which attempt to confine integrator outher realizations are amenable to the formal methods applied

puts to “stable regions” of state-space as suggested in ([11], S@cthis work, they are not considered to simplify our presenta-

tion 4.6) may be difficult to implement since such regions atgon. We augmen#, with switching feedback elements to

not known for arbitrary inputs. The approach of Moussavi anshtain the effective loop filte shown in Fig. 6. These gains

Leung guarantees stability for discrete-time modulators usingge distributed across the filtéf to help minimize the effects

local-feedback strategy and digital partial-cancellation of stakjf nonidealities on modulator resolution.

lizing signals [12]. However, the validity of the technique in the

case of continuous-time loop filters is not proved. A. Soft-Resetting (SR) Compensator

In this paper, we applyariable-structuremethods in the de- e first contribution of this paper is a stabilization method
velopment of stable compensated modulators. Variable-strygsst gescribed as a mild form of resetting. Once activated, our
ture theory is a branch of systems control in which switchingq_reset can ensure that from any initial condition within
elements are used for stabilization and tracking. Our approaghyeified set: 1) quantizer overload is avoided:; 2) states are
may be viewed as a “natural choice” for modulator Stab'“zat'oﬁ‘ounded; and 3) states enter a neighborhood of the origin and

for the following reasons. First, as shown in Fig. 3, the interpol?émain until compensation is deactivated. As long as the input
tive delta—sigma modulator and the variable-structure contr, bnal is within its predetermined bounds, it does not affect

system have similar form. Second, variable-structure control gz process. In addition, as with conventional reset-compensa-

gqr'|thms only require swnchmg elements' and f|xeq-ga|n a.nl]ibn, soft-resetting can guarantee that loop filter states substan-
plifiers and can therefore be implemented inexpensively. Th|rﬁi

ariable-structure methods are suitable for svstemns with disca ally shrink providing a defence against oscillatory instabilities
vari structu S sul Systems with dISCOf -, may not be as effectively countered by other stabilization
tinuous dynamics so that analytically proving stability for arbi- . . . . . !
. . ; techniques. Unlike conventional resetting, soft-resetting yields
trary-order loop filters is possible. . -
appreciable modulator performance under permanent activation
(this property is demonstrated in Section 11-B).
Thedetector(shown in Fig. 4) outputs: = 0 under normal
Each of the architectures presented in this section is basgmerating conditions and sets = 1 if corrective measures are

on the compensated modulator form of Fig. 4. Throughout thequired. The implementation details of this block are left to

Il. OVERVIEW OF PROPOSEDCOMPENSATORS
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Fig. 5. Nominal loop filter structure, based on controllable-canonical form.
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Fig. 6. Effective loop filter structure for use with compensation strategies proposed in this paper. Switching feedback keJearestown in Figs. 7 and 12.
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Fig. 7. The switchable feedback gain element for the soft-resetting compensator. Itis defiped ag) = k; +¢c:sgn(o) sgn(a;), wherek; is a real constant
ande; > 0. Thusk;’ = k; + ¢, andk; = k; — ¢,. The zero-gain switch position corresponds to no compensation. The paramistereeded to counter

parametric uncertainties and to speed convergenagtof

the designer. Switching is based on specific rules expressedinPerformance of SR-Compensated Modulator
the switching logic blockS,, which only requires the signs of

the states;; and the sign ob. The damping elemeni; (i = we now develop analytic SNR formulas to estimate the per-
1,...,n)is llustrated in Fig. 7. formance of the SR-compensated modulator. In the following

The functioning of the SR-compensated modulator can Bcussion, we assume that soft-resetting is permanently on. Our
explained with the aid of Fig. 8. Once the SR compensatorssults therefore cannot determine the SNR loss from a transient
triggered, the loop filter state vector moves such that the magpplication of soft-resetting, but are relevant to long-term acti-
nitude of the loop filter output decreases monotonically. Thetion of the SR compensator. The analysis provides us with in-
states eventually enter the €& (a closed neighborhood of thesight into the SR compensator from a signal-processing perspec-
origin) and remain as long as = 1. Throughout this process, tive. Simulations support our theoretical findings. Model param-
all loop filter states are bounded. Operation as a basic modulaétsrs, including noise transfer function (NTF) out-of-band-gain
resumes whem is cleared to 0. Note that the compensator mgDOBG) and oversampling ratio (OSR) settings, are provided
be triggered from any point (initial condition) in the state spader reference in Table | and the performance of compensation
since the soft-reset is globally stabilizing. methods in Table 2.
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) afcﬁ";‘m:et Variation of OOBG as a Function of Parametric Uncertainty
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Fig. 8. State-space depiction of soft-resetting action, second-order c: 10 10 10
shown. The hyper-plane = 0 corresponds to a loop filter output of 0. This . .
set is contained within a regiof2 o whose width,A, is described in the Integrator Scaling Coefficient Tolerance (percent)

