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Abstract—The least mean square (LMS) algorithm has practical
problems in the analog domain mainly due to dc offset effects. If
digital LMS adaptation is used, a digitizer (analog-to-digital con-
verter or comparator) is required for each gradient signal as well
as the filter output. Furthermore, in some cases the state signals are
not available anywhere in the analog signal path necessitating ad-
ditional analog filters. Here, techniques for digitally estimating the
gradient signals required for the LMS adaptation of analog filters
are described. The techniques are free from dc offset effects and
do not require access to the filter’s internal state signals. Digitizers
are required only on the input and error signal. The convergence
rate and misadjustment are identical to traditional LMS adapta-
tion, but an additional matrix multiplication is required for each
iteration. Hence, analog circuit complexity is reduced but digital
circuit complexity is increased with no change in overall perfor-
mance making it an attractive option for mixed-signal integrated
systems in digital CMOS. Signed and subsampled variations of the
adaptive algorithm can provide a further reduction in analog and
digital circuit complexity, but with a slower convergence rate. The-
oretical analyses, behavioral simulations, and experimental results
from an integrated filter are all presented.

Index Terms—Adaptive filters, continuous-time filters, gra-
dient methods, ladder filters, least mean square methods, mixed
analog–digital integrated circuits.

I. INTRODUCTION

A NALOG adaptive filters can offer many advantages over
their digital counterparts in integrated communication

systems [1]. At the receiver, the resolution and linearity of the
analog-to-digital converter (ADC) can generally be reduced if
preceded by an analog equalizer or echo canceler [2], [3]. In
a full duplex transmitter, the line driver requirements can be
relaxed if followed by an analog adaptive hybrid [4]. Unfortu-
nately, the least mean square (LMS) algorithm, which is usually
used for integrated adaptive filters, has practical problems in
the analog domain due to dc offset effects [5], [6]. Digital
implementations of the algorithm are possible, even with an
analog signal path. However, they require access to digital gra-
dient information which in turn must be produced by additional
high-speed ADCs and may even require additional analog
filters [5], [7]. This paper describes techniques for obtaining the
digital gradient signals required for LMS adaptation without
access to the analog filter’s internal state signals. Previous work
in this area has resulted in complicated algorithms which are
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Fig. 1. Block diagram of an adaptive linear combiner withN parametersp
adapted via the LMS algorithm.

difficult to implement [8]. Therefore, emphasis is placed upon
reducing the adaptation hardware requirements.

First, some background on stochastic gradient adaptation
in general and the LMS algorithm in particular is provided
in Section II. Then, in Sections III and IV, two techniques
are proposed to overcome the shortcomings of the LMS
algorithm for analog adaptive filters. A theoretical analysis
of the proposed techniques’ convergence and misadjustment
is performed in Section V. Behavioral simulations are used
to verify the analytical results in Section VI. In Section VII,
signed variations of the adaptation are considered to simplify
their implementation. Finally, in Section VIII experimental
results are provided for a fifth-order integrated analog filter
with three adapted parameters.

II. BACKGROUND

Stochastic gradient adaptation takes the following general
form:

(1)

In (1), is the vector of filter parameters to be adapted
, is the error in the filter output with

respect to the desired output, is a constant that determines
the rate of adaptation, and is an estimate of the gradient
of with respect to the mean squared error, .
Equation (1) attempts to increment the filter parameter vector
by small steps in the direction of decreasing mean squared
error. Stochastic gradient adaptation proceeds by iterating (1)
until the mean squared error is minimized.

