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 

Abstract— A 3rd-order passive switched-capacitor low-pass 

filter is presented together with experimental results. The current 

input - voltage output filter structure realizes complex-conjugate 

poles although it is composed of switches and capacitors. The 

results are verified with measurements performed on the filter 

prototype integrated in a 0.13 μm CMOS technology. The 

prototype has a cut-off frequency of 470 kHz, 150 μW power 

consumption from 1.2 V power supply, 92 dB SFDR, and an active 

area of 0.06 mm2.  The switch-capacitor filter was obtained using 

a continuous-time model that is also described here and is useful 

for design, analysis, and simulation of oversampled switched-

capacitor circuits. The model is applicable to a variety of 

topologies including multi-phase passive switched-capacitor 

filters, switched-capacitor integrators, as well as switched-

capacitor DC/DC converters.  

 
Index Terms—Discrete-time systems, continuous-time design, 

continuous-time modeling, low-pass filter, passive switched 

capacitor circuits, switched capacitor circuits.  

 

I. INTRODUCTION 

s integrated circuit technology advances towards shorter 

length transistors, analog designers need to reconsider 

conventional implementations. Advanced transistors require 

lower power supply voltages and make the design of high-gain 

high-bandwidth amplifiers more difficult. However, switch and 

capacitor based circuits work well in modern technologies due 

to lower parasitic components and fast clocking circuits.  In 

terms of filter design, these trends favor passive switched-

capacitor (PSC) architectures, where the charge transfer 

between capacitors do not require the presence of an active 

element [1, 2]. The elimination of the active element leads to 

high linearity and low noise filter designs with accurate corner 

frequencies that are set by capacitor ratios. In addition, PSC 

circuits are easily configurable either by using a capacitor bank 

or changing the sampling frequency. 

In the recent literature, PSC topologies were used as an anti-

aliasing integration sampler [3, 4], a channel-selection filter for 

receivers [5-11], a decimation filter before an ADC [12], and a 

charge-based DAC for transmitters [13]. The anti-aliasing 

integration sampler can only realize first-order filtering [3, 4]. 
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However, this sampler shows that the continuous input current 

integration on the filter capacitor prior to sampling results in a 

first-order build-in anti-aliasing filtering, which is a property 

that is also inherited by subsequent higher-order filters [4].  

Afterwards, higher-order filtering was achieved using a multi-

phase PSC structure for channel-selection filters but had only 

real poles which resulted in poor filter selectivity [5]. Higher-

order real-poled PSC filters were utilized to improve the filter 

selectivity partially [6]. By adding active feedback to the multi-

phase PSC filter, complex conjugate poles were realized, but at 

the expense of degraded noise, linearity, and power 

performance [14]. A simplified continuous-time (CT) model 

enabled easy analysis and design of multi-phase PSC filters 

with grounded capacitors [9]. This modeling approach replaces 

switches and sampling capacitors with ideal voltage buffers and 

equivalent resistors leading to great simplifications in the 

analysis and design. As a result, a 3rd-order low-pass PSC filter 

with complex conjugate poles was implemented passively using 

only switches and capacitors [10]. This passive feedback 

implementation restores the sharper filtering with no additional 

noise, linearity, and power penalty due to active devices. 

This paper extends the work in [9, 10] and presents a 

continuous-time model and design approach for oversampled 

switched-capacitor topologies by focusing on PSC structures. 

In contrast with [9], the model proposed here is applicable to 

the circuits regardless whether the capacitors are grounded or 

both plates are switching. The accuracy of the model is 

explored, and limitations are derived. The design methodology 

of a 3rd-order filter prototype is investigated in detail while 

showing measurement results that closely agree with the 

prediction. The paper is organized as follows: Section II 

describes the continuous-time modeling approach. Section III 

gives modeling examples for non-grounded capacitor circuits. 

Section IV covers the limitations of the continuous-time model. 

Section V describes the filter design using the continuous-time 

design approach and gives the implementation details, and 

Section VI provides measurements verifying the continuous-

time model.  
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II. FROM DISCRETE TO CONTINUOUS-TIME MODELLING 

Switched-capacitor circuits have linear time-varying 

characteristics requiring charge balance equations and z-

domain analysis for exact representation of their behavior in 

discrete-time [15, pp. 398]. However, under specific conditions, 

it is possible to analyze these structures with good accuracy 

using linear time-invariant components. For instance, it is well 

known that a capacitor, CS, connected to two voltage sources 

V1 and V2 in two different clock phases, Ф1 and Ф2, 

respectively, can be modeled using an equivalent resistance, R, 

as shown in Fig. 1a (where R is equal to TS/CS with TS 

corresponds to the clock period) [15, pp. 399, 16]. This 

equivalence is derived by assuming ideal DC voltage sources 

connected to V1 and V2 nodes and by calculating the average 

current transfer in one clock period. While this derivation is 

quite well known for DC signals, to the authors’ knowledge, 

there is no equivalent derivation for low frequency ac signals.  