Formal Development Section. The path of the system st4te, is illustrated

both before and after the activation of the soft-reset. The planes £M  Fig. 10. Variations in NTF OOBG of delta—sigma modulators for lowpass
correspond to quantizer overload limits. The bold trajecta(ty), represents continuous-time loop filters of order N based on integrator scaling coefficient
the solution to (49), known as the “sliding-mode” solution, initialized at thencertainty. The loop filter is realized in controllable-canonical-form. Device

point ono = 0 nearest tax(t) at the timex( - ) intersects2 4. As shown in  matching is assumed and deviations of up to 20% are applied. The entries of the
Section Ill, z(t) must enter and remain within a neighborhood of the origig,-matrix are free of error.
(contained withir€2 o), denoted here b$2,.

where é7( - ) represents the Dirac delta function. Hence the

=0 fLeQ shaped quantization-noise PSD is given by
| G c y
H -C1) G

ff
- Sx () = [Na(jQ)|2S., (i)
_ () A5y 3)

IQCén

Fig. 9. Linear approximation to SR-compensated delta—sigma modulator

intended for performance analysis. It is assumedstha permanently held at ; ; i ati i
1 and that the effect of dither can be ignored. Integrating, we estimate the shaped quantization noise power as

. . o @ (1+c3a) A3 s
We proceed with the linear approximation to the SR-com- Py = / Sn(7)dQ = 18—493' 4)
pensated modulator of Fig. 9. The loop filtH.g is obtained ~is Con

by fixing the detectoroutput of the SR-compensatet to 1,

and by setting the; (discussed in the caption of Fig. 7) allAssuming a sinusoidal input signal with amplitude and fre-
equal to 0. We assume that quantization noise is describedeNCY 2 € (—p, +€2p) (and so an in-band signal power of
a uniformly distributed zero-mean stochastic process with vafis = (ai/2)), we may express the SNR of the SR-compen-
ances?, which can be shown to equah?)/12 whereA, Sated modulator as

denotes the spacing between adjacent quantization levels. As

shown in Appendix A, the effective noise-transfer function of I'sg = 10log <&)
the SR-compensated delta—sigma modulator is given by YO\ Py
92t
=10log T in_ ) (5)
Ne(s) = —2 ) 0 <(1 +c,) ALY
s+ con

From (5), it is evident that more aggressive nominal NTFs

regardless of the number of integrators. Thus, unlike convelkould yield higher SNRs under soft-resetting because

tional_ rgsetting, soft-resetting.provides spectral noise-shapig i< to increase with OOBG. Siné; = (225/20SR) (in
(albeit f|rst'order!). Th'ecOn vanablg dgnotes.theth entry of which Qs denotes sampling frequency), resolution should
thecq matrix. We obtain the quantization noise power SDE30tr§|so increase with oversampling ratio. In addition, the use
density (PSD) of multi-bit quantization, rather than single-bit quantization,
should also improve SNR. Typical values for these parameters
. °° e assuming single-bit quantization) suggest thigt should be
Seq(I8) = / Tegr(t)e ™ dt = o2, 2) gomewhe?e ingthe rar?ge of 4- to 8)—bit§.g &

— o0
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TABLE |
SYSTEM AND SIMULATION PARAMETER SETTINGS FOR THEFIFTH-ORDER SR-COMPENSATED MODULATORS USED IN Section 1I-B.
ALL NTF OOBGs RFER TO THOSE OFDISCRETETIME PROTOTYPE FILTERS. NOTE THAT & DEFINES THE QUANTIZER OUTPUT
LimiTs {+6, —6}. A SINGLE-BIT QUANTIZER IS USED IN EACH SIMULATION

Parameters for Simulated SR-Compensated Modulators

System Parameters Simulation Parameters
Ho(s) oosG | 0| =1 | ot | OSR | it solver
0.01 87¢% +255° +6.(;ss2 40.895+0.066 L5 d-th-order
0.01 2025 +625%4 245 +6.050.74 20 11 (0,...,0 || 65536 | (64, 512) 1 Runge-Kutta
0.01 13954+12233:~g182+27a+5.2 3.0 (step size: 0.005)
TABLE I

PERFORMANCE OFCOMPENSATION METHODS

Performance of Compensation Methods

OSR NTF SNR with Soft-Reset (dB) SNR with Conventional Reset (dB)
OO0BG predicted | simulated (with dithering) simulated

1.5 (c0,=0.67) 32.3 26.9 4.5

64 2.0 (c0,=1.0 ) 37.8 29.2 3.0
30 (con=1.4 )| 420 344 2.3
1.5 (con=0.67) 42.0 39.3 3.2

