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Digital LMS Adaptation of Analog Filters Without
Gradient Information

Anthony Chan Caruson®&ember, IEEEand David A. Johng~ellow, IEEE

Abstract—The least mean square (LMS) algorithm has practical
problems in the analog domain mainly due to dc offset effects. If
digital LMS adaptation is used, a digitizer (analog-to-digital con-
verter or comparator) is required for each gradient signal as well
as the filter output. Furthermore, in some cases the state signals are
not available anywhere in the analog signal path necessitating ad-
ditional analog filters. Here, techniques for digitally estimating the
gradient signals required for the LMS adaptation of analog filters
are described. The techniques are free from dc offset effects and
do not require access to the filter's internal state signals. Digitizers
are required only on the input and error signal. The convergence
rate and misadjustment are identical to traditional LMS adapta-
tion, but an additional matrix multiplication is required for each
iteration. Hence, analog circuit complexity is reduced but digital
circuit complexity is increased with no change in overall perfor-
mance making it an attractive option for mixed-signal integrated
systems in digital CMOS. Signed and subsampled variations of the Fig. 1. Block diagram of an adaptive linear combiner wihparameters;
adaptive algorithm can provide a further reduction in analog and  5qapted via the LMS algorithm.
digital circuit complexity, but with a slower convergence rate. The-
oretical analyses, behavioral simulations, and experimental results
from an integrated filter are all presented.

difficult to implement [8]. Therefore, emphasis is placed upon

) ] ] ) ] reducing the adaptation hardware requirements.

Index Terms—Adaptive filters, continuous-time filters, gra- First, some background on stochastic gradient adaptation
dient methods, ladder filters, least mean square methods, mixed . ! . . : . .
analog—digital integrated circuits. in gene_ral and the I__MS aIg_onthm in particular is pro_\/lded

in Section Il. Then, in Sections 1ll and IV, two techniques
are proposed to overcome the shortcomings of the LMS
. INTRODUCTION algorithm for analog adaptive filters. A theoretical analysis

NALOG adaptive filters can offer many advantages ovélf the proposed techniques’ convergence and misadjustment
their d|g|ta| Counterparts in integrated Communicatioﬁ performed in Section V. BehaViOI’al Simulations are Used
systems [1]. At the receiver, the resolution and linearity of tH€ Verify the analytical results in Section VI. In Section VII,
analog-to-digital converter (ADC) can generally be reduced $fgned variations of the adaptation are considered to simplify
preceded by an anak)g equa”zer or echo canceler [2], [3]tnﬁ|r implementation. Fina”y, in Section VIII eXperimental
a full duplex transmitter, the line driver requirements can gésults are provided for a fifth-order integrated analog filter
relaxed if followed by an analog adaptive hybrid [4]. Unfortuwith three adapted parameters.
nately, the least mean square (LMS) algorithm, which is usually
used for integrated adaptive filters, has practical problems in Il. BACKGROUND
the analog domain due to dc offset effects [5], [6]. Digital stochastic gradient adaptation takes the following general
implementations of the algorithm are possible, even with agrm:
analog signal path. However, they require access to digital gra- A
dient information which in turn must be produced by additional p(k+1) =p(k) — p- Vep(k). (1)

high-speed ADCs and may even require additional ana;jE’

. : . : o (1), p is the vector of filter parameters to be adapted
filters [5], [7]. This paper describes techniques for obtaining t 1--pn]T, e = (d— y) is the error in the filter outpug with

digital gradient signals required for LMS adaptation witho . . .
access to the analog filter's internal state signals. Previous wﬁ? pect to the desired outpliiy is a constant that determines
0

in this area has resulted in complicated algorithms which a ¢ rate of adaptation, and.p(k) is an estimate of the gra‘j'e”‘
p with respect to the mean squared error,= FE[e?].

Equation (1) attempts to increment the filter parameter vector
Manuscript received August 29, 2003; revised February 19, 2003. This papéf small steps in the direction of decreasing mean squared
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Fig. 2. Implementation of the LMS algorithm for an analog adaptive filter. (a) Analog implementation. (b) Digital implementation. (c) Digittiadapthout
access to the filter state signals (proposed).