For completeness, Appendix A shows the same equivalent 

resistance TS/CS can be derived for ac voltage sources with the 

input signal frequency much lower than the sampling 

frequency, fS. 

Fig. 1b shows a continuous-time modeling approach, where 

the current supplied by each node is considered separately and 

modeled using an ideal voltage buffer + equivalent resistance 

branch [9]. The total number of buffer + R branches is equal to 

the number of clock phases during which CS is connected to 

different voltage sources. Although this approach may seem 

redundant for a two-phase switched-capacitor topology, it can 

address multi-phase switched-capacitor structures, where a 

simple equivalent resistor approach does not work. Moreover, 

this model is capable of addressing non-reciprocal topologies 

by employing branches with ideal voltage buffers, which can 

create unilateral paths [9]. (For completeness, the derivation of 

buffer + equivalent resistor model for voltage sources with 

input frequencies much smaller than the sampling frequency is 

covered in Appendix B.) 

The modeling approach with buffers and equivalent resistors 

can address multi-phase switched-capacitor structures; 

however, it relies on a grounded sampling capacitor. There are 

a variety of switched-capacitor implementations that employ 

sampling capacitors with both plates switching in between 

different nodes. One common example is the parasitic 

insensitive switched-capacitor integrator shown in Fig. 2a. 

Conventionally, the switching parts are modeled using a –R as 

shown in Fig. 2b [15, pp, 417]. This approach can capture the 

correct positive voltage gain value. However, -R indicates that 

for positive V1 values, the current is flowing into V1 from the 

virtual ground, which is not the case. Moreover, if this 

continuous-time approach is used to analyze the effect of finite 

amplifier gain or offset voltage, the analysis may result in false 

or inaccurate values together with a fictitious right-half plane 

pole at +1/[(1+A)RC] rad/s, where A is the finite amplifier gain 

defined by vout/(v+-v-). Apart from the parasitic insensitive 

switched-capacitor integrator, DC/DC converters with flying 

capacitors and even PSC filters can include sampling capacitors 

with non-grounded switching plates. 

A. Floating Switched-Capacitor Continuous-Time Model  

A two-phase switched-capacitor topology where both plates 

are non-grounded is shown in Fig. 3a. The average current 

flows into V2 in one clock period can be written as: (V1-V2)fSCS. 

This current can be modeled using a voltage controlled voltage 

source (VCVS) whose value is equal to V1, connected in series 

with an equivalent resistance of R, whose value is 1/fSCS. 

Another branch of VCVS and R is necessary to model the 

average current flowing into V1 node to complete the model as 

shown in Fig. 3b. Although it is not covered, this proposed 

model can be easily adapted to multi-phase switched-capacitor 

structures by merely increasing the number of VCVS + R 

branches. A similar model for switched-capacitor structures 

 

 
 

(a) (b) 
 

Fig. 2.  a) Parasitic insensitive switched-capacitor integrator, b) its continuous-

time model. 
 

     
(a) 

 
(b) 

Fig. 1.  Basic two-phase switched-capacitor topology modeled with 
a) traditional equivalent resistance, and b) two buffer + equivalent resistance 

branches.  

  

 
(a) 

 
(b) 

Fig. 3.  a) Two-phase switched-capacitor topology with non-grounded 
sampling capacitor and b) proposed continuous-time model. 
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with two phases was also previously investigated [17].  (The 

derivation of the model for voltage sources with input 

frequencies much smaller than the sampling frequency is 

similar to the proofs given in Appendices A and B.) 

III. MODELLING EXAMPLES 

In this section, two examples of switched-capacitor 

topologies that cannot be modelled in continuous-time with a 

traditional approach will be analyzed with the proposed model 

to highlight the effectiveness of the model. 

A. Parasitic Insensitive Switched-Capacitor Integrator 

The proposed continuous-time model can be used to analyze 

the parasitic-insensitive switched-capacitor integrator. Fig. 4 

shows the switching parts of the integrator, where V1 

corresponds to the input voltage, and V2 corresponds to the 

virtual ground of the amplifier shown in Fig. 2a. In Ф1, C1 is 

connected in between V1 and ground nodes, this sampled 

voltage value, (V1-0), becomes the value of the VCVS in the 

second branch. Whereas during Ф2, C1 is connected in between 

ground and V2 nodes, thus the VCVS value in the first branch 

becomes –V2. Since there exist two ground nodes, it is possible 

to rearrange this continuous-time model as shown in Fig. 4 

bottom side, where VCVSs can be shown by ideal inverting 

voltage buffers to have a more intuitive schematic. Fig. 5 shows 

the parasitic insensitive integrator where the switching parts are 

replaced.  

