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This paper is mainly tutorial in nature and discusses architectures for oversampling converters with a 
particular emphasis on those which are well suited for high frequency input signal bandwidths.  The 
first part of the paper looks at various architectures for discrete-time modulators and looks at their 
performance when attempting high speed operation.  The second part of this paper presents some 
recent advancements in time-interleaved oversampling converters.  The next section describes the 
design and challenges in continuous-time modulators.  Finally, conclusions are made and a brief 
summary of the recent state of the art of high-speed converters is presented.   
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1. Introduction 

Data conversion is an important operation that finds applications in many circuits today.  
Delta-sigma (∆Σ) modulation is a relative simple and low cost means of performing data 
conversion. While ∆Σ modulators can obtain a high dynamic range and excellent linearity 
with the use of a 1-bit quantizer, they are most often found in low-frequency applications 
since they oversample the data to achieve a high signal-to-noise ratio (SNR), thus 
limiting the input bandwidth by the speed at which the sampler can operate. 

The sampler in a ∆Σ modulator must operate at a speed much greater than the 
bandwidth of the input signal since it must oversample the data. When standard CMOS 
technology is used, the sampling frequency of the modulator is limited to a few hundred 
megahertz. This limits the bandwidth of the input signal to around ten megahertz, 
depending on the oversampling ratio (OSR). Some methods of overcoming this 
bandwidth limitation include a feedforward architecture, time-interleaving discrete-time 
∆Σ modulators, or using continuous-time circuitry. 

This paper is laid out as follows: Section 2 discusses discrete-time ∆Σ modulator 
topologies; Section 3 demonstrates various time-interleaved discrete-time ∆Σ modulator 
topologies; Section 4 explains some design issues for continuous-time ∆Σ modulators; 
and Section 5 presents recent publications on high-speed ∆Σ modulators and states the 
conclusions. 
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2. Single-Loop ∆Σ Modulator Topologies 

This section provides a comparison of single-loop ∆Σ modulator topologies used for 
analog-to-digital converter applications that are suitable for high-speed implementation in 
deep sub-micron CMOS processes. To keep the scope of the analysis focused, the 
discussion is limited to ∆Σ modulators with pure differentiator type NTFs that employ 
internal quantizers with a sufficient number of levels to keep the modulator stable for any 
out-of-band gain. The relation of the topologies to their integrated-circuit implementation 
is emphasized.  

The two main ∆Σ modulator topologies are the chain of integrators with distributed 
feedback (CIFB) and the chain of integrators with weighted feedforward summation 
(CIFF). To alleviate some of the drawbacks of the CIFB and CIFF topologies, the 
input-signal feedforward approach can be used as a modification. The resulting 
topologies, named CIFB with input-signal feedforward (CIFB-IF) and CIFF with 
input-signal feedforward (CIFF-IF), are discussed later. Note that, for the sake of 
simplicity, only modulators with all their zeros at dc will be discussed although these 
modulators can be modified with localized feedback to create non-dc zeros to optimize 
the NTF for a given OSR. 

2.1. Chain of Integrators with Distributed Feedback 

The simplest method to construct high order ∆Σ modulators is to cascade several 
integrators in the forward path, with each integrator receiving feedback from the 
quantizer to ensure stability. This CIFB topology is illustrated for a second-order 
modulator in Fig. 1. 
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Fig. 1: Second-order CIFB modulator 

Analysis of the linearized system with 2,1 2121 ==== bbaa  leads to the following 

results: 
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where q is the quantization noise from the ADC, and v1 and v2 are the signals at the 
outputs of the first and second integrators, respectively. The STF exhibits an all-pass 
response and the NTF provides a second-order pure differentiator type high-pass 
response. 