the poles of a filter can cause instability both in the signal path Second, even when the state signals are available, dc offsets
and in the adaptation process, it is usual to adapt only the zerms.the state and error signals (always present in analog inte-
Therefore, this work considers only analog filters with fixedjrated filters) lead to inaccurate convergence of the LMS algo-
poles and adapted zeros. Any such filter can be modeled by thibm [5], [6]. Although much work has been done to mitigate
adaptive linear combiner (ALC) shown in Fig. 1. Thesignal these dc offset effects (e.g., [15]-[19]), the most common ap-
path filters,g;, are fixed and determine the locations of the AL@roach is to use digital circuitry to implement the LMS mul-
poles. (The pole locations for analog integrated filters are oftéiply and accumulate operations (e.g., [2] demonstrates this for
chosen either heuristically, perhaps to obtain an equiripple amie adapted zero). Digital implementations of (3) also allow the
flat group delay response as in [9], or using numerical optimizadaptation to be easily initialized and frozen. However, in order
tions [3], [10].) By adapting théV parameterg; of an ALC, the to maintain a high-speed analog signal path, the error signal and
location of N filter zeros are optimized. all of the state signals must be digitized by either ADCs or com-
If the expected value of the gradient estimate equals the actpatators (sign-sign LMS) as shown in Fig. 2(b). The digitizers
gradient,EWep(k)] = V.p(k), stochastic gradient adaptationcan be area and power hungry, as well as loading speed-critical
will converge to a local minimum in the performance surface forodes internal to the filter. Furthermore, this approach is still
small i [11]. This is the case in the standard LMS algorithmynly applicable when the analog filter has the required state sig-

which uses the following simple gradient estimate: nals available at internal nodes.
. These two problems are addressed in this paper by per-
Vep(k)Lus = —2¢(k)z(k). @ forming digital LMS adaptation on an analog integrated filter
In (2), z is the vector of state signals; - - - zx]”. The resulting Without access to the filter's internal state signals. The state
iterative update rule is signals are estimated digitally by observing only the filter
input, as shown in Fig. 2(c). This requires less analog hardware
p(k + 1) = p(k) + 2ue(k)z(k). (3) than the fully analog approach in Fig. 2(a) and dc offset effects

are eliminated. Unlike the digital LMS adaptation in Fig. 2(b),
this approach can be used on any analog filter structure with
rogrammable zeros and requires fewer digitizers. Although

tation on analog integrated filters. First, the state sigmaise 191tal complexity is increased, trading off analog circuit
sometimes difficult to obtain. Integrated analog filters with §°MPIexity for digital circuit complexity is generally desirable
ladder structure [12], [10] and a cascade of biquads [9], [13]' mixed-signal deep-submicron CMOS.

[14] often use programmable feedforward gains to adjust the lo-

cation.of transfer function Zeros. AItho_ugh only the filter zeros L. LMS A DAPTATION WITH A COORDINATE TRANSFORM

are adjusted, LMS adaptation is complicated for these structures

since, unlike Fig. 1, the state signals are not available at any in-This section will describe a simple technique for digitally es-
ternal nodes. Additional analog filters are required just to getimating the analog filter states from the sampled filter input. If
erate them [5]. A block diagram of this approach is shown itme filter input is digitized at the Nyquist rate, each of the analog
Fig. 2(a). The resulting complexity and power-consumption afiters g;—g can be emulated by digital filteis —g . The out-
prohibitive for most practical applications. puts of these filters provide digital estimates of the state signals

Notice that in Fig. 1 the required state signalare available at
the outputs of the fixed filters;.
There are two major challenges to performing the LMS adag
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likely to be dictated by circuit design considerations, whereas
Fig. 3. Estimating the state signals of an analog adaptive linear combineripy [20] and [21], the matrix transformation is designed to
emulating the signal path filters digitally. improve certain convergence properties of the adaptation.
If the adaptive filter has a transversal structure,@matrix
Z. These estimates can then be used in place of the actual analilgdbe a V x N identity matrix, and the matrix multiplication

filter statesr for adaptation as follows: in Fig. 4 is trivial. This approach has already been used in com-
. bination with sign-sign LMS adaptation for switched-capacitor
p(k +1) = p(k) + 2pe(k)(k). (4) analog adaptive transversal filters [22], [23]. Introducing the

A block diagram of this approach is shawn in Fig. 3. matrix n_1u|t|pllcat|(_)n in (5) generallze_s the L_MS-CT approach
. : . to permit adaptation of any analog filter with programmable
In general, the digital filters required to emulate-g will 70108

have an infinite length impulse response. However, for the "€t slower adaptation can be tolerated, (5) need not be iterated

mainder of this paper, itis assumed that the. ta|_ls of the 'mDUIgFthe Nyquist rate. So, the matrix multiplication, the sampling
responses have been truncated so that finite impulse respo