128 2.0 (con=1.0 ) 48.0 39.6 2.9
3.0 (con=1.4 ) 52.0 40.7 2.1
1.5 (c0,=0.67) 51.8 42.3 3.6

256 2.0 (con=1.0 ) 57.4 475 2.8
3.0 (con=14) 61.5 48.5 2.8

C. Variable-Integrator Damping and Soft-Resetting (VIDSR) Variation of OOBG as a Function of Parametric Uncertainty
Compensator 10* —

Figs. 10 and 11 illustrate that significant variations in the NT
OOBG can result from small deviations ég-matrix entries or .
errors in integrator scaling coefficients (in an actual electron §
circuit, scaledintegrators of the fornil/sr) are used; for con- g
tinuous-time filters, ther parameter is often a function of ag’ . o[
transconductance,,, and a capacitano€). In general, sensi- i
tivity increases with loop filter order. For a typical integrate(o
circuit technology, tolerances i, /C ratios without tuning can = 10!
be more than 30%; such parametic uncertainty can have dis.2
trous effects on the stability of practical implementations. F2
example, for a seventh-order modulator, if the OOBG chang'>° 10°L
from 1.5t0 1.7 (an increase of about 13%), the stable input rar
reduces by more than 50% (determined from simulation). SRR RPN PR : o

IZy l(sting modifilt_adhslwitching elemlents(,j as shown irr: Fig. 1 o B
and adopting a slightly more complex detection scheme, t . . .
soft—rese?ting com[:?engator can be Fzgeneralized into the VIDL.. Tolerance in ¢, Matrix Entries, Unmatched (percent)
compensator. Thatis, in a(jdition to .the SOﬁ-resetting effect, the 11. Variations in NTF OOBG of delta—sigma modulators for lowpass
VIDSR compensator permits the adjustment of the system NTFéiogr{tinubus-time loop filters of order N based on mismatching uncertainty in
setting each); to a small positive value perturbs each pole aflements of the:,-matrix. Peak mismatch errors of up to 10% are applied.
the loop filter, and hence each zero of the NTF, slightly awayle loop filter is realized in controllable-canonical-form. Integrator scaling
from dc (along the real-axis). It is therefore possible to “tune efficients are free of error.
down” the NTF OOBG from its nominal setting to a lower value
and thus counter parametric uncertainty without the need to adft-reset compensation (indeed, it may be used in conjunction
just integrator scaling coefficients e parameters. Although with conventional resetting), our point is that we incur only a
variable-integrator damping can be employed independentlyshall cost in adjusting the SR compensator to accommodate

107

OBG (p

in
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Fig. 12. Modified switchable feedback gain elements to accommodate variable-integrator damping.flbeks denote attenuators. Thd gain (fori = 1)

enables us to “weight” the control in favor of integrators closer to the quantizer and thus minimize the effects of nonidealities at the modulatdiatfitional
gain is required becaugg” andk; have values which are potentially close to zero [see (15)].

TABLE Il
SYSTEM AND SIMULATION PARAMETER SETTINGS FOR THESEVENTH-ORDER VIDSR-COMPENSATEDMODULATOR USED IN Section II. NOTE THAT 6 DEFINES THE
QUANTIZER OUTPUT LIMITS {+8, —6} (A SINGLE-BIT QUANTIZER IS USED FORSIMULATION )

Parameters for Simulated VIDSR-Compensated Modulator

System Parameters Simulation Parameters
. NTF n record sampling ODE
Ho(s) (nominal) OO0OBG é {eskie length OSR interval solver
4-th-order
0.01 8785 +445 41554 +3Assi;-0.69s2+o.oe4s+oA0034 1.81 1 {0373502,3703‘10-03, 65536 64 1 Runge-Kutta
-05,0.07,0.1} (step size = 0.005)
TABLE IV

VARIABLES Acqg; AND Aa;; REPRESENTVARIATIONS IN THE NON-ZERO ENTRIES OF THEcq AND Ay MATRICES, RESPECTIVELY, OF THE MODEL OF Table III.
THE ACTUAL PARAMETER VALUES ARE OBTAINED THROUGH ITERATIVE RANDOM SEARCHESASSUMING THAT VARIATIONS ARE UNIFORMLY DISTRIBUTED
RANDOM VARIABLES. THE SEARCHESMAXIMIZE THE NTF OOBGSFORm = 1. AS ISCONVENTIONALLY KNOWN, THE NTF OOBG SH0ULD BE, IN GENERAL,
LESSTHAN 1.8 70O OBTAIN A SUFFICIENTLY WIDE “STABLE INPUT RANGE.” THUS, AS CAN BE SEEN FROM THE TABLE, THE VARIABLE -INTEGRATOR DAMPING
FEATURE OF OURCOMPENSATORPERMITS TUNING OF THENTF IN SPITE OF LARGE PARAMETRIC UNCERTAINTIES. IF THE ENTRIES OFcy ARE DETERMINED BY
PASSIVE DEVICE MATCHING, THEN CASE 3 SUGGESTS THEUNCERTAINTIES THAT ONE MIGHT EXPECT IN PRACTICE