The main advantages of the CIFB topology are that it is easy to implement with low 
sensitivity to component variations. The main disadvantage of this topology is that the 
signals at the output of the integrators are a function of the input-signal as given in Eqs. 
(3) and (4) above, resulting in two effects. First, the signal swing at the output of the 
opamps is large which makes their implementation in the low-voltage, deep sub-micron 
technology more difficult. Second, opamp nonlinearities generate harmonic distortion 
that depends on the input-signal. The opamp distortion can severely limit the achievable 
SQNR. Another disadvantage of the CIFB topology is that the NTF and STF cannot be 
set independently. Therefore, if we pick a certain NTF, then the STF is fixed. 
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Fig. 2: Signal swing at Opamp outputs and sample output spectrum for CIFB 

The CIFB topology is simulated using MATLAB® and Simulink®. The probability 
density function of integrator outputs and a sample output spectrum including opamp 
third-order distortion are shown in Fig. 2.  The third-order distortion model is in the form 
of a power series with the third-order term corresponding to 1% third-order harmonic 
distortion for full scale signal. Simulations indicate the signal swings can be more than 
1.5 times larger than the ADC reference voltage. On the other hand, the input-signal 
range is from 50 to 80% of the ADC reference voltage and depends on the loop order and 
number of bits in the quantizer.1 Therefore, the input-signal is going to be relatively small 
when compared to other topologies, and to meet thermal noise requirements the capacitor 
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sizes must be larger, leading to greater power dissipation. The third harmonic generated 
by the opamp nonlinearity is clear in the output spectrum shown in Fig. 2. Distortion 
severely reduces the SQNR of the CIFB topology from the ideal 76dB to 62dB for the 
example shown in Fig. 2. 

The CIFB is the most commonly used topology to implement ∆Σ modulators. An 
example of the CIFB topology is implemented as a third-order CIFB ∆Σ modulator using 
a 4-bit internal quantizer and operating with a sampling frequency of 100MHz.2 The 
modulator achieves an SNDR of 67dB and a peak SNR of 68dB with a 12.5MS/s 
conversion rate. The modulator is implemented in 0.65µm technology and powered with 
5V supply while consuming 380mW. 

2.2. Chain of Integrators with Weighted Feedforward Summation 

Distributed feedback was used to ensure stability of the cascade of integrators in the 
forward path. Alternatively, weighted feedforward paths can be used to establish stability. 
The resulting chain of integrators with the CIFF topology for a second-order modulator is 
shown in Fig. 3.  
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Fig. 3: Second-order CIFF modulator 

Analysis of the linearized system with 2,1 3121 ==== abaa  leads to the following 

results: 
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where q is the quantization noise from the ADC, and v1 and v2 are the signals at the 
outputs of the first and second integrators, respectively. 

The CIFF improves the performance of CIFB in terms of the signals at the output of 
the integrators. As can be seen from Eq. (7), the signal at the output of the first opamp 
contains a first-order noise shaped input-signal component in addition to shaped 
quantization noise. This reduces signal swing and reduces dependence of the distortion 
on the input-signal. Both of these benefits are illustrated in Fig. 4. The signal swing at the 
output of the first opamp is significantly reduced and the output spectrum does not show 
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harmonic distortion. The second opamp still contains an input-signal component, 
however, nonlinearities at this stage are not as important since they are second-order 
noise shaped when referred back to the input.  
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Fig. 4: Signal swing at Opamp outputs and sample output spectrum for CIFF 

The main disadvantage of the CIFF topology can be seen by investigating its STF 
given in Eq. (5). The STF has a high frequency boost with a gain of one at low 
frequencies and three at high frequencies. The amplification of the out-of-band 
frequencies due to the high frequency boost can overload the quantizer and drive the 
modulator into instability. Unfortunately, the NTF and STF are not independent; 
therefore, the high frequency boost in STF is fixed by the choice of the NTF. 

One of the fastest CMOS ∆Σ modulators reported in literature is implemented using 
the CIFF topology where a fifth-order CIFF ∆Σ modulator uses a 4-bit internal quantizer 
and operates at a 200MHz sampling frequency.3 The modulator achieves an SNDR of 
72dB with a peak SNR of 82dB at a conversion rate of 25MS/s. This performance is 
achieved in 0.18µm CMOS technology. 

