
Copyright (C) 2008, http://www.dabeaz.com 1-

Generator Tricks
For Systems Programmers

David Beazley
http://www.dabeaz.com

Presented at PyCon'2008

1

Copyright (C) 2008, http://www.dabeaz.com 1-

An Introduction

2

• Generators are cool!

• But what are they?

• And what are they good for?

• That's what this tutorial is about

Copyright (C) 2008, http://www.dabeaz.com 1-

About Me

3

• I'm a long-time Pythonista

• First started using Python with version 1.3

• Author : Python Essential Reference

• Responsible for a number of open source
Python-related packages (Swig, PLY, etc.)

Copyright (C) 2008, http://www.dabeaz.com 1-

My Story

4

My addiction to generators started innocently
enough. I was just a happy Python

programmer working away in my secret lair
when I got "the call." A call to sort through

1.5 Terabytes of C++ source code (~800
weekly snapshots of a million line application).

That's when I discovered the os.walk()
function. I knew this wasn't going to end well...

Copyright (C) 2008, http://www.dabeaz.com 1-

Back Story

5

• I think generators are wicked cool

• An extremely useful language feature

• Yet, they still seem a rather exotic

• I still don't think I've fully wrapped my brain
around the best approach to using them

Copyright (C) 2008, http://www.dabeaz.com 1-

A Complaint

6

• The coverage of generators in most Python
books is lame (mine included)

• Look at all of these cool examples!

• Fibonacci Numbers

• Squaring a list of numbers

• Randomized sequences

• Wow! Blow me over!

Copyright (C) 2008, http://www.dabeaz.com 1-

This Tutorial

7

• Some more practical uses of generators

• Focus is "systems programming"

• Which loosely includes files, file systems,
parsing, networking, threads, etc.

• My goal : To provide some more compelling
examples of using generators

• Planting some seeds

Copyright (C) 2008, http://www.dabeaz.com 1-

Support Files

8

• Files used in this tutorial are available here:

http://www.dabeaz.com/generators/

• Go there to follow along with the examples

Copyright (C) 2008, http://www.dabeaz.com 1-

Disclaimer

9

• This isn't meant to be an exhaustive tutorial
on generators and related theory

• Will be looking at a series of examples

• I don't know if the code I've written is the
"best" way to solve any of these problems.

• So, let's have a discussion

Copyright (C) 2008, http://www.dabeaz.com 1-

Performance Details

10

• There are some later performance numbers

• Python 2.5.1 on OS X 10.4.11

• All tests were conducted on the following:

• Mac Pro 2x2.66 Ghz Dual-Core Xeon

• 3 Gbytes RAM

• WDC WD2500JS-41SGB0 Disk (250G)

• Timings are 3-run average of 'time' command

Copyright (C) 2008, http://www.dabeaz.com 1-

Part I

11

Introduction to Iterators and Generators

Copyright (C) 2008, http://www.dabeaz.com 1-

Iteration

• As you know, Python has a "for" statement

• You use it to loop over a collection of items

12

>>> for x in [1,4,5,10]:

... print x,

...

1 4 5 10

>>>

• And, as you have probably noticed, you can
iterate over many different kinds of objects
(not just lists)

Copyright (C) 2008, http://www.dabeaz.com 1-

Iterating over a Dict

• If you loop over a dictionary you get keys

13

>>> prices = { 'GOOG' : 490.10,

... 'AAPL' : 145.23,

... 'YHOO' : 21.71 }

...

>>> for key in prices:

... print key

...

YHOO

GOOG

AAPL

>>>

Copyright (C) 2008, http://www.dabeaz.com 1-

Iterating over a String

• If you loop over a string, you get characters

14

>>> s = "Yow!"

>>> for c in s:

... print c

...

Y

o

w

!

>>>

Copyright (C) 2008, http://www.dabeaz.com 1-

Iterating over a File
• If you loop over a file you get lines

15

>>> for line in open("real.txt"):

... print line,

...