NTF OOBG of Modulator as a Function of
Variable-Integrator Damping Given Three Cases
of Parameteric Uncertainty

Case 1 Case 2 Case 3

m (mode) {A}, Acy; = 2.5% | Acg; =5% | Acui =1%
Aaij = 25% Aaij = 5% Aa,‘j = 20%

1 {0,0,0,0,0,0,0} 8.45 10.89 8.17

2 {0.2, 0.1,0.1,0.1,0.025,0.01,0.005} 3.13 3.57 3.15

3 {0.2,0.125,0.125,0.125, 0.08, 0.025,0.007} 1.73 1.97 1.73

4 {0.4,0.2,0.2,0.2,0.1,0.035,0.02} 1.50 1.72 1.48

5 {0.5, 0.25,0.25,0.25,0.15,0.1,0.03} 1.17 1.30 1.16

6 {1,1,1,1,1,1,1} 1.00 1.00 1.00

loop filter tuning. In an actual continuous-time modulator inmode corresponds to a distinct value for the output ofdée

tegrated circuit, the ability to tune the loop filter is essential. tector, m. Table IV shows mode and,; settings for the sev-
We now illustrate the use of the VIDSR compensator for thenth-order single-bit modulator of Table IIl, corresponding to

on-line reduction of the NTF OOBG. Throughout this sectiorifferent uncertainty bounds on system parameters. A threshold

simulated data are obtained with the seventh-order single-bit10.0, based on the 1-norifg(¢)|| = >_7_, |=:(¢)], is used to

modulator described by the (nominal) system parametersiodicate the need for a transition to a subsequent mode.

Table 111. Between transitions, the soft reset is maintained until the
We recall that in the SR-compensated modulator, there ar@rm reduces to a lower threshold (in this case 1.0). The mode

only two modesm = 0 (basic operation) anth = 1 (soft-re- variablem increments with each threshold-crossing following

setting). In the VIDSR scheme, tldetectoblock incorporates a soft-reset. Thdetectorblock must estimate the norm in order

a number of operational modes. A VIDSR mode is defined lig direct mode selection.

two coordinates: 1) a set of values fay;,¢ = 1,...,n, and Fig. 13 illustrates the self-tuning capability of the VIDSR-

2) a corresponding noise transfer function (and OOBG). Eacbhmpensated modulator. We simulate worst-case loop filter pa-
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VIDSR Compensated Modulator: Self-Tuning Capability l d

R s S |,

1-Norm of State
_m

0 000 2000 3000 4000 5000 6000 7000 8000
time (s) Fig. 15. Generalized delta—sigma modulator system with state vegdtgtial

conditionz,, scalar inputs: andd, and scalar outpuis andy.

I1l. FORMAL DEVELOPMENT

....... In this section, we prove the stabilizing effect of SR-compen-
RS S R I R sation. We emphasize that an implicit assumption made in our
R e SR [ S development is that the sampling period of the system is zero.
L A T This mﬁmte-san_wplmg rate cqndlthn S|mpI|f|e_s_ our formal def
velopment considerably, and is typical of stability proofs of vari-
able-structure systems. In practice, finite sampling rates are gen-
Fig. 13. Segment of simulation data for the VIDSR-compensate@rally acceptable as long as the sample period is much shorter

seventh-order modulator. Soft-resetting is deactivated with the rising edgetgn the fastest time constant associated with the pIant. For over-
the mode transition signal. The modulator input signal, centred within the signal ..
band (a sampling frequency afr-rad/s is applied), i9.15 sin((r/128)r). Sampled systems, this is usually the case.
Please note that the graph of the 1-norm has been median filtered to improve

the quality of the plot. A. Preliminaries

We define the seR, = {x € R : = > 0} and make use of

Performance of Modulator Employing Variable-Integrator Damping  the following norms. Giverf(-) : R — R, we set
{feedback gains are set to reduce NTF OOBG from 8.17 to 1.48)

Mode, m

0 Givenz € R™ andf(-) : R — R"™, we define
80 _ 1
@ P ’ 17 2

gmm ||, = ;VM] p€{L,2} @)
© 0 max; |z;], p=o0
3 and .