(FIR) filters of lengthM may be used fof,—x. For stable ORfie error signa¢, and the multiply/accumulate operations can

filters. the error incurred by the truncation decreasea/as:- be performed at a decreased rate. However, it is still necessary
' y to sample the filter input, at the full Nyquist rate in order to

creases and, hence, can be made arbitrarily small by increa%(}gid aliasing in the state estimatis
the filter length. If the filter input must be sampled and digitized at the Nyquist

A If tre}nsversal filters qf IengtM are used for the dlgltal filters rate anyway, it might seem natural to implement the signal path
-+~ g, (4) canbewritten interms of the sampled input VeCtoursing digital filters and eliminate the analog filter completely.
u(k) = [u(k) u(k —1)---u(k — M + 1)]* as follows:

However, this would require a high-speed ADC at the input and
p(k +1) = p(k) + 2ue(k) - G - u(k). 5y Wide multipliers and adders in the filter; far fewer bits are re-

quired if digital signal processing is used only to obtain the state

In(5),G is anM x N matrix whose columns are the finite-lengttestimates for adaptation. In fact, Section VIl verifies that one-bit

impulse responses of the transversal filt@rs- - jn samples of the input and trivial one-bit multipliers produce state
. . estimates of sufficient accuracy for LMS adaptation.
(1) - gn(1)

G = : : ) (6) IV. LMS ADAPTATION WITH AN INVERSE COORDINATE
' ' TRANSFORM

g(M) - gn(M) e _ _ :
ough LMS-CT adaptation obviates the need for sampling
A block diagram implementation of (5) for an analog adaphe filter state signals directly, it does require the filter input to
tive filter is shown in Fig. 4. This approach will be referreche sampled at the Nyquist rate. Since analog adaptive filters are
to as LMS adaptation utilizing a coordinate transformatiooften used in high-speed signal paths, this digitizer would have
(LMS-CT). The “coordinate transformation” in (5) is from theto be clocked at a very fast rate. In this section, a technique is
input vectoru to the state estimateisby the matrixGT. This  introduced that allows the input digitizer to be subsampled. The
should not be confused with transform domain or filter bandechnique is described by an iterative update equation with the
adaptive filtering [20], [21] where a matrix transformation iexact same form as (5) except that a different matrix is used in
applied digitally in the signal path. Here, it is assumed that timace of G” .
main signal path must be analog, so digital signal processingrirst, consider the LMS algorithm for adapting the tap
is performed on input samples just to obtain the gradiemeightsq = [q: - - - qar]7 of a lengthd/ transversal filter
information required for adaptation. The matrix transformation
G is determined by the structure of the analog filter which is qi(k+1) = qi(k) + 2pe(k)u(k —i + 1). (7)
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If slower adaptation can be tolerated, subsampled versionstrainsversal filterAg(k) = —uV.q(k), to a parameter update
the input and error signals can be used in (7). Specifically,vector for the ALC Ap(k). Hence K must perform the inverse
ande can be subsampled Byx andW x respectively, as long mapping ofG. But G is a rectangular matrix witd/ > N,
asV andW are relatively prime. For instance, it may be conso an exact inverse fof will generally not exist. Instead,
venient to subsample the input of an-tap filter by M x and the pseudo-inverse d¥ is used since it provides the inverse
the output error by M + 1) x. Each parameter is then updated@napping with the smallest squared error [25].
everyM (M + 1) samples. With\/ = 5, thelth parameter up-  Substituting the standard gradient estimate for an LMS adap-
date would be given by tive transversal filterV.q(k) = —2¢(k)u(k), into (11) gives
(300 + 1)u(300) the following iterative update rule:

e(301 + 7)u(300 + 5) p(k+1) =p(k)+2ue(k) - K -u(k). (13)
q(30(1 + 1)) = q(300) 4 2p1 | (301 + 13)u(301 + 10) Adaptation described by (12) and (13) will be referred to as
. LMS adaptation using an inverse coordinate transform (LMS-
(300 + 19)u(300 + 15) ICT). The computations required for each iteration of LMS-ICT
A€(301 + 25)u(301 + 20) adaptation are exactly the same as LMS-CT adaptation; both
=q(300) — - Vq(301). (8) require the product(k) - u(k) to be multiplied by a constant