It should be noted that this continuous-time integrator model 

can capture the correct sign of the voltage transfer function by 

the use of inverting voltage buffers rather than having –R. 

Furthermore, this model captures the correct input current 

direction. This new model can also be used to analyze the 

effects of finite amplifier gain and offset voltages without 

resulting in a fictitious right half plane pole. 

B. Flying Capacitor DC-DC Converter 

The switched-capacitor DC/DC converter structure shown in 

Fig. 6a can be analyzed using the differential continuous-time 

model to determine the Thévenin equivalent of the switching 

parts. This structure involves a flying capacitor, C, and large 

capacitors, CM’s , for storing the DC value of the output voltage. 

The frequency of interest is much smaller than the sampling 

frequency [18]. During Ф1, C is connected in between VDD and 

Vout nodes, sampling a voltage of VDD-Vout. Whereas, during 

Ф2, C is connected in between Vout and the ground node 

sampling a voltage of VDD-0 across itself. The top left schematic 

in Fig. 6b shows analyses of this circuit using the differential 

switched-capacitor continuous-time model, where R=1/fSC. It 

is possible to simplify further the model as shown in Fig. 6b and 

obtain the Thévenin equivalent circuit shown in Fig. 6c. In 

order to find vout from 2vout, the open circuit voltage, VDD, and 

the output resistance, R/2, are divided by two. The conventional 

approach is to use a DC transformer model as shown in Fig. 6d 

[18]. The conversion ratio, (m:n), and the output resistance, 

ROUT, can be calculated to be exactly the same as Fig. 6c. 

However, this approach is not intuitive and the derivation is 

cumbersome.  

 
Fig. 4.  A common non-grounded switched-capacitor structure modeling. 

 

 
Fig. 5.  The continuous-time model of the parasitic insensitive switched-

capacitor integrator. 

 
(a) 

 

 
(b) 

 
(c)         (d) 

 

Fig. 6.  a) Switched-capacitor DC/DC voltage converter, b) its simplified 

continuous-time model, c) Thévenin equivalent of vout obtained with the 
continuous-time model, d) conventionally used switched-capacitor converter 

transformer model.  
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IV. LIMITATIONS OF THE MODEL 

The branch-based continuous-time model inherits the 

assumptions of the traditional two-phase switched-capacitor 

resistor equivalence: The driving node voltage should dictate 

the voltage sampled by the sampling capacitor, CS. However, 

limited settling time and charge sharing paths may disturb this 

behavior. Moreover, as previously discussed, the continuous-

time model is only valid for input voltage sources with 

frequencies much smaller than the sampling frequency. In this 

section, these limitations will be studied to determine the 

accuracy of the model when the assumptions are not met 

perfectly. 

A. Settling Time 

A resistance in series with the sampling capacitor creates a 

non-zero time constant, which leads to settling error. This series 

resistance can be due to the switch on resistance or the source 

resistance. For a conventional switched-capacitor topology 

shown in Fig. 1, when switches have on resistances of RSW, the 

equivalent resistance seen can be rewritten as follows:  
 

 

1 2

1 2

1 1
.
1

S SW S

S SW S

f R C

f R C

S S

e
R

f C e









                      (1) 

where fS is the sampling frequency. As RSW goes to zero, R 

becomes 1/fSCS, as expected. For example, if the settling time 

constant (RSWCS) is set to 15% of the sampling period, 1/fS, the 

error in the equivalent resistance becomes 7.40 %, while if the 

time constant is set to 5% of the sampling period, the accuracy 

becomes 0.01%.  

One way to relax this problem without requiring a higher 

clock frequency is to increase the sampling frequency of the 

switched-capacitor by introducing time-interleaved stages [19], 

as done in the presented prototype described in Section V. 

 

B. Charge Sharing 

In the case CS is connected to a capacitive driving impedance, 

there is an issue of charge sharing between two capacitors that 

leads to an error in the equivalent resistor behavior. For 

example, Fig. 7a shows a 1st-order PSC filter with current input 

and voltage output, where CS is switching between an 

integrating capacitor, CI, and a ground node. CI capacitor can 

be treated as a voltage source for CI values much larger than CS, 

and thus the switching parts can be replaced by an equivalent 

resistor with a value of 1/fSCS (Fig. 7b). However, when CS 

becomes comparable to the driving impedance, CI, the charge 

stored in CS is not an accurate representation of the initial 

voltage on CI. Moreover, the pole created (proportional to 

CS/CI) moves toward the higher frequencies, where the model 

accuracy is limited.  