50 [ n B

|fi(t)|p] , pef{l2}
40 IF@DIlp = ; . ®)
sup[|[f(H)ll2, p=oc
30 >0
200 R 77i3 BEEE 1 L. ] Thevariables:; and ;(t) represent thé-th scalar components
10 10 10 0 0 of z andf(t), respectively. The notatidfx|| denotes some norm

input signal power (dB) onR™.
Definition 1 (Stability of Sax;): The system of Fig. 15,
Fig. 14. Peak SNR of tuned VIDSR-compensated modulator. The NTF OOE}%mew Sas, is M-stable where M c [0 oo) if
was tuned down from 8.17 to 1.48, as shown in Case 3 of Table IV, before the ' ' VT d <’ M’ f
plot was generated. 1Z( o < o0, |y( )|oo < oo and|o(-)|e < or
any zo, r andd satisfying||zo|l2 < Mo, |7(-)|e < M,., and

. |[d( )]s < My, for some finite real positive constantéy, M,
rameters corresponding tcy; = 1% andAa;; = 20%, andag,. O
i.e., Case 3 of Table IV. To ensure a smooth transition between
modes and to shrink states which may have surged, soft-reget-Setup
ting is app!ied immediately after a given threshold is exceeded.yie now define the delta—sigma modulator, under soft-reset
As shown in the figure, the system settles to a modeef 4, ompensation, as follows. The filtéf is described as
tuning itself to reduce the aggressiveness of the NTF and thus
providing a method to compensate for uncertainty in loop filter = [Ag + K(z)]x + bor — boy
parameters. Once tuned, the system achieves the SNR versus ) o=cox
input signal power characteristic of Fig. 14, attaining a peak res- H: y= Qo +d) ©)
olution of over 92 dB. z(0) = x9 € R?
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in whichz € R* ando,r,d € R. We assume that there exist w(r)
finite real positive constantd/,. and M such thar( - )| <
M, and|d(-)|ec < My. The state model parametefsy € o(r) r ++¥ o(r)
R K(-) : R* — R by € R**! andey € R are  — Q) — = —1{ S sgn(-)[—>
given by
Fig. 16. Quantizer model.
0 1 0 0
0 0 Lemma 1 (Quantizer Model)The functionwg(-) : R — R
Ag= |1 .0 (10) defined as
0 0 0 1
00 -+ 0 0 wg(p) = Q(p) — §sgn(p) (18)
K@) = diag(ki(a), ., k"(f)) (11) is 1) bounded and 2) equal édor |p| > T,. O
bo=[0 0 --- 0 17 and (12) Proof: We note thatwg(p)] < |Q(-)|e + & = 26 and
co=l[co1 Co2 ' Comn-1) Conl; that

coi €ER; i=1,...,n, (13)
wq(p) = Q(p) — dsgn(p)
wherek;(-) : R* — R,4=1,...,nanddiag(-,...,-) denotes §—6=0, p>T,
a diagonal matrix (th€1, 1)-element is given by the first argu- = { —546=0, p<-T,"
ment, the(2, 2)-element by the second argument, and so on).
We setQ(-) : R — Rto

(19)

<&
This lemma allows us to treat any multi-level quantigkr- )
O(p) = { +6, p=>1, (14) as a single-bit quantizes,sgn( - ), plus a bounded disturbance,
PI=1 =6 »p< -1, wq( ). Thatis,Q(p) = 6sgn(p)+weg(p), as shown in Fig. 16.
Lemma 2: Suppose that, € R® — Q4. The modulator
wheres > M,., T, € (0,6). We require that)(p) be defined under soft-reset compensation cannot exhibit finite-escape-time
such that its magnitude over the get (—1),,T},) be less than trajectories, i.e., it cannot have solution&) for which there
8,1.e.,]Q(-)|eo = 6. The feedback elements are given by ~ €Xists & € (0, oc) such thatim,_;- [|z(t)[|2 = cc INR™ —
QA O
i=1 Proof: We write the dynamics of the modulator (under

—e1 sgn(coroT1), L
ki(x) = { Ccoen gn(corows) (15) soft-resetting) ifR™ — QA as

o — g sgn(co02;), 1=2,...,n

inwhiche; > 0,7 =1,...,n. The set€2,; and2a, depicted z=F(t,z) = [Aog + K(=)]z + bor — boy (20)
in Fig. 8, are defined as
and note that outsid®a, |o| > A, which suggests that for

Q]\4I{.’L'6Rn:|0'|SM} (16) o> A
and 6 d d 21
Qa={zeR :[o| <A} C Qy (17) y = 8senlo +d) +wolo +d). D)
Since
for A = My + max(7T,, (26M4)/(6 — M,.)) and someM ¢
(0, 00). A>Mg+T,= 6sgn(o+d)=6 and
C. Assumptions wq(o+d) =0 (22)
Stability is proved on the basis of the following conditions. y=25 (23)
1) All zeros of the nominal loop filtet(s), obtained from
H by setting toK( - ) = 0, have negative real parts, i.e. Similarly, foro < —A, y = —§. We assume, without loss of
H is strictly minimum phase. generality, that- > A for the following discussion. Therefore,
2) con, > 0.
3) xo € .