The method used to obtain the gradient estimate will
depend upon the structure of the adapted filter. Since adapting
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(a) (b)

(c)

Fig. 2. Implementation of the LMS algorithm for an analog adaptive filter. (a) Analog implementation. (b) Digital implementation. (c) Digital adaptation without
access to the filter state signals (proposed).

the poles of a filter can cause instability both in the signal path
and in the adaptation process, it is usual to adapt only the zeros.
Therefore, this work considers only analog filters with fixed
poles and adapted zeros. Any such filter can be modeled by the
adaptive linear combiner (ALC) shown in Fig. 1. Thesignal
path filters, , are fixed and determine the locations of the ALC
poles. (The pole locations for analog integrated filters are often
chosen either heuristically, perhaps to obtain an equiripple and
flat group delay response as in [9], or using numerical optimiza-
tions [3], [10].) By adapting the parameters of an ALC, the
location of filter zeros are optimized.

If the expected value of the gradient estimate equals the actual
gradient, , stochastic gradient adaptation
will converge to a local minimum in the performance surface for
small [11]. This is the case in the standard LMS algorithm,
which uses the following simple gradient estimate:

(2)

In (2), is the vector of state signals . The resulting
iterative update rule is

(3)

Notice that in Fig. 1 the required state signalsare available at
the outputs of the fixed filters .

There are two major challenges to performing the LMS adap-
tation on analog integrated filters. First, the state signalsare
sometimes difficult to obtain. Integrated analog filters with a
ladder structure [12], [10] and a cascade of biquads [9], [13],
[14] often use programmable feedforward gains to adjust the lo-
cation of transfer function zeros. Although only the filter zeros
are adjusted, LMS adaptation is complicated for these structures
since, unlike Fig. 1, the state signals are not available at any in-
ternal nodes. Additional analog filters are required just to gen-
erate them [5]. A block diagram of this approach is shown in
Fig. 2(a). The resulting complexity and power-consumption are
prohibitive for most practical applications.

Second, even when the state signals are available, dc offsets
on the state and error signals (always present in analog inte-
grated filters) lead to inaccurate convergence of the LMS algo-
rithm [5], [6]. Although much work has been done to mitigate
these dc offset effects (e.g., [15]–[19]), the most common ap-
proach is to use digital circuitry to implement the LMS mul-
tiply and accumulate operations (e.g., [2] demonstrates this for
one adapted zero). Digital implementations of (3) also allow the
adaptation to be easily initialized and frozen. However, in order
to maintain a high-speed analog signal path, the error signal and
all of the state signals must be digitized by either ADCs or com-
parators (sign-sign LMS) as shown in Fig. 2(b). The digitizers
can be area and power hungry, as well as loading speed-critical
nodes internal to the filter. Furthermore, this approach is still
only applicable when the analog filter has the required state sig-
nals available at internal nodes.

These two problems are addressed in this paper by per-
forming digital LMS adaptation on an analog integrated filter
without access to the filter’s internal state signals. The state
signals are estimated digitally by observing only the filter
input, as shown in Fig. 2(c). This requires less analog hardware
than the fully analog approach in Fig. 2(a) and dc offset effects
are eliminated. Unlike the digital LMS adaptation in Fig. 2(b),
this approach can be used on any analog filter structure with
programmable zeros and requires fewer digitizers. Although
digital complexity is increased, trading off analog circuit
complexity for digital circuit complexity is generally desirable
in mixed-signal deep-submicron CMOS.

III. LMS A DAPTATION WITH A COORDINATE TRANSFORM

This section will describe a simple technique for digitally es-
timating the analog filter states from the sampled filter input. If
the filter input is digitized at the Nyquist rate, each of the analog
filters – can be emulated by digital filters – . The out-
puts of these filters provide digital estimates of the state signals
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Fig. 3. Estimating the state signals of an analog adaptive linear combiner by
emulating the signal path filters digitally.

. These estimates can then be used in place of the actual analog
filter states for adaptation as follows:

(4)

A block diagram of this approach is shown in Fig. 3.
In general, the digital filters required to emulate– will

have an infinite length impulse response. However, for the re-
mainder of this paper, it is assumed that the tails of the impulse
responses have been truncated so that finite impulse response
(FIR) filters of length may be used for – . For stable
filters, the error incurred by the truncation decreases asin-
creases and, hence, can be made arbitrarily small by increasing
the filter length.