It is possible to investigate the continuous-time model 

accuracy for this 1st -order PSC filter. Fig. 8 shows the 

frequency transfer functions simulated using periodic steady 

state and periodic AC analysis for a sampling frequency of 

160 MHz, CS=200fF, and with a large (40) and a small (4) CI/CS 

ratio. For CI/CS=40, the error in the 3dB cut-off frequency is 

1%, whereas for CI/CS=4, the error becomes 12%. Fig. 9 shows 

the percentage error in the simulated 3 dB cut-off frequency for 

changing f3dB/fS ratios. The error increases, as f3dB becomes 

closer to fS. 

C. Accuracy of the Model in PSC Filters Response 

The continuous-time model is valid for bandlimited sources 

with frequencies much smaller than the sampling frequency. 

However, it is shown that PSC filter frequency responses 

obtained using the continuous-time model closely follows the 

discrete-time analysis up to Nyquist frequency, fS/2, as long as 

the pole frequencies are much smaller than the sampling 

frequency [9, 10]. This is because when the model accuracy 

starts to decrease at higher frequencies, the dominant 

impedance is determined by the large integrating capacitors 

present in the system. As an example, it is possible to analyze 

the 1st-order low-pass PSC filter shown Fig. 7. As CI>>CS and 

f3dB<<fS, the model can predict the pass-band gain and the pole 

frequency with high accuracy. For the input frequencies closer 

to fS/2, i.e., for frequencies higher than the pole frequency, CI 

impedance starts to be the dominant impedance determining the 

overall frequency response. Thus, although at those frequencies 

the continuous-time model of the switching parts is not 

accurate, the continuous-time model of the filter results in the 

correct transfer function. 

 
Fig. 8.  1st-order PSC filter simulated discrete-time implementation and 

continuous-time model frequency responses for CI/CS=40 and CI/CS=4.  

 
Fig. 9.  Error in the 3dB cut-off frequency calculation of a 1st-order PSC filter 

using the continuous-time model.   

 
(a)                                                     (b)  

 
Fig. 7.  a) 1st-order PSC filter and b) its continuous-time model with the 

traditional equivalent resistance approach. 
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V. DESIGN AND IMPLEMENTATION 

The strength of the continuous-time approach is that it offers 

a new point of view to develop novel topologies. In this section, 

starting from a cascade of real poles, complex conjugate poles 

are realized using the continuous-time approach. The 

continuous-time design approach highlights that switched-

capacitors do not only act as resistance but with the help of 

time-variance, it is possible to create unilateral loops. This 

observation is important because the unilaterality makes it 

possible to realize complex conjugate poles. A 3rd-order low-

pass PSC filter with complex conjugate poles was designed and 

fabricated to validate the continuous-time design approach. 

Design trade-offs and implementation details will be discussed 

through the section. 

A. Design of the PSC Filter 

It is known that complex conjugate poles can be generated 

by closing feedback around a cascade of stages with real poles. 

In Fig. 10a, the feedback is realized by connecting the output of 

the cascade to the input through an inverting buffer and an 

equivalent resistance, R. This structure is also the Nth-order 

realization of the 2nd-order Butterworth biquad filter reported 

previously, which has a limited quality factor (Q) of 1/√2 [9].  

Thanks to the continuous-time approach, it is easy to analyze 

how the number of branches will affect the pole locations and 

change the associated quality factors. To determine the pole 

locations, the transfer function of the filter shown in Fig. 10a 

can be written as follows: 

     1 2 3

( )
1 1 1 ... 1 1

out

in I I I IN

v R
s

i sRC sRC sRC sRC


    
 (2) 

Fig. 10b shows the locations of the poles generated by a 

cascade of 2, 3, and 4 elements with the same valued CI’s for 

each stage. For a loop gain equal to one, which is the maximum 

achievable with a PSC network, the maximum quality factor is 

obtained starting from a cascade of coincident real poles, which 

demands identical CI’s. The generated poles have the same 

quality factors as the poles of a Butterworth filter but different 

frequencies (Fig.10b). The shift in the pole frequencies results 

in in-band peaking in the filter transfer function that increases 

with the order of the filter.  

A 3rd-order filter is chosen to be designed as it can 

approximate the Butterworth filter behavior with less than 1dB 

in-band peaking. Fig. 11a shows the 3rd-order filter continuous-

time model. And, an example of a 3rd-order implementation is 

shown in Fig. 11b. In this filter, CS shares charge with CI1, CI2, 

and CI3 in Φ1, Φ2, and Φ3, respectively, creating a unilateral 

signal flow. During the phase change from Φ3 to Φ1, CS is 

flipped to create the negative feedback. Note that Fig. 11a also 

shows the related phase changes corresponding to each branch. 