_ | . &=F(t,s) = [Ao + K@)z +bo(r —8); o> A. (24)
Note that it can be shown from the first two assumptions that all

coefficients of the numerator polynomial &fy(s) are greater ] ) ] -
than zero. The initial conditiom,, in this context, refers to the W& may write (20) as the equivalent integral equation:
point at which the SR compensator is activated. In this section,

we are only concerned with the behavior of the modulator during t
a soft-reset. z(t) = Zo +/0 Flr,(r)]dr. (25)
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Note that sinc&( -, - ) is continuous in its arguments, aay- ) Proof: We define

satisfying (25) must be continuous inWe may write the-th

component off' as V(o) = %02 (33)

i1 +agla|,  i=1,...,n—1 . . . ,
Fit,z)={ ailzi| +(r—8), i=n and differentiate with respect to time
T ?
<0 - dV
= [t 2)] < (1 +|au])l|«]l2 (26) V=3, =0collAo+ K@)z +bor

—bpbsgn(o +d) — bowg(o + d)}

= 601]{1(.’[,')0'.’171 + {Z Coi |:co(ci—‘1) + kz("l"):| O’.’L’i}

i=2 vi
+ conr — dsgn(o + d) — wolo + d)]o.

whereq; € R, andz; is thei-th element ofz. Thus,

Bt @)l < Vnmax|Fi(t, )] = Va1 + |ax])|=]l2 (27)

for somek € {1,...,n}. Therefore,
We now substitute fok; using (15) to obtain
ot
()2 < [lol|2 +/ [E[7, 2(7)][|2 dr , n
o V== Z gilcoiozi| + conr — dsgn(o + d) — wolo + d)]o.
< Jlwoll> + / Va1 + laxDlle(r) 12 dr. (28) = (39)
0 Continuing

In the regiorny > A, F(¢, %) is uniformly Lipschitz continuous;
specifically, we can show that there existslag R, such that

V = — Z€i|00i0'$i| + ConT(O' + d)
=1
— copdsgn(o + d)(o + d) — copwol(o +d)o
— conprd + conbsgn(o + d)d

IF(t,2) — F(t,y)ll2 < Lllz — 92 (29)

forallz,y e D, :={p € R"*:cop> A}, forallt > 0.

Suppose that there existg*a< co such that
PP < =Y eileoioail + conlr(leslo + d

i=1
— cond sgn(o + d)(o + d) + con|weo(o + d)||o]

+ conllr()lse + ]ld(-)|oo

Jima(t)]l2 = o (30)

wherez(t) € D, for all ¢ € [0,¢*). From our Lipschitz con-

dition, we may infer the existence of a solutig(t) on [0, t*). - _ 25i|60imi| + con[|7()| oo — 8|0 + d]
Since the solution must be continuous[6nt*), we can apply im1
Gronwall's Lemma [15] in view of (28) which gives us a bound + conlwg (o + d)|o] + conl|r()]oo + 8]|d()|oo

on the solution,
We writeV < Py, + Q. by setting
22 < lzollz exp{[vn(1 +|ax|]t} ¥t €[0,7).
(31) n
Therefore, P, o= (- Z gilcoizi| + con|wg(o + d)|| |o].
=1
lim [|z(®)]l2 < [[2ollz exp{[v/a(l +ax)lt*} < oo (32) and
Qv = con[lr(Nlee — 8llo 4 d] + con[7(-)] oo + 8]|d(-) - (35)
which contradicts (30), since the solution must have no jump
discontinuities in view of (25) and the continuity &f(-,-). We note [see (36) at the bottom of the page] and thato +
Therefore there can be no finite-escape-time trajectoR'in-  d) = 0 for |0 + d| > T},.

Q. o Since
Theorem 1: The modulator under soft-reset compensation is
M -stable. O lo+d| > |o| = |d| = |o| — |d()|ee = |o| — M4 (37)
Py < | —(mine;)(min |coi ) <Z |l ) +con|we(o +d)|| |o] (36)

-

v

<0
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then if |o| — My > T, equivalently, iflc| > My + T, then We now consider the evolution @f¢) within 2 . We define

Py, < 0. We also have T, as the time at whicl(t) first intersect€2 A . Thereforel’. €
[0,7A]. SinceV < 0 outsideQ2a, z(t) cannot leavela. To
Qp < con(M,. — 8)|o + d| + con (M, + §)M, show thate(t) is bounded, we will show thadlz(¢) — Z(¢)||2 is

bounded, wherg&(¢) denotes the sliding-mode trajectory of the

(
< con (M — 6)|o + d| + 2c0,6 My stable system

con (M = B)lo ol + 26Mo). . .{izﬂ—%@@wldAw .
we want this<0 sm - CoT = 0
To ensure tha€);, is less than zero, we set which we initialize toz(7:) = #(T.) — ((A/lcoll2)c5 ). The
trajectories of (49) and the modulator under soft-reset compen-
25 M, sation are illustrated in Fig. 8 for the second-order case. For
lo+d| > m (38) details concerning our use of theethod of equivalent control

please see Appendix B. The syst&iy,, is exponentially stable
becausel is strictly minimum phase; a proof of this is pro-
vided in Appendix C.