If transversal filters of length are used for the digital filters
, (4) can be written in terms of the sampled input vector

as follows:

(5)

In (5), is an matrix whose columns are the finite-length
impulse responses of the transversal filters

...
... (6)

A block diagram implementation of (5) for an analog adap-
tive filter is shown in Fig. 4. This approach will be referred
to as LMS adaptation utilizing a coordinate transformation
(LMS-CT). The “coordinate transformation” in (5) is from the
input vector to the state estimatesby the matrix . This
should not be confused with transform domain or filter bank
adaptive filtering [20], [21] where a matrix transformation is
applied digitally in the signal path. Here, it is assumed that the
main signal path must be analog, so digital signal processing
is performed on input samples just to obtain the gradient
information required for adaptation. The matrix transformation

is determined by the structure of the analog filter which is

Fig. 4. Block diagram of digital LMS-CT and LMS-ICT adaptation for an
analog filter requiring access to only the filter input and error signal.

likely to be dictated by circuit design considerations, whereas
in [20] and [21], the matrix transformation is designed to
improve certain convergence properties of the adaptation.

If the adaptive filter has a transversal structure, the-matrix
will be a identity matrix, and the matrix multiplication
in Fig. 4 is trivial. This approach has already been used in com-
bination with sign-sign LMS adaptation for switched-capacitor
analog adaptive transversal filters [22], [23]. Introducing the
matrix multiplication in (5) generalizes the LMS-CT approach
to permit adaptation of any analog filter with programmable
zeros.

If slower adaptation can be tolerated, (5) need not be iterated
at the Nyquist rate. So, the matrix multiplication, the sampling
of the error signal, and the multiply/accumulate operations can
be performed at a decreased rate. However, it is still necessary
to sample the filter input at the full Nyquist rate in order to
avoid aliasing in the state estimates.

If the filter input must be sampled and digitized at the Nyquist
rate anyway, it might seem natural to implement the signal path
using digital filters and eliminate the analog filter completely.
However, this would require a high-speed ADC at the input and
wide multipliers and adders in the filter; far fewer bits are re-
quired if digital signal processing is used only to obtain the state
estimates for adaptation. In fact, Section VII verifies that one-bit
samples of the input and trivial one-bit multipliers produce state
estimates of sufficient accuracy for LMS adaptation.

IV. LMS A DAPTATION WITH AN INVERSE COORDINATE

TRANSFORM

Although LMS-CT adaptation obviates the need for sampling
the filter state signals directly, it does require the filter input to
be sampled at the Nyquist rate. Since analog adaptive filters are
often used in high-speed signal paths, this digitizer would have
to be clocked at a very fast rate. In this section, a technique is
introduced that allows the input digitizer to be subsampled. The
technique is described by an iterative update equation with the
exact same form as (5) except that a different matrix is used in
place of .

First, consider the LMS algorithm for adapting the tap
weights of a length- transversal filter

(7)
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If slower adaptation can be tolerated, subsampled versions of
the input and error signals can be used in (7). Specifically,
and can be subsampled by and respectively, as long
as and are relatively prime. For instance, it may be con-
venient to subsample the input of an-tap filter by and
the output error by . Each parameter is then updated
every samples. With , the th parameter up-
date would be given by

(8)

Note that only every fifth sample of and every sixth sample
of are used in (8), so the digitizers on those signals may be
clocked at one-fifth and one-sixth the Nyquist rate respectively.
Since the parameters are updated every 30th sample, the algo-
rithm will converge 30 slower.