 Real Programmers write in FORTRAN

 Maybe they do now,

 in this decadent era of

 Lite beer, hand calculators, and "user-friendly" software

 but back in the Good Old Days,

 when the term "software" sounded funny

 and Real Computers were made out of drums and vacuum tubes,

 Real Programmers wrote in machine code.

 Not FORTRAN. Not RATFOR. Not, even, assembly language.

 Machine Code.

 Raw, unadorned, inscrutable hexadecimal numbers.

 Directly.

Copyright (C) 2008, http://www.dabeaz.com 1-

Consuming Iterables

• Many functions consume an "iterable" object

• Reductions:

16

sum(s), min(s), max(s)

• Constructors

list(s), tuple(s), set(s), dict(s)

• in operator

item in s

• Many others in the library

Copyright (C) 2008, http://www.dabeaz.com 1-

Iteration Protocol
• The reason why you can iterate over different

objects is that there is a specific protocol

17

>>> items = [1, 4, 5]

>>> it = iter(items)

>>> it.next()

1

>>> it.next()

4

>>> it.next()

5

>>> it.next()

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

StopIteration

>>>

Copyright (C) 2008, http://www.dabeaz.com 1-

Iteration Protocol
• An inside look at the for statement

for x in obj:

 # statements

• Underneath the covers
_iter = iter(obj) # Get iterator object

while 1:

 try:

 x = _iter.next() # Get next item

 except StopIteration: # No more items

 break

 # statements

 ...

• Any object that supports iter() and next() is
said to be "iterable."

18

Copyright (C) 2008, http://www.dabeaz.com 1-

Supporting Iteration

• User-defined objects can support iteration

• Example: Counting down...
>>> for x in countdown(10):

... print x,

...

10 9 8 7 6 5 4 3 2 1

>>>

19

• To do this, you just have to make the object
implement __iter__() and next()

Copyright (C) 2008, http://www.dabeaz.com 1-

Supporting Iteration

class countdown(object):

 def __init__(self,start):

 self.count = start

 def __iter__(self):

 return self

 def next(self):

 if self.count <= 0:

 raise StopIteration

 r = self.count

 self.count -= 1

 return r

20

• Sample implementation

Copyright (C) 2008, http://www.dabeaz.com 1-

Iteration Example

• Example use:

>>> c = countdown(5)

>>> for i in c:

... print i,

...

5 4 3 2 1

>>>

21

Copyright (C) 2008, http://www.dabeaz.com 1-

Iteration Commentary

• There are many subtle details involving the
design of iterators for various objects

• However, we're not going to cover that

• This isn't a tutorial on "iterators"

• We're talking about generators...

22

Copyright (C) 2008, http://www.dabeaz.com 1-

Generators

• A generator is a function that produces a
sequence of results instead of a single value

23

def countdown(n):

 while n > 0:

 yield n

 n -= 1

>>> for i in countdown(5):

... print i,

...

5 4 3 2 1

>>>

• Instead of returning a value, you generate a
series of values (using the yield statement)

Copyright (C) 2008, http://www.dabeaz.com 1-

Generators

24

• Behavior is quite different than normal func

• Calling a generator function creates an
generator object. However, it does not start
running the function.

def countdown(n):

 print "Counting down from", n

 while n > 0:

 yield n

 n -= 1

>>> x = countdown(10)

>>> x

<generator object at 0x58490>

>>>

Notice that no
output was
produced

Copyright (C) 2008, http://www.dabeaz.com 1-

Generator Functions

• The function only executes on next()
>>> x = countdown(10)

>>> x

<generator object at 0x58490>

>>> x.next()

Counting down from 10

10

>>>

• yield produces a value, but suspends the function

• Function resumes on next call to next()
>>> x.next()

9

>>> x.next()

8

>>>

Function starts
executing here

25

Copyright (C) 2008, http://www.dabeaz.com 1-

Generator Functions

• When the generator returns, iteration stops

>>> x.next()

1

>>> x.next()

Traceback (most recent call last):

 File "<stdin>", line 1, in ?