The following is adapted from Utkin ([6]). From the method

Since|o +d| > |o|— My, we note thalo| > [(26/(6 — M,.))+
1] My = @y, < 0. Therefore, sincé” < Py, + Qy,, we have

thatV’ < 0 if of equivalent control, we can write the dynamics of our modu-
lator in (9) under soft-reset compensation as
oA 26My
ol 2 & =Mt max (L w5y GO o {:v = (L~ bo(cobo) ol Aoz + bo(eobo) '6 g
sr - 0= ek

By Lemma 2,z(¢) cannot escape to infinity in finite time in for¢ > 7,. We let®( - ) : R — R™*" denote the state transition
R™ — Q4. Given thate is initially in the setR™ — 4, we can matrix associated with (49). Thus the solution to (50) may be
determine atim@a > 0 for whichz(t) € Qa forallt > T, written as

as follows. We have shown that t
z(t) =W (t —T)z(T.) + / Ut — 'r)bo(cobo)fld('r) dr,
T.

Qy <0, o[z A. (40) te(T,,00). (51)

Noting that cF:st;)ripressing the integral of (51) using integration-by-parts, we
Py =- lz 67‘,|Co7‘,$7‘,|] lo|, o] =z A (41) x(t) = Ot — 1o )=(Te) + ‘I’(?)bO(CObO)_la(t)
i=1 — W(t — T, )bo(eobo) "o (T.)
. . 1
e Ly T T (PR
and introducing T (52)
K= in [(m}n&i) (miin |0071|) ||$||1} >0  (43) The solution to (49) is written simply as

we have j.(t) = ‘Il(t - Te)"i'.(Te)v te (Tev OO) (53)

;= —K > .

B wlol, ol = A (44) Therefore, from (52) and (53) we determine the bound on
< —RA. (45) ||z(t) — 2(t)||2 for t € (T1, 0) as

SinceV < P, + Q5 lz(t) — z(t)]|2

V<-ra, o]z A (46) SA{unmmVWMwu4mmﬂ

Integrating both sides of this expression with respect to time on

t
the interval(0, T'] gives (with a slight abuse of notation) + <1 +/ 1@ (t = )| d7> ||bo(60bo)_1||2}

V(T) < V(0) — kAT, |o| > A. (47) T (54)
SettingV'(T) = (1/2)A® and solving for” reveals thate(t) where||- |,.; denotes the induced Euclidean norm. Since (49) is
must intersecf2a before a time stable || ®(?)||2,; and [;, [|¥(7)||2,; dr are bounded. Thus, we

V(0) — 1 A2 have that
Ta = — 25 >0 (48)
: le(t) — 2()]l < NA (55)

Thatisz(t) € Qa forallt > Ta.Oncex(t) € Qa, z(t) must
remain withinQ2a for all subsequent time sindé < 0 for all for someN € (0,00), for all t > T.. Therefore,||z(¢)||2 is
z € R" — Qa. bounded. o
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|'.‘|0 and make the substitutian = K« to obtain
E G é = co(Ag +K)x + cobgr — conr = co(Ag + K)z.  (61)
- But we note that
r—e e - B B B
G + co(Ao+K) = [cotkr  (cortcoeks) ... (Con—1+cConkn)]
H,(s) (62)
Ummey| 0

If we substitute for each; the corresponding; given in (15)
with ; = 0 for all 4, we obtain

e=0=c(t)=0 Vt>0. (63)

Fig. 17. Model-matching set-up to find the effective NTF. We seek the iput
which renders the nominal loop filtéf, (s) equivalent to the first-order system,
Ho(s). Note thatu is a vector-input.

ThereforeH, is equivalent toH, and we obtain the effective

Remark: We note that ifA is sufficiently small, (55) sug- noise transfer function

gests that:(¢) enters and remains within a given neighborhood 1 1 s
of the origin. This confirms that soft-resetting can provide a Na(s) = 7 T Hs) 11 T st (64)
state-shrinking effect. 8

<&
IV. CONCLUSION APPENDIX B
We have presented two compensation architectures for con-  USE OF THEMETHOD OF EQUIVALENT CONTROL
tinuous-time delta-sigma modulators employlng loop filters of Variable-structure theory conventionally requires that the
any order. These methods are based on variable-structure con-, . .
: . . stem under consideration have an equal number of outputs
trol techniques and offer 1) soft-resetting as an alternative 10 .. . i
. . switching surfaces) and control inputs. The proposed modu-
conventional resetting and 2) measures to counter parame

ric f : - ) ) ;
uncertainty. Although an infinite sampling rate condition is iml_a&or architecture is multi-input, single-output. In this section