We now wish to use similarly subsampled versions ofand
to update the parameters of an arbitrary analog filter with

programmable zeros. In order to do this, the gradient estimate
used in (8) must be projected onto so that it

can be used to update the-dimensional analog filter param-
eter vector, . A projection method for linearly constrained opti-
mization problems may be used for this purpose [24]. The linear
constraint is that the ALC impulse response must stay within
the -dimensional column space of since only impulse re-
sponses of the form are possible. This is equivalent to
enforcing the following condition:

(9)

As shown in [24], this condition can be enforced during adap-
tation by using as the gradient estimate
instead of resulting in the following update rule:

(10)

Since , (10) may be rewritten in terms of the actual ALC
parameters by omitting the left-hand matrix multiplication
of

(11)

where the matrix is the pseudo-inverse of:

(12)

An intuitive explanation for this choice of follows. Recall
that an ALC with parameters is equivalent to a transversal
filter with parameters (after sampling and truncation).
Therefore, the matrix maps ALC parameter vectors to
transversal filter parameter vectors, . On the other hand,
the matrix must map the parameter update vector for a

transversal filter, , to a parameter update
vector for the ALC, . Hence, must perform the inverse
mapping of . But is a rectangular matrix with ,
so an exact inverse for will generally not exist. Instead,
the pseudo-inverse of is used since it provides the inverse
mapping with the smallest squared error [25].

Substituting the standard gradient estimate for an LMS adap-
tive transversal filter, , into (11) gives
the following iterative update rule:

(13)

Adaptation described by (12) and (13) will be referred to as
LMS adaptation using an inverse coordinate transform (LMS-
ICT). The computations required for each iteration of LMS-ICT
adaptation are exactly the same as LMS-CT adaptation; both
require the product to be multiplied by a constant

matrix prior to integration, as shown in Fig. 4. The
major advantage of LMC-ICT adaptation is that bothand
may be subsampled, whereas onlycan be subsampled using
LMS-CT adaptation. Again, the subsampling factors must be
chosen relatively prime. Equation (14) shows LMS-ICT adap-
tation for the case with and subsampled by 5 and
6 , respectively

(14)

Again, other (relatively prime) subsampling factorsand
may be chosen. Subsampling by and leads to
a straightforward hardware implementation with
slower convergence. Note that the impulse responses
must still be sampled at the full Nyquist rate in order to create
the -matrix (6) and, hence, the -matrix (12). However, since

and remain fixed throughout adaptation, they can be mea-
sured just oncea priori, then stored in a memory.

V. CONVERGENCE ANDMISADJUSTMENTANALYSIS

Like the traditional LMS algorithm, LMS-CT and LMS-ICT
adaptation can be considered special cases of (1) with gradient
estimates defined as follows:

- (15)

- (16)

Assuming the errors introduced by sampling and truncating
the ALC impulse responses in (6) are negligible,
the state estimates used for LMS-CT adaptation are equal to
the actual filter state signals, . Therefore,

- and LMS-CT adaptation will
have the same stability and misadjustment properties as the full
LMS algorithm.

If is not parallel to the actual gradient, ,
there is said to be some “gradient misalignment” in the adap-
tation. It will now be shown that this is the case for LMS-ICT
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adaptation. The expected value of the LMS-ICT gradient esti-
mate is

-

(17)

In (17), we have used the fact that , since
is the unbiased gradient estimate used by LMS adaptive

transversal filters. Since is not necessarily parallel
to , there is some gradient misalignment in LMS-ICT
adaptation.

Fortunately, it is possible for the adaptation to converge in
spite of this gradient misalignment.1 Next, it will be shown that
using LMS-ICT adaptation, the expected value of the ALC pa-
rameter vector converges to the optimal value,, as .
Taking the expectation of both sides of the parameter update rule
in (13) yields

(18)

The term can be rewritten in terms of the optimal
transversal filter parameters, the input autocorrelation matrix

, and using the Wiener–Hopf equation and
assuming is independent of :2

(19)

Substituting (19) into (18) yields

(20)

Using the Wiener–Hopf equation again allows us to relate
and

(21)

Substituting (21) into (20) gives

(22)

After performing a coordinate transformation to a principal axis
system [11], (22) can be rewritten in terms of a transformed
weight-error vector, where is the eigen-
vector matrix of

(23)

In (23), is the diagonal eigenvalue matrix of . An equa-
tion similar to (23) also describes the convergence of the LMS
algorithm, except that is the diagonal eigenvalue matrix of

1Gradient misalignment has been demonstrated in the sign-sign LMS algo-
rithm [26], yet many practical adaptive integrated filters employ it [23], [27],
[28].