2.3. CIFB with Input-Signal Feedforward 

The input-signal component at opamp outputs in the CIFB topology can be eliminated by 
feeding the input-signal forward such that the input-signal components cancel out. The 
resulting CIFB-IF topology is illustrated for a second-order modulator in Fig. 5.  
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Fig. 5: Second-order CIFB-IF modulator 

Analysis of the linearized system with 2,1 231421 ====== babaaa  leads to the 

following results: 
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where q is the quantization noise from the ADC, and v1 and v2 are the signals at the 
outputs of the first and second integrators, respectively. 

The input-signal feedforward modifies v1, v2, and the STF without affecting the 
NTF. The signals v1 and v2 are free of the input-signal component. Therefore, the signal 
swings are smaller and the distortion generated by the opamps is input-signal 
independent. These advantages are illustrated in Fig. 6.  
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Fig. 6: Signal swing at Opamp outputs and sample output spectrum for CIFB-IF 
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The disadvantage of the CIFB-IF topology is the increased loading that the input has 
to drive, which can be particularly large for higher order modulators. This is because of 
the distributed feedforward paths that are needed to achieve the input-signal cancellation. 
In the second-order case, for example, there is the main sampling capacitor at the input as 
well as two extra sampling capacitors to feed the input-signal forward. It should be 
mentioned that the extra capacitors are usually smaller than the input sampling capacitor 
because the thermal noise on these capacitors is noise shaped and therefore, their size can 
be smaller.  

An example of the CIFB-IF topology is implemented as a second-order modulator 
using a single-bit internal quantizer and operating with a sampling frequency of 
105MHz.4 The modulator achieves a dynamic range of 88dB with a peak SNR of 82dB. 
The modulator is implemented in 0.13µm CMOS technology and powered with a 1.5V 
supply while consuming only 8mW of power. 

2.4. CIFF with Input-Signal Feedforward 

The main problem with the CIFF topology is the high frequency boost in the STF. The 
input-signal feedforward concept can be used to modify the STF of the CIFF topology 
without affecting the NTF. The CIFF-IF topology is illustrated in Fig. 7 for a second-
order modulator.5  
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Fig. 7: Second-order CIFF-IF modulator 

Analysis of the linearized system with 2,1 31421 ===== abaaa  leads to the 

following results: 
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where q is the quantization noise from the ADC, and v1 and v2 are the signals at the 
outputs of the first and second integrators respectively. 

The input-signal feedforward changes the problematic high frequency boost in the 
STF of the CIFF topology to an all-pass STF in the CIFF-IF topology with no effect on 



8 Ahmed Gharbiya, Trevor C. Caldwell, and D. A. Johns 

the NTF. It is interesting to note that this modulator achieves the smallest signal swings at 
the output of the opamps among the topologies discussed, as seen in Fig. 8. 
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Fig. 8: Signal swing at Opamp outputs and sample output spectrum for CIFF-IF 

3. Time-Interleaved ∆Σ Modulators 

This section presents time-interleaved ∆Σ modulator topologies based on block filtering 
theory. The usual system level design parameters for ∆Σ modulators are the loop-order, 
OSR, and the number of bits in the internal quantizer. High-speed applications require 
low OSRs, thereby, limiting the choices available for the designer. One method to add 
another degrees of freedom is to use parallel ∆Σ structures. The simplest method of 
making parallel converters is through the use of time-interleaving (TI) which is simply a 
time-division multiplexing scheme where an array of individual converters are clocked at 
different instants in time. Unfortunately, exploiting simple time-interleaved parallelism is 
not a straightforward process for ∆Σ modulators due to their recursive nature. 
Straightforward TI adaptation to ∆Σ modulators results in a 3dB improvement in the SNR 
for each doubling of converters regardless of the order of the modulator. To overcome 
this problem, different schemes of parallel modulators have been devised. They can be 
classified in one of three main categories: frequency division multiplexing (FDM),6 code 
division multiplexing (CDM),7 and time division multiplexing (TDM).8   

TDM can be implemented by deploying the theory of block digital filtering. The 
principle of block digital filtering is based on transforming a linear time-invariant (LTI) 
single-input single-output system (SISO) with transfer function )(zH  to an equivalent 

multi-input multi-output system with transfer function )(zH , as shown in Fig. 9.  
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The internal circuitry of the block filter operates in parallel and at a reduced rate by 
the factor M. For example, using this transformation for a ∆Σ modulator with M=2 
allows the internal modulators to either operate at half-speed for the same resolution, or 
at enhanced resolution for the same speed. This improvement is significant in wide 
bandwidth applications where the sampling speed is limited by the technology and 
resolution requirements. 