N x M matrix prior to integration, as shown in Fig. 4. The
Note that only every fifth sample of and every sixth sample major advantage of LMC-ICT adaptation is that batfand ¢
of ¢ are used in (8), so the digitizers on those signals may Ry be subsampled, whereas onlgan be subsampled using
clocked at one-fifth and one-sixth the Nyquist rate respectivelyys-CT adaptation. Again, the subsampling factors must be
Since the parameters are updated every 30th sample, the algfysen relatively prime. Equation (14) shows LMS-ICT adap-

rithm will converge 3G slower. _ tation for the cas@/ = 5 with » ande subsampled by % and
We now wish to use similarly subsampled versions ahd gy respectively

u to update the parameters of an arbitrary analog filter with

programmable zeros. In order to do this, the gradient estimate e(300 + 1)u(300)

V.q € R used in (8) must be projected oni8¥ so that it e(300 + 7)u (301 + 5)

can be used to updat_e tb?édimensional analog filte.r param- 5,30(7 4+ 1)) = p(301) + 2uK | e(301 + 13)u(301 + 10)
eter vectorp. A projection method for linearly constrained opti-

mization problems may be used for this purpose [24]. The linear e(300 + 19)u(30l + 15)
constraint is that the ALC impulse response must stay within e(300 + 25)u(301 + 20)

the N-dimensional column space & since only impulse re- (14)

sponses of the formp = Gp are possible. This is equivalent t

o, . . . .
enforcing the following condition: Again, other (relatively prime) subsampling factdrsand W

may be chosen. Subsampling Byx and(M + 1)x leads to
G(GTG)'GTq=q aI straightforward hard’\\l/vetlreﬂi]mtp:(hamgntatlion with(M + lzx
_ slower convergence. Note that the impulse respofises
©(G(@"@)7G" ~Dg=0. ©) must still be sgmpled at the full Nyqui[;t rate in%rgir toggreate
As shown in [24], this condition can be enforced during adafeG-matrix (6) and, hence, thi-matrix (12). However, since
tation by usingG(G*G)~'G" - V.q as the gradient estimateG andK remain fixed throughout adaptation, they can be mea-
instead ofV/.q resulting in the following update rule: sured just once priori, then stored in a memory.

qlk+1)=qk)—p-GG'G)'G" -V.q. (10) V. CONVERGENCE ANDMISADJUSTMENTANALYSIS

Sinceg = Gp, (10) may be rewritten in terms of the actual ALC ~ Like the traditional LMS algorithm, LMS-CT and LMS-ICT
parameterp(k) by omitting the left-hand matrix multiplication @daptation can be considered special cases of (1) with gradient

of G estimates defined as follows:
p(k+1) =p(k) — p- (G'G)"'G" - V_q(k) ?Ep(k)LMS-CT =—2¢(k) - G" - u(k) (15)
—p(k) — - K - Vog(k) (11) Vep(Ruus-ior = —2e(k) - K -u(k).— (16)

Assuming the errors introduced by sampling and truncating
the ALC impulse responseg; --- gy in (6) are negligible,
K =(G"G)"'G". (12) the state estimates used for LMS-CT adaptation are equal to
the actual filter state signal§7’u(k) = =z(k). Therefore,

An intuitive explanation for this choice & follows. Recall @ap(k)LMS-cT = @Ep(k)ms and LMS-CT adaptation will
that an ALC with parameterg is equivalent to a transversalhave the same stability and misadjustment properties as the full
filter with parameterg = Gp (after sampling and truncation). LMS algorithm.

Therefore, the matrixd maps ALC parameter vectors to If E[V_.p(k)] is not parallel to the actual gradie¥.p(k),
transversal filter parameter vectogs,— ¢. On the other hand, there is said to be some “gradient misalignment” in the adap-

the matrix K must map the parameter update vector for tation. It will now be shown that this is the case for LMS-ICT

where theN x M matrix K is the pseudo-inverse ¢f:
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adaptation. The expected value of the LMS-ICT gradient esti