The pole locations derived from the model can be verified by 

evaluating the z-domain transfer function of the filter shown in 

Fig. 11a as follows (assuming equal CI’s for simplicity): 

323

33

)1()(

)1(1

)(

)(










zz

z

CzQ

zV

Sin

out                         (3) 

where α is CI/(CI+CS) and Qin is the amount of charge fed into 

the filter in one sampling period, TS. Although the network 

shown in Fig. 11a is periodic with 2TS, TS is defined for three 

phases because the output is sampled in every three phases. The 

quality factor of the created poles can be found by mapping z-

domain poles to s-domain using the bilinear approximation. As 

CI/CS ratio increases, Q of the complex conjugate pair 

approaches 1, which is the Q value predicted by the continuous-

time model used for the synthesis of the filter.  

 
(a) 

 
(b) 

Fig. 10.  a) Low-pass PSC filter with complex conjugate poles, and b) the pole 

locations of the 2nd, 3rd, and 4th order filters, where the gray markers shows the 

same order Butterworth pole locations having the same 1 dB cut-off frequency. 

 
(a) 

 
(b) 

 
(c) 

 

Fig. 11.  a) The  continuous-time model of the 3rd-order filter with complex-

conjugate poles, b) an example PSC implementation, and b) its transfer 
function compared with the same order Butterworth and the 7th-order real pole 

filter having the same 1 dB droop frequency. 



TCAS-I-00073-2019.R1 

 

 

6 

 Simulation of the proposed filter and the 3rd-order 

Butterworth response (with the same DC gain and 1 dB droop 

frequency) are compared in Fig. 11b. Although the pole 

location deviates from the ones of a Butterworth, the 3rd-order 

filter maintains similar in-band flatness and selectivity. The 

figure inset shows that the response of the proposed filter 

deviates from a Butterworth one less than 1dB close to the filter 

band edge.  Fig. 11b also compares the proposed solution with 

the 7th-order all real pole reported by Tohidian et al. in [5] by 

assuming a maximum in-band drooping of 1 dB. Although the 

proposed filter has a lower order, a higher selectivity is 

achieved over a decade close to the filter pass-band due to the 

presence of the complex conjugate poles. 

B. Implementation of the PSC Filter 

A fully differential 3rd-order PSC filter was designed and 

fabricated in 0.13 μm TSMC CMOS process. Fig. 12 shows the 

PSC filter implementation. The charge inversion of CS is 

realized by exploiting the differential structure and cross-

coupling of positive and negative nodes. The filter uses six 

phases: Three non-inverting phases (Φ1, Φ2, and Φ3) when top 

CS is connected to the top CI’s sequentially, while the bottom 

CS is connected to the CI’s on the bottom differential side. 

During the following three inverting phases (Φ1N, Φ2N, and Φ3N) 

the CS’s are connected to the CI’s, on the opposite sides.  

In order to increase the sampling rate, three time-interleaved 

blocks, which consists of CS’s and switches, are employed. 

Thus, the resulting sampling period becomes equal to the period 

of a single phase (Fig. 12).  

The z-domain transfer function of the time-interleaved filter 

can be written as: 

                           
33

3

)1()(

)1(2

)(

)(










z

z

CzQ

zV

Sin

out                          (4) 

where α is CI/(CI+CS), coefficient 2 is due to the differential 

structure, and Qin is the amount of charge fed into the filter in 

one sampling period. The z-domain transfer function reported 

in (4) seems considerably different than the previously derived 

transfer function in (3). The reason is that the sampling period, 

TS, in (4) is defined for a single phase due to the time-

interleaved structure, whereas in (3), TS is defined for three 

phases. However, once mapped back to s-domain it can be seen 

that (3) and (4) result in similar filtering characteristics for the 

same TS. The quality factor of the complex conjugate pole pair 

can be calculated as 1.08 by mapping z-domain poles to s-

domain using Bilinear approximation (assuming CI/CS=10 and 

all CI’s are equal to each other). 

For a sampling frequency of 160 MHz, the filter 3 dB 

bandwidth was designed to be 470 kHz. CI’s are chosen to be 

equal for maximum Q. All capacitors, CI’s and CS’s, are used 

as MIM capacitors with values 12.6 pF and 225 fF, 

respectively, together with the added parasitic capacitances. 

Each sampling capacitor, CS, is directly connected to six 

switches (Fig. 12), and 20 % of the CS’s are made of switch 

parasitic capacitances that are added on top of MIM 

capacitances. Although each integrating capacitor, CI, is also 

directly connected to six switches, the effect of switch parasitic 

capacitances on CI’s is negligible due to larger capacitance 

sizes. Smaller switches can help lower switch parasitic 

capacitances; however, there is a minimum limit on switch sizes 

due to the settling. The switches in this prototype are 

implemented using transmission gates and sized for 1.5 kΩ 

maximum on resistances for the operation range. A ring counter 

is implemented to produce six non-overlapping clock phases 

using an external clock signal at 160 MHz. A gm-cell was not 

included in the design in order not to dominate the noise and 

linearity responses of the PSC filter. Thus, the noise model can 

also be verified. In the prototype, the PSC filter is followed by 

an on-chip open drain output buffer to drive the probe used for 

the measurements. In order not to affect the noise 

measurements, the output buffer was designed to have lower 

noise spectral density compared to the filter. 