The block digital filtering has facilitated the design and construction of a true TI ∆Σ 
modulator.8 A second-order, time-interleaved by 2 (M=2), CIFB ∆Σ modulator is shown 
in Fig. 10 as an example of the technique.8 
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Fig. 10: Second-order time-interleaved by 2 CIFB ∆Σ modulator 

The k-factor shown in Fig. 10 is used to deal with the issue of opamp DC offsets.8 
DC offsets are problematic in time-interleaved modulators because the difference in 
offset between the two branches drives the modulator to instability. Reducing the 
cross-coupling coefficients gives more control to each parallel ∆Σ modulator, thus 
enabling the negative feedback loop to adjust; which maintains DC stability. However, 
reducing k from unity modifies the STF and results in an increase of the quantization 
noise in the signal band, thereby reducing the SQNR. The choice of k is a tradeoff 
between the offset value that the modulator can tolerate and the achievable SNR. A 
time-interleaved modulator that does not suffer from DC offsets is presented below. 

A high-speed input demux is needed at the input of the modulator to sample the 
input-signal and distribute it to the individual internal modulators. The demux operates at 
the full speed of the overall modulator. For example, the demux in a time-interleaved by 
4 modulator operates at four times the speed of the individual ∆Σ modulators. The 
high-speed demux can become the limiting factor in the performance of the modulator 
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especially for higher-order TI structures (M>2). A solution for the demux problem for 
M=2 is to sample each branch in the time-interleaved modulator at a different phase of 
the two non-overlapping phases.8 Therefore, the demux is inherent in the operation of the 
modulator. Another more general solution that can be used for any M is called the 
zero-insertion interpolation technique,9 which is shown in Fig. 11 for M=2 second-order 
CIFB topology. The zero-insertion time-interleaved (ZI-TI) modulator samples the 
input-signal at the operating frequency of the individual ∆Σ modulator and applies these 
samples to the first branch only with the inputs to the others grounded.  
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Fig. 11: Second-order ZI-TI with M=2 CIFB ∆Σ modulator 

The sampled input must be amplified (by M) to compensate for the lost signal power 
resulting from supplying zero input instead of the input-signal to the other branches. The 
ZI-TI modulator still suffers from DC offsets and therefore the cross-coupling coefficient 
k must be set appropriately. 

A new modified time-interleaved (MTI) ∆Σ modulator that eliminates the input 
demux and alleviates the DC offset problem is shown in Fig. 12. The modulator can be 
derived starting from the TI (Fig. 10) by removing the demux and applying the 
input-signal to both branches simultaneously. The resulting second-order MTI CIFB ∆Σ 
modulator, after some modifications, is shown in Fig. 12. The MTI uses two integrators 
only instead of the four used in TI, and in general, it uses the same number of integrators 
as the basic ∆Σ modulator for a given loop order. Therefore, there is no DC offset 
difference between the two branches that would otherwise lead to instability. In 
summary, the MTI eliminates the high-speed analog demux, alleviates the DC offset 
problems, and uses fewer integrators. 