2The independence assumption is often invoked in statistical analyses of the
LMS algorithm [11], [29], [30] and leads to reliable theoretical predictions of
performance, even when there is some dependence betweenqqq(k) anduuu(k).

Fig. 5. Simulated adaptive filter model-matching system.

Fig. 6. Third-order orthonormal ladder filter using multiple feed-ins of the
input signal.

. Therefore, many results for LMS adaptive filters can
be applied here by substituting for . Specifically,
if

(24)

where is the largest eigenvalue of , then
as . Hence, and

, proving that the mean value of the parameter
vector will converge to its optimal value using LMS-ICT
adaptation, as long as satisfies (24). Furthermore, the time
constant of decay of the MSE (in terms of the sampling time)
and the steady-state misadjustment are

(25)

Misadjustment (26)

VI. SIMULATION RESULTS

Model-matching experiments were used to verify the
LMS-CT and LMS-ICT approaches on continuous-time filters.
All of the simulations described in this section use the block
diagram shown in Fig. 5. An independent additive noise
source is introduced to control the steady-state error after
convergence. The time scale is normalized to a sampling
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(a) (b)

Fig. 7. (a) Impulse responses for the third-order orthonormal ladder filter, sampled to obtain the rows of matrixG. (b) The rows of the pseudo-inverseK.

rate of . The reference filter is a third-order elliptic
low-pass transfer function with 0-dB dc gain, 0.5 dB of ripple
in the passband extending to , and 40 dB of stopband
attenuation. The filter input is white-noise bandlimited by an
eighth-order elliptic filter with 0.1 dB of passband ripple to
0.4 and 60 dB of stopband attenuation beyond 0.5.

A. Orthonormal Ladder Filter

Interestingly, when the impulse responses are or-
thonormal, the LMS-CT and LMS-ICT adaptations become
identical. This can be seen by arranging the impulse responses
into column vectors, . Since the
vectors are orthonormal, for and .
By substituting into (12), it is easily
verified that , as follows:

(27)

Orthonormal ladder filters have this property [31]. A third-
order continuous-time orthonormal ladder structure is shown
in Fig. 6. By making the feed-in parametersadaptive, the
structure becomes an adaptive linear combiner. As mentioned
earlier, filters with adaptive feed-ins are of particular interest
because the state signals required for traditional LMS adaptation
are not available anywhere in the system. In order to perform
LMS adaptation, it would be necessary to operate a second
filter in parallel with the first just to obtain the gradient signals
[7]. In addition to the extra complexity and power consumption
which this implies, mismatches between the two filters result in
dc offsets that limit the accuracy of the adaptation. Fortunately,
the LMS-CT and LMS-ICT adaptations can be used without
access to the filter’s internal states.

In order to achieve the desired fixed pole locations, the
feedback parameters for both the adaptive filter and ref-
erence filter were fixed at .
The feed-in parameters for the reference filter were fixed at

.
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(a) (b)

Fig. 8. Sample learning curves for a third-order orthonormal ladder model-matching system using (a) LMS-CT and (b) LMS-ICT adaptation. In both cases, no
steady-state error is introduced and� is chosen for a misadjustment of 1%.

The impulse responses , , and of the ALC
were measured by setting , and .
The sampled impulse responses are plotted in Fig. 7(a), which
shows that samples are sufficient to capture at least
99.8% of the impulse response power. The matrixwas then
constructed using (6), as follows:

(28)

and the pseudo-inverse is calculated from (12)

(29)

The rows of are plotted in Fig. 7(b). Except for a scaling
factor for normalization, the waveforms are similar to the
columns of plotted in Fig. 7(a)3 as expected due to the
orthonormal ladder structure.