C. Component Mismatch Effect on the Quality Factor 

Component mismatch in between CI’s or CS’s can affect the 

filter transfer function by changing the filter cut-off frequency 

and the quality factor of the poles. It is possible to analyze these 

effects using the continuous-time model. As an example, a 

single-ended 2nd-order passive switched-capacitor filter can be 

investigated using the denominator of the filter transfer function 

given in (2) for N=2 as follows: 

  1 2( ) 1 1 1I ID s sRC sRC                            (5) 

By rearranging the terms in (5) and equating it to the well-

known 2nd-order biquad filter formula (𝑠2 + 𝑠𝜔0/𝑄 + 𝜔0
2), it is 

possible to find the corresponding 3 dB cut-off frequency, ω0, 

and quality factor, Q, of the poles as follows [9]: 

0

1 2

2

I IR C C
 

       and       1 2

1 2

2 I I

I I

C C
Q

C C




                    (6) 

From (6) it can be calculated that for example for a 10% 

mismatch in between CI1 (+5%) and CI2 (-5%), Q decreases by 

0.13 %, which corresponds to a change from 0.707 to 0.706, 

i.e., the phase of the complex-conjugate poles changes from 45º 

 

Fig. 12.  Fabricated 3rd-order low-pass PSC low-pass filter schematic, timing 

diagram, and chip photo. 
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to 44.93º. CS mismatch in between the time-interleave stages 

affects the R value. Thus, it does not affect the quality factor 

(see (6)). 

VI. MEASUREMENT RESULTS 

For measurements, a voltage source is fed into the filter 

through large external resistors (Rext) in series, similar to what 

has been done in [20]. The voltage source together with Rext 

models the Thévenin equivalent of a gm-cell with a finite output 

resistance (Fig. 12). The total external resistance is 200kΩ 

(where the filter input resistance is 27.8kΩ, Reqv=1/fSCS). The 

filter consumes 125μA from a 1.2V power supply, which is the 

power consumed by the phase clock generator. The active area 

of the chip is 0.06 mm2 dominated by the integrating capacitors 

(Fig. 12). 

Fig. 13 shows the normalized transfer functions of the 

prototype measurements, post-layout schematic simulations, 

and the continuous-time model simulation. A good agreement 

has been obtained between measurements, simulation, and 

theory. For comparison, 7th-order all real pole PSC filter 

simulation response is also added to the figure. The 7th order 

filter reported in [5] was designed to have the same DC gain 

and 1 dB droop frequency. It can be observed that the 7th-order 

filter transfer function has a much smoother roll-off around the 

cut-off frequency compared to other filter transfer functions, 

which causes more than 10 dB attenuation loss around the band-

edge. Towards 10 MHz, the measured filter response shows a 

flattening caused only by leakage on the PCB used for testing. 

External resistors lead to around 18 dB attenuation on the PCB, 

which worsen the filtering profile by elevating the leakage 

level. Fig. 14a shows the normalized measured transfer function 

of the filter for changing sampling frequency, fS. It can be seen 

that the filter passband gain decreases for increasing fS values, 

because the equivalent switched-capacitor resistance, R 

(=1/fSCS), decreases, which is proportional to the low-

frequency gain of the filter as derived in (2). Whereas, the filter 

cut-off frequency, which is proportional to the 1/RCI 

(=fSCS/CI), increases for increasing fS values. Fig. 14b shows 

the first (vin), the second (v2P-v2N), and the third (vout) order 

filtering nodes normalized measured transfer functions together 

with the continuous-time model simulation results, which 

match with very good agreement. 

Output noise spectral density measurement results are shown 

in Fig. 15a with a resolution bandwidth of 1 Hz. The noise is 

measured at the output of the buffer and later referred to the 

output of the filter, vout. At low frequencies, noise is equal to the 

noise of the Reqv (i.e., 4kT/fSCS). The solid black line shows the 

simulation result of the PSC filter and the dashed line shows the 

continuous-time model simulation result. The noise spectral 

density is reported up to 1 MHz due to the comparable noise 

floor of the spectrum analyzer. However, this measurement can 

show the in-band noise spectral density as well as the out-of-

band decay close to the filter band edge. It can be seen that 

measured noise spectral density closely follows the simulations 

and theory. The measured input referred noise is 15.8μV, 

integrated between 10 kHz and 470 kHz. Out-of-band IIP3 is 

extrapolated using two blockers at 3.4 MHz and 6.7 MHz 

creating an intermodulation product at 100 kHz. Fig. 15b shows 

the input signal power and the third-order intermodulation 

distortion measurement results referred to the chip input (Vin in 

Fig. 12). The out-of-band IIP3 extrapolated is 55.1 dBm leading 

to 92 dB SFDR. 