  High-Speed Oversampling Analog-To-Digital Converters 11 

   

2↑

2↑

1

1

1 −

−

− z

z
1

1

1 −

−

− z

z
x Σ

-
Σ

-
Σ

-

-

yΣ

1−z

1

1

2

1

1

2

3

2

-
2

N-bit
ADC1

N-bit
ADC2

 

Fig. 12: Second-order modified time-interleaved by 2 CIFB ∆Σ modulator 

Removing the demux at the input has some consequences. Analysis of the linearized 
system of Fig. 12 leads to the following results: 
 ( ) ( ) ( ) 2

21
1

21112 111 qzqzzxzzy −−−−− −+−++=  (17) 

where q1 and q2 are the quantization noise from ADC1 and ADC2 respectively. Due to the 
output mux, the quantization noise q1 is only added to the output once for every two 
samples, which is also true for q2. Therefore, the overall noise contribution can be 
rewritten as: 
 ( ) 211 −−== z

q
y

NTF  (18) 

which is simply second-order noise shaped. Clearly, the removal of the demux does not 
affect the TI NTF, however the STF is affected. The first term in the STF is 2−z , which is 
the expected STF of a second-order CIFB modulator. The second term, ( )11 −+ z , resulted 

from the removal of the input demux. The extra term adds a notch at half the sampling 
frequency and filters the amplitude response of the STF as shown in Fig. 13. Due to 
oversampling, the frequency variation is not significant within the signal band. Also, it 
can be easily compensated for in the digital domain.  
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Fig. 13: STF and imaging issue for MTI 
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Another effect of removing the demux is that the signal is under the influence of the 
upsamplers only. The effect of upsampling by M is M-fold compression and repetition of 
the frequency-domain magnitude response.10 The process generates images shaped by the 
STF at frequencies less than half the sampling frequency as shown in Fig. 13 for a sample 
input spectrum. The design of the anti-aliasing and decimation filters should take the 
imaging issue into account.  
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Fig. 14: Sample output spectrum for MTI 

A sample output spectrum for the MTI is shown in Fig. 14. It also highlights the 
shaped image of the input-signal. For this example, the integrators are clocked at half the 
rate as the single-loop topologies presented earlier. The MTI modulator achieved a 
slightly lower SQNR because the STF attenuates the input-signal which reduces the input 
power. 

4. Continuous-Time ∆Σ Modulators 

Employing continuous-time loop filters instead of discrete-time loop filters is one way to 
increase the input signal bandwidth.  The main advantage of continuous-time filters is 
that no sampling is performed within the filters, so the restriction of the maximum 
sampling frequency is only imposed on the quantizer, as well as on the feedback DAC.  
Practically, continuous-time modulators can operate with clock frequencies about 2-4 
times greater than regular discrete-time modulators, while suffering from reduced 
linearity and accuracy.11 Also, continuous-time modulators eliminate the need for an anti-
aliasing filter on the input since it is inherent in the signal transfer function (STF). 

There do exist some disadvantages of continuous-time ∆Σ modulators when 
compared to discrete-time modulators.  High-speed continuous-time modulators suffer 
more severely from two non-idealities, namely excess loop delay and DAC clock jitter.  
The following section will explain some of the more important design considerations, 
including a brief description on how to design a continuous-time ∆Σ modulator from a 
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discrete-time ∆Σ modulator while avoiding excessive STF peaking, and some methods of 
reducing excess loop delay and DAC clock jitter. 

4.1. Discrete-to-Continuous Transform 

To design a continuous-time ∆Σ modulator, a discrete-time ∆Σ modulator may be 
designed and simulated, and then a conversion between the two modulators can be 
performed to realize the desired loop filters of the continuous-time ∆Σ modulator.  One 
method of finding equivalence between a continuous-time and discrete-time modulator is 
to recognize that an implicit sampling occurs in the quantizer of the continuous-time 
modulator.12 If the open-loop modulators are analyzed, as shown in Fig. 15, the two 
modulators are equivalent as long as the outputs are equal at the sampling instants.  
Therefore, if 

nTttwnw == |)(][  for all n , then the loop filters will be equivalent.  The 

resulting condition for the two filters )(zB  and )(sB  to be equivalent is:13 

 { } { } nTtsBsRLzBZ =
−− ⋅= |)()()( 11  (19) 

This transformation is known as the impulse-invariant transformation,14 where 1−Z  
represents the inverse z-transform, 1−L  represents the inverse Laplace transform, and )(sR  

represents the DAC pulse. 
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Fig. 15: Open loop continuous-time equivalent of discrete-time modulator 