First, simulations were performed with the noise source
turned off . As can be seen from Fig. 8, both LMS-CT
and LMS-ICT adaptation converged to their optimal parameter
values with zero steady-state error. The errors incurred by
aliasing and truncating the impulse responses had no effect on
the result.

Next, some finite steady-state error was introduced via
to examine the algorithms’ misadjustment. A noise power of

was used, which is about 3.5 dB less than the
output power of the reference filter, . The input autocor-

3They would be identical if the columns ofGGG were perfectly orthogonal.
However, the frequency response ofg extends beyond the Nyquist rate (only
12 dB of attenuation atf =2) and the resulting aliasing in̂g (k) causes the
columns ofGGG to be not perfectly orthogonal.
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(a) (b)

(c)

Fig. 9. Simulation of a third-order orthonormal ladder model-matching system using (a) LMS-CT, (b) LMS-ICT and (c) full LMS adaptation. In all cases,� is
selected for a misadjustment of 10% (corresponding to an excess MSE of 10) and the results are averaged over an ensemble of 10 000 simulation runs.

(a) (b)

(c)

Fig. 10. Simulation of a third-order orthonormal ladder model-matching system using (a) LMS-CT, (b) LMS-ICT, and (c) full LMS adaptation. In all cases,�
is selected for a misadjustment of 1% (corresponding to an excess MSE of 10) and each point is averaged over ten consecutive samples of the error signal and
over an ensemble of 10 000 simulation runs.

relation matrix is a 20 20 matrix, , which can
be calculated from a knowledge of the input statistics

(30)

In general, the autocorrelation matrix will not be known
a priori. However, its knowledge is assumed here to demon-

strate that the LMS, LMS-CT, and LMS-ICT adaptations all
have the same performance, although different values ofmay
be required for each.

The convergence properties of the LMS-ICT adaptation are
determined by the eigenvalues of

- (31)

The value of required for a misadjustment of 10% is

-
-

(32)
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Fig. 11. Simulation results for the third-order orthonormal ladder
model-matching experiment using subsampled LMS-ICT adaptation with
a misadjustment of 1% (corresponding to an excess MSE of 10). Each
data point is averaged over 2000 consecutive data samples and 25 separate
simulation runs.

For traditional LMS and LMS-CT adaptation, the eigenvalues
are all identically owing to the orthonormal filter
structure. The corresponding value foris

- (33)

These values together with (26) predict that the MSE should
decay with a time constant of approximately eight iterations for
all three algorithms. The simulation results plotted in Fig. 9 in-
dicate that the MSE does, indeed, decay to the noise floor pro-
vided by at the same rate in all three cases.

The “Excess MSE” is defined as the MSE observed
in steady-state minus the minimum MSE, in this case

. It is related to the misadjustment by: Excess
MSE (Misadjustment) . The Excess MSE is also
plotted in Fig. 9 showing that the misadjustment is 10% as
expected in all three cases. Fig. 10 shows similar simulation
results for a misadjustment of 1%.

Next, the same system was simulated using LMS-ICT adapta-
tion with the input and error signals subsampled. Since ,
the input was subsampled by 20and the error signal was sub-
sampled by 21 . The results for a misadjustment of 1% are
plotted in Fig. 11. Comparing them with the simulation results
in Fig. 10 shows the same misadjustment but with

slower convergence, as expected.

B. Feedforward Companion Form Filter

In this section, model-matching simulations are performed
using a different filter structure. The filter structure, shown in
Fig. 12, is a third-order continuous-time companion form filter
with variable feed-in coefficients, . Again, since the feed-in
parameters are adapted, the state signals required for traditional
LMS adaptation are not available. Unlike the orthonormal
ladder filter, the impulse responses are not orthogonal. As a
result, the matrices and are quite different and there is
gradient misalignment using LMS-ICT adaptation.