Table I summarizes the measurement results and compares 

them with the 7th-order PSC filter [5] and also with the recently 

published 4th order PSC filter that uses active feedback structure 

 

(a) 

 

(b) 
Fig. 14.  Measured low-pass PSC filter a) output response for changing 

sampling frequencies, fS, and b) 1st, 2nd, and 3rd -order output nodes for 

fs=160MHz. 

 

 
(a) 

 
(b) 

Fig. 15.  a) Measured output noise spectral density over the filter bandwidth, 
b) Out-of-band IIP3 measurements of the PSC filter with two tones. 

 

 
Fig. 13.  Transfer functions of the simulated and measured 3rd-order low-pass 

PSC filter and the simulated 7th-order all real pole filter. 
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[14]. The SFDR obtained with this work is more than 20 dB 

better with a much lower power consumption partially thanks 

to the presence of complex conjugate poles which allowed to 

reduce the filter order without compromising the filter 

selectivity close to the cut-off frequency. However, it should be 

noted that both other works employ a transconductance at the 

input, and [14] also uses another transconductance as active 

feedback, which degrade filter’s linearity and increases power 

consumption. Although the transconductance on the feedback 

path is not needed in this work thanks to the passive feedback 

topology, the input gm-cell is only avoided due to testing 

purposes. Thus, Table I should be reviewed considering these 

differences.        

VII. CONCLUSION 

A continuous-time model for oversampled switched-capacitor 

circuits with non-grounded sampling capacitors was introduced 

with examples. The limitations of the modelling approach were 

discussed. A 3rd-order passive switched capacitor filter 

prototype with complex-conjugate poles was obtained using the 

continuous-time approach. Measurements performed on the 

filter prototype result in state-of-art performance meanwhile 

verifying the continuous-time modeling and design approach. 

With this prototype, for the first time, switched-capacitor 

complex conjugate poles have been integrated on silicon 

without the need of any active circuitry. This represents a 

remarkable result that makes it possible to obtain sharp filtering 

profiles using PSC filters while showing that the design 

approach can lead to the invention of novel structures. 

APPENDIX A: DERIVING EQUIVALENT SWITCHED-CAPACITOR 

RESISTANCE 

Assume that V1 and V2 nodes in Fig. 1a are connected to two 

voltage sources with maximum frequencies well below the 

sampling frequency, fS, and switches are ideal with zero on 

resistances. Then, the current supplied by V1 can be written as 

follows: 

     1 1 1pulse capi t i t i t                                (7)  

where i1pulse (t) is the current pulse occurs at the instant the 

switch is closed at Ф1, and i1cap (t) is the current supplied to the 

capacitor during Ф1, as the V1 voltage slowly varies. These two 

components can be written as below:     

               1 1 2pulse S

n

i t C v t v t t nT




             

         
 1

1
Sjn t

cap n

n

dv t
i t C a e

dt






   

 
1

2
2

1
,

0 , 0

0.5 , 0

n

n

n is oddn

with a n is even and n

n







 
 



                    (8) 

where i1pulse (t) is a series of current pulses whose area is equal 

to C.ΔV (=Cv1(nTS)-Cv2(nTS)), and i1cap (t) is the capacitor 

current equation multiplied by the rectangular pulse train, 

which is represented by its Fourier series. Note that rectangular 

pulse train has the same phase of Ф1 with an amplitude of 1.  

In order to define an impedance to model the topology as a 

linear time-invariant (LTI) system, the resulting current in 

response to the V1 and V2 voltages should be examined. From 

(7) and (8), it is possible to write the Fourier transform of the 

produced current as: 

    
     

 

1 1 2

1

2 2

2

S S

kS

k S

k

C
I V j jk f V j jk f

T

j C a V j jk f

    

  









     

 





       (9) 

where ak are the Fourier series coefficients and equal to an for 

n=k. It can be observed from (9) that the current produced has 

a fundamental harmonic and also higher harmonics at the 

multiples of fS. To model the circuit behavior for low 

frequencies, only the fundamental harmonic would be of 

interest [21], which can be written as below:  

       1 1 2 1
2

Fund S

C
I f C V j V j j V j        

        (10) 

It can be seen that I1Fund results in a 1/fSC resistance in 

between V1 and V2 nodes and a C/2 valued capacitance in 

between the V1 node and ground. Although C/2 is needed for 

the exact representation at the fundamental frequency, for 

TABLE I.   

SUMMARY RESULTS AND COMPARISON TABLE 

 This Work [5] [14] 

Technology (nm) 130 65 180  

Order 3rd 7th 4th 

Poles 
1 real + 2 

complex conj. 