To properly account for the shape of the DAC pulse, Eq. (19) is rewritten with the 
DAC pulse )(sR  represented by:12 

 
sT

ee
sR

ss βα −− −=)(  (20) 

The time domain representation of this DAC pulse transfer function )(sR  is: 

 




=
,0

,1
)(tr  

otherwise

t ,βα <≤  T≤<≤ βα0  (21) 

Eqs. (20) and (21) assume that the pulse is rectangular and has a magnitude of one, 
lasting from α=t  to β=t . 
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As an example, if a discrete-time ∆Σ modulator were designed with an NTF of 
21)1()( −−= zzH  (with an STF 1)( −= zzG ), then the continuous-time ∆Σ modulator would 

be designed as follows: 
1) Referring to Fig. 15, )(zA  and )(zB  are found as follows from the given NTF and 

STF: 
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2) The filters )(zA and )(zB  are dissected into their partial fraction representation:  
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3) Using Eqs. (24) and (25) for )(zA  and )(zB  (where )(sR  would have 0=α  and 

T=β ), the resulting equivalent continuous-time filters are (using the transforms 

Tsz

1
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−

, 
222 2

2
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4) These loop filters )(sA  and )(sB  can be converted into a ∆Σ modulator topology.  An 

example of one possible modulator is shown in Fig. 16. 
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Ts

1
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+ 23Ts
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+ 2Ts
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Σ Σ
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Fig. 16: Continuous-time modulator to realize derived loop filters 

4.2. Signal Transfer Function 

In the example above, )(zA  was designed to be 
122 +− zz

z .  An extra delay in this path 

does not change the discrete-time transfer function, but it can alter the continuous-time 
transfer function when the discrete-to-continuous transform is applied.  The result is that 
there can be potentially more or less peaking in the STF.  This can be hazardous since it 
can cause instability in the modulator for certain input frequencies.  Therefore, the STF 
should be computed and analyzed to ensure minimal peaking. 

Assuming a linearzied model of the ∆Σ modulator where the quantizer is replaced by 
a unity-gain block, the STF can be computed as the input loop filter )(sA  multiplied by 
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the discrete-time NTF.  The NTF is discrete-time due to the sampling in the quantizer.  
To make them both a function of the same frequency, the discrete-time transfer function 
is evaluated at fTjez π2=  while the continuous-time transfer function is evaluated at 

fTjs π2= .11  When the resulting transfer function is plotted, the inherent anti-aliasing 

property of the continuous-time STF is apparent. 
Using an )(zA  of higher order to illustrate the change in the STF, the functions 

133

1
23 −+− zzz

, 
133 23 −+− zzz

z  and 
133 23

2

−+− zzz

z  can all be converted to their 

equivalent continuous-time input loop filters )(sA .  These discrete-time filters )(zA  all 

result in the same transfer functions, except for a difference in the latency at the output.  
But when the equivalent )(sA  for all three cases is multiplied by the NTF 

31 )1()( −−= zzH  (evaluated at fTjez π2= ), the resulting continuous-time STFs are shown in 

Fig. 17.  Only two graphs are plotted since the continuous-time STFs are the same when 

)(zA  equals either 
133

1
23 −+− zzz

 or 
133 23

2

−+− zzz

z .  But in both these cases, the STF 

peaks 1.4dB higher than when 
133

)(
23 −+−

=
zzz

z
zA , resulting in a potentially less stable 

∆Σ modulator due to this unwanted gain. 
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Fig. 17: Comparison of continuous-time STF for various discrete-time input transfer functions 

4.3. Excess Loop Delay 

One of the major difficulties with continuous-time ∆Σ modulators is that a small delay 
dt  

exists between the quantizer sampling instant and when the DAC pulse is valid because 
the transistors cannot switch instantaneously.  This is known as excess loop delay.12 The 
excess loop delay in a continuous-time modulator effectively increases the order of the 
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modulator if the pulse enters the next clock period, as demonstrated in Fig. 18.  When the 
pulse enters the adjacent clock period, the resulting order of the equivalent discrete-time 
transfer function increases.12 This increase in order can be illustrated by modeling the 
output of the DAC pulse with excess loop delay 

dt  as the sum of two pulses as follows: 