. White Reference
mate Is . Noise Yy  Filter I/ifgl
ElVeppus-icr (k)] = E[K - 2e(k)u(k)] Source %P
=K - E[2e(k)u(k)] X
Adaptive
=K -V_q(k). (17) P Filter
In (17), we have used the fact th&t2eu] = V.g, since “p
2eu is the unbiased gradient estimate used by LMS adaptiv r———-—-—-—-—-—-—-—=== 7
transversal filters. Sinc& - V_.q is not necessarily parallel p ! | Matrix Gain | o ex:
to V.p, there is some gradient misalignment in LMS-ICT | G"or K y'¢|
adaptation. ! Adaptive Algorithm I
Fortunately, it is possible for the adaptation to converge ir Meal |7~~~ """~~~ ~~717 N
spite of this gradient misalignmehtNext, it will be shown that A/D
using LMS-ICT adaptation, the expected value of the ALC pa- Shift
rameter vector converges to the optimal valpie,ask — oc. Register
Taking the expectation of both sides of the parameter update ru
in (13) yields
E[p(k + 1)] _ E[p(k)] +2uK - E[e(k)'u,(k)] (18) Fig. 5. Simulated adaptive filter model-matching system.
The termE[e(k)u(k)] can be rewritten in terms of the optimal >
transversal filter parametegs, the input autocorrelation matrix
R = E[uu’], andE[q(k)] using the Wiener—Hopf equation and
assumingg(k) is independent ofi(k):2
—a
Ele(k)u(k)] = Eld(k)u(k)] — Ely(k)u(k)] e
=Rq" — Elu(k)u” (k)q(k)]
= Rg" — RE[q(k)]. (19)
Substituting (19) into (18) yields u
Elp(k +1)] = E[p(k)] + 2uK - (Rg" — RE[q(k)]) Fig. 6. Third-order orthonormal ladder filter using multiple feed-ins of the
= E[p(k)] + 2uK - (Rg" — RGE[p(k)]) input signal.

=(I - 2uKRG)E[p(k)] +2uKRq*. (20
( a VB + 20K Rq". (20) E[zzT]. Therefore, many results for LMS adaptive filters can

Us(ijng the Wiener—Hopf equation again allows us to refite pe gpplied here by substitutifRG for E[zz?]. Specifically,
andg® if
Elzz]p* = F[dx] 1
G" Eluu”]Gp* =G" E[du] <

G"RGp* =G"Rq* where \... is the largest eigenvalue oK RG, then
(GTG)"'G"RGp* =(G"G)"'G" Ry* (I — 2uA)* — 0 ask — oo. Hence,E[w(k)] — 0 and
KRGp* =KRgq". (21) Elp(k)] — p", proving that the mean value of the parameter
. . . vector will converge to its optimal value using LMS-ICT
Substituting (21) into (20) gives adaptation, as long ags satisfies (24). Furthermore, the time
Elp(k+1)]= I - 2uKRG)E[p(k)] + 2.KRGp*. (22) constant of decay of the MSE (in terms of the sampling time)

After performing a coordinate transformation to a principal axi@d the steady-state misadjustment are
system [11], (22) can be rewritten in terms of a transformed _ 1 /1
weight-error vectonw = Q! - (p — p*) whereQ is the eigen- TMSE = T\ ave
vector matrix ofK RG —
Misadjustment= . » " A; = - tr(KRG).  (26)
Efw(k)] = (I - 2uA) w(0). (23) i

In (23), A is the diagonal eigenvalue matrix AfRG. An equa-
tion similar to (23) also describes the convergence of the LMS VI. SIMULATION RESULTS
algorithm, except thal is the diagonal eigenvalue matrix of

(24)

)\max

(25)

Model-matching experiments were used to verify the
1Gradient misalignment has been demonstrated in the sign-sign LMS alddVIS-CT and LMS-ICT approaches on continuous-time filters.
rithm [26], yet many practical adaptive integrated filters employ it [23], [27]All of the simulations described in this section use the block
[28]. . o ) ) - diagram shown in Fig. 5. An independent additive noise
2The independence assumption is often invoked in statistical analyses of the . d d | th d i
LMS algorithm [11], [29], [30] and leads to reliable theoretical predictions opPOUIC€7 IS INtroduced to control the steady-state error after

performance, even when there is some dependence begiepandu (k). convergence. The time scale is normalized to a sampling
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Fig. 7. (a) Impulse responses for the third-order orthonormal ladder filter, sampled to obtain the rows o&m@ijiXhe rows of the pseudo-inverse.