StopIteration

>>>

26

Copyright (C) 2008, http://www.dabeaz.com 1-

Generator Functions

• A generator function is mainly a more
convenient way of writing an iterator

• You don't have to worry about the iterator
protocol (.next, .__iter__, etc.)

• It just works

27

Copyright (C) 2008, http://www.dabeaz.com 1-

Generators vs. Iterators

• A generator function is slightly different
than an object that supports iteration

• A generator is a one-time operation. You
can iterate over the generated data once,
but if you want to do it again, you have to
call the generator function again.

• This is different than a list (which you can
iterate over as many times as you want)

28

Copyright (C) 2008, http://www.dabeaz.com 1-

Generator Expressions
• A generated version of a list comprehension

>>> a = [1,2,3,4]

>>> b = (2*x for x in a)

>>> b

<generator object at 0x58760>

>>> for i in b: print b,

...

2 4 6 8

>>>

• This loops over a sequence of items and applies
an operation to each item

• However, results are produced one at a time
using a generator

29

Copyright (C) 2008, http://www.dabeaz.com 1-

Generator Expressions

• Important differences from a list comp.

• Does not construct a list.

• Only useful purpose is iteration

• Once consumed, can't be reused

30

• Example:
>>> a = [1,2,3,4]

>>> b = [2*x for x in a]

>>> b

[2, 4, 6, 8]

>>> c = (2*x for x in a)

<generator object at 0x58760>

>>>

Copyright (C) 2008, http://www.dabeaz.com 1-

Generator Expressions
• General syntax

(expression for i in s if cond1

 for j in t if cond2

 ...

 if condfinal)

31

• What it means
 for i in s:

 if cond1:

 for j in t:

 if cond2:

 ...

 if condfinal: yield expression

Copyright (C) 2008, http://www.dabeaz.com 1-

A Note on Syntax

• The parens on a generator expression can
dropped if used as a single function argument

• Example:

sum(x*x for x in s)

32

Generator expression

Copyright (C) 2008, http://www.dabeaz.com 1-

Interlude
• We now have two basic building blocks

• Generator functions:

33

def countdown(n):

 while n > 0:

 yield n

 n -= 1

• Generator expressions

squares = (x*x for x in s)

• In both cases, we get an object that
generates values (which are typically
consumed in a for loop)

Copyright (C) 2008, http://www.dabeaz.com 1-

Part 2

34

Processing Data Files

(Show me your Web Server Logs)

Copyright (C) 2008, http://www.dabeaz.com 1-

Programming Problem

35

Find out how many bytes of data were
transferred by summing up the last column
of data in this Apache web server log

81.107.39.38 - ... "GET /ply/ HTTP/1.1" 200 7587

81.107.39.38 - ... "GET /favicon.ico HTTP/1.1" 404 133

81.107.39.38 - ... "GET /ply/bookplug.gif HTTP/1.1" 200 23903

81.107.39.38 - ... "GET /ply/ply.html HTTP/1.1" 200 97238

81.107.39.38 - ... "GET /ply/example.html HTTP/1.1" 200 2359

66.249.72.134 - ... "GET /index.html HTTP/1.1" 200 4447

Oh yeah, and the log file might be huge (Gbytes)

Copyright (C) 2008, http://www.dabeaz.com 1-

The Log File

• Each line of the log looks like this:

36

bytestr = line.rsplit(None,1)[1]

81.107.39.38 - ... "GET /ply/ply.html HTTP/1.1" 200 97238

• The number of bytes is the last column

• It's either a number or a missing value (-)

81.107.39.38 - ... "GET /ply/ HTTP/1.1" 304 -

• Converting the value
if bytestr != '-':

 bytes = int(bytestr)

Copyright (C) 2008, http://www.dabeaz.com 1-

A Non-Generator Soln

• Just do a simple for-loop

37

wwwlog = open("access-log")

total = 0

for line in wwwlog:

 bytestr = line.rsplit(None,1)[1]

 if bytestr != '-':

 total += int(bytestr)

print "Total", total

• We read line-by-line and just update a sum

• However, that's so 90s...