 )()()( ),0(),(),( TtDACtDACtDAC tdTtdtdTtd −+=+
 (28) 

where )()1,( tDAC td
represents a pulse from 

dt=α  to T=β , and )(),0( TtDAC td −  represents 

a pulse from 0=α  to 
dt=β  that has been shifted in time by the sampling period T .  The 

resulting z-transform will be the sum of two pulses, one of which has an extra 1−z  term 
due to the delayed DAC pulse )(),0( TtDAC td − , and this will contribute to the increased 

order of the transfer function.  Using this analysis, the transfer function:12 
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becomes 
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where the extra order is evident.  This reduces the stability of the ∆Σ modulator, and is 
more significant at larger values of the excess loop delay 

dt .  Also, the excess loop delay 

increases the noise floor of the ∆Σ modulator.  This analysis facilitates simulation of the 
equivalent discrete-time modulator to fully evaluate the acceptable excess loop delay in a 
given ∆Σ modulator design. 

T0 s T0 s

td

 

Fig. 18: Excess loop delay in a full period DAC pulse 

The use of an additional feedback term directly into the quantizer from the DAC in 
the continuous-time ∆Σ modulator has been shown to mitigate the effects of excess loop 
delay.15, 16 In fact, it was shown that in some cases a delay greater than T  can be used, as 
long as the delay is properly chosen.15  This technique is shown in Fig. 19 with the extra 
f  path. 
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Fig. 19: Additional path to reduce effects of excess loop delay 
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Another simple way of reducing the effects of excess loop delay is to use return-to-
zero (RZ) DAC pulses.  Under this condition, the width of the pulse in Fig. 18 can be 
adjusted so that it does not extend beyond the sampling interval T .  The value of the 
continuous-time filters must then be adjusted accordingly since the α  and β  parameters 

of Eqs. (20) and (21) will be modified.  One difficulty with this solution is that the loop 
filters of the ∆Σ modulator will have been designed specifically for a given α  and β , 

and changes in the value 
dt  will alter the rise and fall instants of the feedback pulse.  

Therefore, these rise and fall instants should be very well controlled with respect to the 
quantizer clock, especially at high speeds.  It is also possible to introduce a variable delay 
block between the quantizer clock and the RZ DAC pulse clock so that this delay value 
can be manually or automatically tuned for increased precision. 

4.4. Clock Jitter 

Clock jitter is statistical variations of clock edges.17 Two clocks are present in a CT ∆Σ  
modulator and both can be affected by clock jitter.  One of the clocks controls the 
decision instant of the quantizer (or comparator) while the other clock controls the DAC 
output.  Since the output of the comparator is shaped by the NTF (like the quantization 
noise), the impact of this error will be relatively small.  Conversely, the output of the 
DAC is shaped by the STF because this signal adds to the input signal and thus, the 
impact of this error affects the passband noise in the ∆Σ modulator.18 

There are two varieties of clock jitter, delay clock jitter and pulse-width clock jitter.  
In a second-order ∆Σ  modulator, the delay clock jitter is affected by the NTF while the 
pulse-width clock jitter manifests itself as white noise.19  Thus, the pulse-width clock 
jitter degrades the SNR of the ∆Σ modulator more severely since the white noise fills in 
the notch in the signal band, directly reducing the noise floor in the band of interest.  
Therefore, the clock jitter discussed will be the pulse-width clock jitter incurred in the 
DAC. 