rate of fs = 1. The reference filter is a third-order elliptic Orthonormal ladder filters have this property [31]. A third-
low-pass transfer function with 0-dB dc gain, 0.5 dB of ripplerder continuous-time orthonormal ladder structure is shown
in the passband extending @1 fs, and 40 dB of stopband in Fig. 6. By making the feed-in parametessadaptive, the
attenuation. The filter input is white-noise bandlimited by astructure becomes an adaptive linear combiner. As mentioned
eighth-order elliptic filter with 0.1 dB of passband ripple tcearlier, filters with adaptive feed-ins are of particular interest
0.4 fs and 60 dB of stopband attenuation beyond ;5 because the state signals required for traditional LMS adaptation
] are not available anywhere in the system. In order to perform
A. Orthonormal Ladder Filter LMS adaptation, it would be necessary to operate a second
Interestingly, when the impulse responsgsgk) are or- filter in parallel with the first just to obtain the gradient signals
thonormal, the LMS-CT and LMS-ICT adaptations becomg]. In addition to the extra complexity and power consumption
identical. This can be seen by arranging the impulse respongésch this implies, mismatches between the two filters result in
into column vectorsg; = [9:(1) §:(2)---9:;(N)]T. Since the dc offsets that limit the accuracy of the adaptation. Fortunately,
vectors are orthonormaj! - g, = 0 fori # k andg! -g; = 1. the LMS-CT and LMS-ICT adaptations can be used without
By substitutingG = [g; go---gyn] into (12), it is easily access to the filter's internal states.
verified thatK = G, as follows: In order to achieve the desired fixed pole locations, the
K= (g 92-9x]" [0 gz---gN])A G7 feedback parameters for both the adaptive filter and ref-
_ - erence filter were fixed atv = [0.4905 0.6025 0.7789].
=N @G The feed-in parameters for the reference filter were fixed at
=GT. (27) p* = [0.5940 0 0.0493]7.
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Fig. 8. Sample learning curves for a third-order orthonormal ladder model-matching system using (a) LMS-CT and (b) LMS-ICT adaptation. In,bath cases

steady-state error is introduced agmds chosen for a misadjustment of 1%.

The impulse responses(t), g2(t), andgs(t) of the ALC The rows ofK are plotted in Fig. 7(b). Except for a scaling
were measured by settigg= [1 0 0]%, [0 1 0] and[0 0 1]7.
The sampled impulse responses are plotted in Fig. 7(a), whablumns of G plotted in Fig. 7(8) as expected due to the
shows thatM = 20 samples are sufficient to capture at leasirthonormal ladder structure.

99.8% of the impulse response power. The maffiwas then

constructed using (6), as follows:

0 0.110  0.304
GT |o 0.374  0.365
1.000 0.355 —0.002

and the pseudo-inverd€ is calculated from (12)

0.001 0.171 0.473
K = |0.059 0.609 0.572
0.790 0.303 0.020

0.432
0.137
—0.104

0.673
0.208

—0.074

(28)

(29)

factor for normalization, the waveforms are similar to the

First, simulations were performed with the noise source
turned off(n = 0). As can be seen from Fig. 8, both LMS-CT
and LMS-ICT adaptation converged to their optimal parameter
values with zero steady-state error. The errors incurred by
aliasing and truncating the impulse responses had no effect on
the result.

Next, some finite steady-state error was introducedwia
to examine the algorithms’ misadjustment. A noise power of
var(n) = 0.01 was used, which is about 3.5 dB less than the
output power of the reference filterar(d). The input autocor-

3They would be identical if the columns & were perfectly orthogonal.
However, the frequency responsegafextends beyond the Nyquist rate (only
12 dB of attenuation afs/2) and the resulting aliasing it (k) causes the
columns ofG to be not perfectly orthogonal.
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Fig. 10. Simulation of a third-order orthonormal ladder model-matching system using (a) LMS-CT, (b) LMS-ICT, and (c) full LMS adaptation. Is,all case
is selected for a misadjustment of 1% (corresponding to an excess MSE tf d40d each point is averaged over ten consecutive samples of the error signal and
over an ensemble of 10 000 simulation runs.

relation matrix is a 20x 20 matrix,R = E[uu’], which can strate that the LMS, LMS-CT, and LMS-ICT adaptations all
be calculated from a knowledge of the input statistics have the same performance, although different valugsnéy

be required for each.
0.0813  0.0166  —0.0142 .- —0.0012 The convergence properties of the LMS-ICT adaptation are
0.0166 0.0813  0.0166 ---  0.0008 determined by the eigenvalues KiRG
R=|-0.0142 0.0166 0.0813 --- —0.0001
. /\LMS-ICT = elg(KRG’) = 0.09937 0.09887 0.0967. (31)
—0.0012 0.0008 0.0001 --- 0.0813

(30) The value ofu required for a misadjustment of 10% is

In general, the autocorrelation matrR will not be known

0.1
a priori. However, its knowledge is assumed here to demon- HIMs-IoT = = 0.3453.