Fig. 13 shows behavioral simulation results with length
impulse responses and zero excess error added (i.e., )

for both LMS-CT and LMS-ICT adaptation. Although both sim-
ulations converge with zero steady-state error, the parameter
vector evolves along very different trajectories. The trajecto-
ries are projected onto the plane and plotted along with

Fig. 12. Third-order feedforward companion form filter.

error surface contours in Fig. 14. In this plot, the gradient mis-
alignment present in LMS-ICT adaptation is evident since the
learning trajectory is not orthogonal to the MSE contours.

VII. SIGNED ALGORITHMS

It is possible to take the sign of the error signal or the gradient
signal or both in (3) in order to simplify the implementation of
the LMS algorithm [32]. Taking the sign of both results in the
sign-sign LMS (SS-LMS) algorithm

(34)

The product provides, on average, the
correct sign of each gradient component. The SS-LMS algo-
rithm proceeds by changing the parameters in fixed steps of
size each iteration. The digital multiplication of the error and
state signals is performed by a single exclusive-ORgate resulting
in considerable hardware savings. Although it is true that the
SS-LMS algorithm has demonstrated instability in certain cir-
cumstances [26], its simplified hardware has proved useful in
numerous applications (e.g., [23], [27], [28]). Stability of the
SS-LMS algorithm is usually verified for a particular applica-
tion via extensive simulations.

The same approach can be used to simplify the hardware re-
quired for the LMS-CT and LMS-ICT adaptations. Taking the
sign of the error and input data signals and of each entry in the
matrices and results in the following update equations:

(35)

(36)

Equation (35) will be used as the update rule for the sign-sign
LMS-CT adaptation (SS-LMS-CT) and (36) for the sign-sign
LMS-ICT adaptation (SS-LMS-ICT). This allows the two dig-
itizers at the filter input and error signal to be implemented
with simple comparators. The multiplication of the three signed
quantities in both (35) and (36) can be performed by three-input
XOR gates. The result is a significant decrease in circuit com-
plexity and power consumption.

Behavioral simulations were performed using the same
model-matching experiment as in Section VI-A to verify this
approach. Simulation results are plotted in Fig. 15. There
is no noticeable difference between the performance of the
SS-LMS-CT and the SS-LMS-ICT adaptations. For the same
misadjustment, the signed implementations converge slower
than the full LMS-CT and LMS-ICT adaptations, but this is not
surprising since it is well known that the SS-LMS algorithm
is slower than the full LMS algorithm. Of course, by taking a



548 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 50, NO. 9, SEPTEMBER 2003

(a) (b)

Fig. 13. Model-matching learning curves for a feedforward companion form filter using (a) LMS-CT and (b) LMS-ICT adaptation.

larger value of , the slower convergence can be traded off for
increased misadjustment.

VIII. E XPERIMENTAL RESULTS

To verify the practicality of the LMS-CT and LMS-ICT adap-
tations in a real integrated system, model-matching experiments
were performed using a fifth-order orthonormal ladder CMOS
integrated analog filter [33]. The filter structure is shown in
Fig. 16. Each of the three feed-in taps is digitally programmable
with five bits of resolution. The filter is low pass with low lin-
earity (25–30 dB total harmonic distortion at 200 mVpp de-
pending upon the feed-in gains and input frequency) and a cutoff
frequency programmable up to around 70 MHz. A die photo is
shown in Fig. 17.

First, the required impulse responses were obtained by differ-
entiating the step responses measured for each filter– on an
oscilloscope. The results are plotted in Fig. 18. The waveforms

are messy due to noise and nonlinearity introduced by the filter
and measurement equipment.