Discrete-time ∆Σ modulators are relatively insensitive to pulse-width clock jitter 
since they utilize switched-capacitor circuits.  The insensitivity is due to the sloping form 
of the feedback pulse.17  Because most of the charge transfer in a switched-capacitor 
circuit occurs at the beginning of the clock period, clock jitter introduces a minimal 
amount of error in the charge lost 

DQ∆  (see Fig. 20).20  The capacitor is discharged over 

a switch with very low on-resistance, thus reducing the value of RC=τ  and causing a 
fairly steep slope as the DAC discharges.20  In contrast, continuous-time ∆Σ modulators 
transfer charge at a constant rate over the clock period (ideally), and thus, the charge loss 

CQ∆ , due to a timing error, is proportionally much greater than that of the discrete-time 

∆Σ modulator. 
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Continuous-Time Discrete-Time 

 

Fig. 20: Clock jitter in discrete-time and continuous-time modulators 

The clock jitter with RZ DAC pulses is going to be more detrimental than that for the 
non-return-to-zero (NRZ) DAC pulses for a couple of reasons.  First, with RZ DAC 
pulses, since the width of the pulse is smaller, this proportionally results in a larger 
percentage difference of the total integrated signal when jitter is introduced, when 
compared to a full period NRZ DAC pulse. Second, in every clock period, the RZ DAC 
pulse returns to zero, independent of the previous value, and thus introduces clock jitter 
in every pulse.  Conversely, in the NRZ DAC pulse, adjacent pulses may have the same 
value, thus introducing no clock jitter in that period.  And finally, similar to the last point, 
in a multi-bit ∆Σ modulator the output of adjacent DAC pulses typically do not span the 
entire range of the feedback DAC, and are typically a few levels apart.  Therefore, the 
clock jitter will be present in a smaller fraction of the total pulse area.  However, when a 
RZ DAC pulse is used, the output pulse must return to zero during every period, and thus, 
the change in level is greater than that of an NRZ pulse. On average, this increases the 
presence of clock jitter when using an RZ pulse as compared to an NRZ pulse in a 
multibit feedback DAC. 

The effects of clock jitter for two low-pass ∆Σ modulators with single-bit quantizers 
were analyzed, where one used RZ DAC pulses, and the other used NRZ DAC pulses.20  
It was found that the noise power in the case with RZ DAC pulses was about 3 times 
worse than that with NRZ DAC pulses. 

4.5. Time-Interleaving 

Continuous-time ∆Σ modulators can also be time-interleaved.  As an example, the 
second-order discrete-time modulator shown in Fig. 11 can be converted to its time-
interleaved by 2 continuous-time equivalent with various manipulations of the loop filters 
(since there are now clearly more than just )(zA  and )(zB  as the loop filters).  The 

resulting modulator is shown in Fig. 21 where the ADCs and DACs are operating at half 
of the original frequency, meaning that clock jitter has about half the impact on the ∆Σ 
modulator.  Furthermore, the higher bandwidth requirements on an RZ DAC operating at 
high-speeds (assuming the choice of an RZ DAC pulse to reduce the excess loop delay) is 
reduced by a factor of two by time-interleaving. 
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Fig. 21: Time-interleaved continuous-time ∆Σ modulator 

5. Conclusions 

This paper discussed a variety of techniques for designing high-speed oversampling 
analog-to-digital converters including an input feedforward architecture, 
time-interleaving and continuous-time modulators.  Some design challenges were 
highlighted and potential solutions described. Some recent publications of higher-speed 
CMOS ∆Σ modulators are shown in Table 1 and give an indication of the present state-
of-the-art for input signal bandwidths greater than 5MHz. While continuous-time 
modulators tend to dominate at higher input signal bandwidths, we see from Table 1 that 
excellent results can still be obtained using a discrete-time modulator through careful 
architecture and circuit design.3  
 

Table 1: Recently published high-speed ∆Σ modulators 

Ref. Technology Sampling Frequency SNDR Power Bandwidth Topology 

2 0.65 µm CMOS 100 MHz 67 dB 295 mW 6.25 MHz DT (CIFB) 

21 0.13 µm CMOS 80 MHz 50 dB  80 mW  10 MHz  CT 

22 0.13 µm CMOS 160 MHz 57 dB  122 mW  10 MHz  CT 

3 0.18 µm CMOS 200 MHz 72 dB  200 mW  12.5 MHz  DT (CIFF) 

23 0.13 µm CMOS 300 MHz 64 dB  70 mW  15 MHz  CT 

21 0.13 µm CMOS 160 MHz 50 dB  120 mW  20 MHz  CT 
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