32
> Ams-ier (32)
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NW”ME Fig. 12. Third-order feedforward companion form filter.
6
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error surface contours in Fig. 14. In this plot, the gradient mis-
Fig. 11. Simulation results for the third-order orthonormal laddealignment present in LMS-ICT adaptation is evident since the

model-matching experiment using subsampled LMS-ICT adaptation WiFBarnin traiectory is not orthogonal to the MSE contours
a misadjustment of 1% (corresponding to an excess MSE of*l1CEach g tray y 9 '

data point is averaged over 2000 consecutive data samples and 25 separate
simulation runs.
VIl. SIGNED ALGORITHMS

For traditional LMS and LMS-CT adaptation, the eigenvalues It is possible to take the sign of the error signal or the gradient

are all identically\ = 0.0607 owing to the orthonormal filter Signal or both in (3) in order to simplify the implementation of
structure. The corresponding value fois the LMS algorithm [32]. Taking the sign of both results in the

sign-sign LMS (SS-LMS) algorithm
0.1
an 1S- = —— = 0.5490. 33
HLAS and LAt CT = 575 = 00 B3 plk+1) = plk) + 20 - sen(e(k) -sen(a(k).  (34)

These values together with (26) predict that the MSE shoufthe product-sgn(e(k)) - sgn(z;(k)) provides, on average, the
decay with a time constant of approximately eight iterations febrrect sign of each gradient component. The SS-LMS algo-
all three algorithms. The simulation results plotted in Fig. 9 inithm proceeds by changing the parameters in fixed steps of
dicate that the MSE does, indeed, decay to the noise floor pgize2,. each iteration. The digital multiplication of the error and
vided byvar(n) = 0.01 at the same rate in all three cases.  state signals is performed by a single exclusirgate resulting
The “Excess MSE” is defined as the MSE observeih considerable hardware savings. Although it is true that the
in steady-state minus the minimum MSE, in this cas8S-LMS algorithm has demonstrated instability in certain cir-
E[e?] — var(n). It is related to the misadjustment by: Excessumstances [26], its simplified hardware has proved useful in
MSE = (Misadjustment)x var(n). The Excess MSE is also numerous applications (e.g., [23], [27], [28]). Stability of the
plotted in Fig. 9 showing that the misadjustment is 10% &S-LMS algorithm is usually verified for a particular applica-
expected in all three cases. Fig. 10 shows similar simulatition via extensive simulations.
results for a misadjustment of 1%. The same approach can be used to simplify the hardware re-
Next, the same system was simulated using LMS-ICT adaptasired for the LMS-CT and LMS-ICT adaptations. Taking the
tion with the input and error signals subsampled. Sice- 20,  sign of the error and input data signals and of each entry in the
the input was subsampled by 2@&nd the error signal was sub-matricesG” andK results in the following update equations:
sampled by 2%. The results for a misadjustment of 1% are
plotted in Fig. 11. Comparing them with the simulation results _ (T . so .
in Fig. 10 shows the same misadjustment but WithM +1) = P :+ 1) _p(llz) * ;MSgn(IG( ) Sgn(elik)) Sgn(ulik)) (22)
420x slower convergence, as expected. +1) =p(k) + 2sgn(K) - sgn(e(k)) - sgn(u(k)).  (36)

Equation (35) will be used as the update rule for the sign-sign
LMS-CT adaptation (SS-LMS-CT) and (36) for the sign-sign
In this section, model-matching simulations are performddS-ICT adaptation (SS-LMS-ICT). This allows the two dig-
using a different filter structure. The filter structure, shown iitizers at the filter input and error signal to be implemented
Fig. 12, is a third-order continuous-time companion form filtewith simple comparators. The multiplication of the three signed
with variable feed-in coefficients;. Again, since the feed-in quantities in both (35) and (36) can be performed by three-input
parameters are adapted, the state signals required for traditiot@# gates. The result is a significant decrease in circuit com-
LMS adaptation are not available. Unlike the orthonormalexity and power consumption.
ladder filter, the impulse responses are not orthogonal. As aBehavioral simulations were performed using the same
result, the matrice€” and K are quite different and there ismodel-matching experiment as in Section VI-A to verify this
gradient misalignment using LMS-ICT adaptation. approach. Simulation results are plotted in Fig. 15. There
Fig. 13 shows behavioral simulation results with lenfifh= is no noticeable difference between the performance of the
20 impulse responses and zero excess error addedy(i-e)) SS-LMS-CT and the SS-LMS-ICT adaptations. For the same
for both LMS-CT and LMS-ICT adaptation. Although both simmisadjustment, the signed implementations converge slower
ulations converge with zero steady-state error, the paramdtean the full LMS-CT and LMS-ICT adaptations, but this is not
vector evolves along very different trajectories. The trajectgurprising since it is well known that the SS-LMS algorithm
ries are projected onto the = 0 plane and plotted along with is slower than the full LMS algorithm. Of course, by taking a

B. Feedforward Companion Form Filter
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Fig. 13. Model-matching learning curves for a feedforward companion form filter using (a) LMS-CT and (b) LMS-ICT adaptation.

larger value ofi, the slower convergence can be traded off fare messy due to noise and nonlinearity introduced by the filter
increased misadjustment. and measurement equipment.