The experimental setup is diagrammed in Fig. 19. The same
filter is used for the adapted and reference signal paths allowing
the optimal parameter values,, to be known precisely. First,
the oscilloscope digitizes the filter output with the filter’s
feed-in values programmed to their optimal values,. The
digitized waveform is then stored by the PC for use as the
desired signal, . Then, the same input sequence is repeated
with the feed-in parameters programmed to the current adapted
values, . This time, the digitized waveform is used as the
output signal, . The oscilloscope also digitizes the filter input,

, on a second channel. The error signal and the
input are then used to perform one iteration of the adaptive
algorithm’s parameter update equation in software.

Under these conditions, it would be impossible to use
a traditional LMS algorithm since the filter’s state signals
are completely unavailable. However, using the LMS-CT
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Fig. 14. Learning trajectories of model-matching experiments with MSE
contours.

(a)

(b)

Fig. 15. Simulation results for the third-order orthonormal ladder
model-matching experiment using (a) SS-LMS-CT and (b) SS-LMS-ICT
adaptation. In both cases,� is selected for a misadjustment of approximately
10% (corresponding to an excess MSE of 10) and each point is averaged
over ten consecutive samples of the error signal and over an ensemble of 1000
simulation runs.

Fig. 16. Fifth-order orthonormal ladder filter with three programmable
feed-ins.

and LMS-ICT adaptations, the model-matching experiment
succeeds. The 5-bit parameter values and MSE are plotted
over time in Figs. 20 and 21. Approximately 2000 iterations

Fig. 17. Die photo of the fifth-order orthonormal ladder analog filter test chip.

Fig. 18. Sampled and truncated impulse responses of the fifth-order integrated
analog filter.
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Fig. 19. Experimental setup for performing the LMS-CT and LMS-ICT
adaptations on the integrated analog filter.

Fig. 20. Model-matching learning curves and MSE relative to desired output
using the LMS-CT algorithm.

are required to obtain convergence. A steady-state error of
1 LSB persists on and the resulting steady-state MSE is
26 dB below the filter output power for both algorithms. These
steady-state errors are comparable in magnitude to the filter’s
nonlinearity.

Fig. 21. Model-matching learning curves and MSE relative to desired output
using the LMS-ICT algorithm.

IX. CONCLUSION

This paper has described and demonstrated techniques for
obtaining digital estimates of the gradient signals required
for LMS adaptation without access to a filter’s internal state
signals. The techniques are particularly useful for digitally
adapting high-speed analog filters with several adapted param-
eters. Using traditional LMS adaptation, a digitizer (ADC or
comparator) is required for each gradient signal as well as the
filter output. Furthermore, in some popular filter structures,
such as those with programmable feed-ins, the state signals are
not available anywhere in the analog signal path so additional
analog filters must be built to accommodate the LMS algorithm.

Using the LMS-CT or LMS-ICT adaptations, digitizers are
required on the input and error signals only and digital signal
processing is used to obtain estimates of the gradient signals.
Compared to the traditional LMS algorithm, the convergence
rate and misadjustment are identical. An additional matrix mul-
tiplication is required for each iteration of the algorithm. For the
LMS-CT and LMS-ICT adaptations, knowledge of the filter’s
pole locations is required to create the matricesand re-
spectively. The matrix entries can be measured once and then
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stored in a memory. The adaptation was robust with respect to
errors in the matrix entries, both in the simulations of the signed
algorithms (Section VII), and due to noise in the experimental
setup (Section VIII).

Overall, analog circuit complexity is reduced but digital cir-
cuit complexity is increased with little or no change in overall
performance making it an attractive option for mixed-signal in-
tegrated systems in digital CMOS processes. The signed and
subsampled variations of these algorithms allow a system de-
signer to reduce the analog and digital circuit complexity even
further, but with a slower convergence rate. This is likely to be a
desirable tradeoff in applications such as wired communication
where the adaptation rate is not a limiting factor. Combining
these techniques, adaptation can be performed using just two
comparators and relatively simple digital logic, all of which can
be subsampled below the Nyquist rate.
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