7 all 

real 

4 complex 

conj. 

Power (mW) 0.15 1.98 4.3 

Wave. gen. (mW) 0.15 1.68 2.4 

Gm-cells (mW) - 0.3 1.9 

Voltage supply (V) 1.2 1.2 1.8 

3dB cut-off (MHz) 0.47 0.4-30 0.49-13.3 

Sampling Rate (MS/s) 160 800 65-300 

OB IIP3 (dBm) 55.1 11.7 15.03 

Int. Noise (μV) 15.8* 13.7** 13.6*** 

IRN (nV/√Hz) 23.3 4.57 6.54*** 

SFDR (dB) 92’ 64 68 

Active area (mm2) 0.06 0.42 2.9 
   Integrated over *10 kHz – 470 kHz, ** 50 kHz – 9 MHz bandwidth. 

  *** Averaged from 100 kHz to 4.4 MHz  

   ’     NoiseIntIIPSFDR .33/2   

  

  

 
(a) 

 
(b)                                                     (c)  

Fig. 16.  a) A three-phase switched-capacitor topology, and b,c) its continuous-
time model. 
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simplicity, it is ignored in this paper, as all the cases that are 

covered, sampling capacitors are connected to low impedance 

nodes, where the effect of C/2 becomes negligible. Moreover, 

it should be noted that 2/jωC impedance is much greater than 

1/fSC for the frequencies of interest (πf<<fS). 

The impedance seen from the V2 node can be derived 

similarly by writing the current equation sunk into the V2, i2(t). 

In this case, the Fourier Transforms of the current produced can 

be written as follows: 

            2

2 2 12 2S

j

f

pulse S S

kS

C
I e V j jk f V j jk f

T



    

 



       

       
   2 2 2cap k S

k

I j C b V j jk f   




 
 

 
1

2
2

1
,

0 , 0

0.5 , 0

n

k

n is oddn

with b n is even and n

n







 
 



                        (11) 

whose fundamental component becomes: 

       2

2 2 1 2
2

S

j

f

Fund S

C
I e f C V j V j j V j



    



    
   (12) 

The exponential term in I2Fund expression is due to the 

sampling phase shift, and it can be ignored for the frequencies 

of interest (πf<<fS). Once the exponential term is ignored, it is 

seen that the first part of I2Fund results in the same 1/fSC 

resistance in between V1 and V2 nodes, whereas the second part 

of I2Fund results in a C/2 valued capacitance in between V2 node 

to ground. This capacitance can be ignored as well because the 

impedance of 2/jωC is much greater than 1/fSC for the 

frequencies of interest (πf<<fS). Thus, the voltage and current 

relationship in between V1 and V2 voltage sources can be 

modeled by an equivalent resistance of 1/fSC in between those 

two nodes. 

APPENDIX B: DERIVING MULTI-PHASE EQUIVALENT MODEL 

Assume that V1, V2, and V3 in Fig. 16a are all connected to 

ideal voltage sources with input frequencies much smaller than 

the sampling frequency, fS, and switches are ideal with zero on 

resistances. Then, the current supplied by V1 can be written as 

follows: 

                1 1 1pulse capi t i t i t                

                  1 1 3pulse S

n

i t C v t v t t nT




             

            
 1

1
Sjn t

cap n

n

dv t
i t C c e

dt






   

2
sin

,3

, 01

3

n

n

nn
with c

n





  
      




                                  (13) 

It can be shown that these current equations lead to a 

resistance in between V1 and V3 nodes with a value of 1/fSC for 

the frequencies of interest. Moreover, (13) also leads to a C/3 

valued capacitance in between the V1 node and ground (the 

derivation and assumptions are similar to the ones discussed in 

Appendix A).  

In order to complete the model and to replace the switching 

parts, all current components (i1, i2, and i3) should be 

considered. It can be shown that, for the frequencies of interest, 

there is a general current equation valid for i1, i2, and i3 that can 

be written as follows in the Fourier domain:    

     Prk S k evI f C V j V j     
                             (14) 

where Ik represents the Fourier transform of the current 

component sourced by Vk voltage source (where k=1,2, and 3), 

and VPrev represents the voltage source that C is connected to in 

the prior phase before connecting to Vk. It is important to note 

that although there exit three voltage sources, the current 

component related to each node only depends on two voltage 

sources that C is connected (one at the relevant phase and the 

other one is at the phase prior to the relevant phase). 

 Fig. 16b shows the schematic representation of (14) 

employing ideal voltage control voltage sources (VCVS) in 

series with the 1/fSC valued equivalent resistances. This 

schematic can be modified to have a more intuitive view as 

shown in Fig. 16c, where VCVS’s are replaced with ideal 

voltage buffers. 
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