The experimental setup is diagrammed in Fig. 19. The same
filter is used for the adapted and reference signal paths allowing
the optimal parameter valugs',, to be known precisely. First,

To verify the practicality of the LMS-CT and LMS-ICT adap-the oscilloscope digitizes the filter output with the filter's
tations in a real integrated system, model-matching experimefésd-in values programmed to their optimal valugs, The
were performed using a fifth-order orthonormal ladder CMOG@igitized waveform is then stored by the PC for use as the
integrated analog filter [33]. The filter structure is shown imlesired signald. Then, the same input sequence is repeated
Fig. 16. Each of the three feed-in taps is digitally programmabléth the feed-in parameters programmed to the current adapted
with five bits of resolution. The filter is low pass with low lin- values,p(k). This time, the digitized waveform is used as the
earity (25-30 dB total harmonic distortion at 200 mVpp desutput signaly. The oscilloscope also digitizes the filter input,
pending upon the feed-in gains and input frequency) and a cuteffon a second channel. The error signak d — y and the
frequency programmable up to around 70 MHz. A die photo isput » are then used to perform one iteration of the adaptive
shown in Fig. 17. algorithm’s parameter update equation in software.

First, the required impulse responses were obtained by differUnder these conditions, it would be impossible to use
entiating the step responses measured for eachdiltgr onan a traditional LMS algorithm since the filter's state signals
oscilloscope. The results are plotted in Fig. 18. The waveforraee completely unavailable. However, using the LMS-CT

VIIl. EXPERIMENTAL RESULTS
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and LMS-ICT adaptations, the model-matching experiment
succe.eds..Th(f_' 5-bit parameter valugs and MSE _are plotﬁ%ﬂ_l& Sampled and truncated impulse responses of the fifth-order integrated
over time in Figs. 20 and 21. Approximately 2000 iterationsnalog filter.
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IX. CONCLUSION

This paper has described and demonstrated techniques for
obtaining digital estimates of the gradient signals required
for LMS adaptation without access to a filter’s internal state
signals. The techniques are particularly useful for digitally
adapting high-speed analog filters with several adapted param-
eters. Using traditional LMS adaptation, a digitizer (ADC or
comparator) is required for each gradient signal as well as the
filter output. Furthermore, in some popular filter structures,
such as those with programmable feed-ins, the state signals are
not available anywhere in the analog signal path so additional

MSE (dB)

0w w0 e a0 o0 1m0 a0 1w 1o moe  analogfilters must be built to accommodate the LMS algorithm.

Time (Iterations)

Using the LMS-CT or LMS-ICT adaptations, digitizers are
Fig. 20. Model-matching learning curves and MSE relative to desired out[ﬁﬁ'qu"ed on the input and error signals only and digital signal
using the LMS-CT algorithm. processing is used to obtain estimates of the gradient signals.
Compared to the traditional LMS algorithm, the convergence
are required to obtain convergence. A steady-state errorrafe and misadjustment are identical. An additional matrix mul-
1 LSB persists omp, and the resulting steady-state MSE isiplication is required for each iteration of the algorithm. For the
26 dB below the filter output power for both algorithms. TheseMS-CT and LMS-ICT adaptations, knowledge of the filter's
steady-state errors are comparable in magnitude to the filtepale locations is required to create the matrié¥sand K re-
nonlinearity. spectively. The matrix entries can be measured once and then
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stored in a memory. The adaptation was robust with respect ta7]
errors in the matrix entries, both in the simulations of the signed
algorithms (Section VII), and due to noise in the experimentailg]
setup (Section VIII).

Overall, analog circuit complexity is reduced but digital cir- [19]
cuit complexity is increased with little or no change in overall
performance making it an attractive option for mixed-signal in-[20]
tegrated systems in digital CMOS processes. The signed and
subsampled variations of these algorithms allow a system d?zl]
signer to reduce the analog and digital circuit complexity even
further, but with a slower convergence rate. This is likely to be d22]
desirable tradeoff in applications such as wired communication
where the adaptation rate is not a limiting factor. Combining
these techniques, adaptation can be performed using just t 83]
comparators and relatively simple digital logic, all of which can
be subsampled below the Nyquist rate.

(24]
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