: : we present the technical details of how variable-structure
posed, the power of our approach is that it accommodates t%_
n

) . . . o eory can be made to accommodate our design, and why the
bitrary inputs (with bounded peak magnitudes), dithering al o-ca)llled “sliding-mode” solution ([SE(t) is inde%d given byy
multi-level quantization. These compensators are intended ﬁr

. : : e linear system of (49).
high-order modulators employing coarse quantizers and may Ve can write the dynamics of a delta—sigma modulator in the
helpful in the design of wideband transceiver systems.

expanded form

APPENDIX A S, - { z = Aoz + Bou + byr (65)

EFFECTIVENTF UNDER SOFT-RESET COMPENSATION > =Coz

We begin with the set-up of Fig. 17. Our task is to fiduch whereB, € R"*" andCy € R™*". Assuming that the system
that thenth-order nominal loop filtetH, is equivalent toH,. is undergoing a soft-reset, we have
We will prove that the NTF under soft resetting, i.e., #ffec-

tive NTF, given byl /(1 + Hy(s)), is equal tas/(s + coy ). We Bo =1, (66)

make the assumption that the switching offsgtappearing in u=K(z)z — by and (67)
(15) are all zero; in practice, the are small, and the switching co
feedbackg:; vary slightly about fixed “average” values. We in- co

troduce the state-space systems Co = N (68)
Ji=A+[by I, H “

o { g = % | | u (°6) Our augmented systef includes(n—1) additional “dummy”

outputs. According to Utkin ([6]), a sliding mode solution exists
. b= conr ong = ¢x = 0if 56 < 0, forall& # 0. From (65) we
: {(} (57)  obtain (also noting that the sliding-mode solution corresponds
to settingy = 6sgn(s) andd = 0)
wherex = Kz andK = diag(ky, ..., k,). All other param-
eters are defined as in Section 3. We assume Fhgt) and

and

Ho(s) are initialized such that = 6 = 0. We define the output 55 = coLk1(T)Fx1 + {Z Coi {00(1_1)
error as =2 coi
e=0—2. (58) + k; (z):| in} + con[r — 6sgn(o)]o (69)

Now differentiate the error with respect to time n
= —leorllexl|alles] = Y leoileila] |zl

E=6-0 (59) —~
= co(Aozx + bor + Lyu) — conr (60) + con[r — Osgu(o)]o (70)
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n

Therefore, the sliding mode dynamics are actually of order
< = Jeoileilel |zl + conlr(-)]ola] — condla] (72) ) Y Y

1. The first state variable;;, can be expressed as the linear

—t combination
== leoileilo]lzi] + conlo]
4 C C Con
i=1 =2y, B, .S (78)
X [|[r(:)]eo — 8] <0, & #0. (72) co1 co1 co1

From inspection of (77), the dynamic system formed by states
Thus a sliding mode exists an = 0. From the state model z2, . .., x,, has poles given by the roots of the polynomial
of S., we have thatrank(Cy) = 1, rank(By) = = and

rank(CyBy) = 1. Under these circumstances, we may, as nel = CO(n—1) n—o . CO(n—2) n_3

indicated by Utkin in [6], arbitrarily assigfn — 1) components pi(z) ="+ T eon T Ton

of the control vectoru so that the solution obtained from 4 G2 o (79)
settingg = @ = 0 can be found using thmethod of equivalent Con Con

control. Thus, for the purposes of determining the sliding mode
solution, S, is identical to the single-input single-output systenyow, the zeros ofl,, are given by the roots of the numerator
polynomial of its transfer function (which is readily obtained
) from its state modelA, by, ¢, 0)). This polynomial is
T=AoZ+bo(r+u—vy)
Cox (73)

Q
l

P2(A) = con A"t + o)A T2+ -+ con. (80)

if we set the first(n — 1) components ofs to zero. Here, the SINCEp1(z) andp»(A) have the same roots, the zeroghf are
scalaru denotes our single control input (theth component the eigenvalues of the sliding mode dynamics. Thu#ifis
of u) to be used as the “equivalent control,” as shown belogtrictly minimum phase, the sliding mode dynamics are expo-

Following the method of equivalent control, we obtain nentially stable.
ACKNOWLEDGMENT
oc=0 (74) The authors would like to thank Professor B. A. Francis at
= co[AoZ + bo(r + 1 —y)] = 0 (75) the University of Toronto for his helpful comments regarding

the formal development of this paper. One of the authors (T.
Z.) would also like to thank the reviewers and Professor M. J.
Ogorzalek for their helpful comments and enthusiasm.

> u= (cobo)_lcoAO:E +y—r. (76)

Substituting this expression faiinto (73) yields the linear time-
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