Copyright (C) 2008, http://www.dabeaz.com 1-

A Generator Solution

• Let's use some generator expressions

38

wwwlog = open("access-log")

bytecolumn = (line.rsplit(None,1)[1] for line in wwwlog)

bytes = (int(x) for x in bytecolumn if x != '-')

print "Total", sum(bytes)

• Whoa! That's different!

• Less code

• A completely different programming style

Copyright (C) 2008, http://www.dabeaz.com 1-

Generators as a Pipeline

• To understand the solution, think of it as a data
processing pipeline

39

wwwlog bytecolumn bytes sum()access-log total

• Each step is defined by iteration/generation

wwwlog = open("access-log")

bytecolumn = (line.rsplit(None,1)[1] for line in wwwlog)

bytes = (int(x) for x in bytecolumn if x != '-')

print "Total", sum(bytes)

Copyright (C) 2008, http://www.dabeaz.com 1-

Being Declarative
• At each step of the pipeline, we declare an

operation that will be applied to the entire
input stream

40

wwwlog bytecolumn bytes sum()access-log total

bytecolumn = (line.rsplit(None,1)[1] for line in wwwlog)

This operation gets applied to
every line of the log file

Copyright (C) 2008, http://www.dabeaz.com 1-

Being Declarative

• Instead of focusing on the problem at a
line-by-line level, you just break it down
into big operations that operate on the
whole file

• This is very much a "declarative" style

• The key : Think big...

41

Copyright (C) 2008, http://www.dabeaz.com 1-

Iteration is the Glue

42

• The glue that holds the pipeline together is the
iteration that occurs in each step

wwwlog = open("access-log")

bytecolumn = (line.rsplit(None,1)[1] for line in wwwlog)

bytes = (int(x) for x in bytecolumn if x != '-')

print "Total", sum(bytes)

• The calculation is being driven by the last step

• The sum() function is consuming values being
pushed through the pipeline (via .next() calls)

Copyright (C) 2008, http://www.dabeaz.com 1-

Performance

• Surely, this generator approach has all
sorts of fancy-dancy magic that is slow.

• Let's check it out on a 1.3Gb log file...

43

% ls -l big-access-log

-rw-r--r-- beazley 1303238000 Feb 29 08:06 big-access-log

Copyright (C) 2008, http://www.dabeaz.com 1-

Performance Contest

44

wwwlog = open("big-access-log")

total = 0

for line in wwwlog:

 bytestr = line.rsplit(None,1)[1]

 if bytestr != '-':

 total += int(bytestr)

print "Total", total

wwwlog = open("big-access-log")

bytecolumn = (line.rsplit(None,1)[1] for line in wwwlog)

bytes = (int(x) for x in bytecolumn if x != '-')

print "Total", sum(bytes)

27.20

25.96

Time

Time

Copyright (C) 2008, http://www.dabeaz.com 1-

Commentary

• Not only was it not slow, it was 5% faster

• And it was less code

• And it was relatively easy to read

• And frankly, I like it a whole better...

45

"Back in the old days, we used AWK for this and
we liked it. Oh, yeah, and get off my lawn!"

Copyright (C) 2008, http://www.dabeaz.com 1-

Performance Contest

46

wwwlog = open("access-log")

bytecolumn = (line.rsplit(None,1)[1] for line in wwwlog)

bytes = (int(x) for x in bytecolumn if x != '-')

print "Total", sum(bytes)

25.96

Time

% awk '{ total += $NF } END { print total }' big-access-log

37.33

Time
Note:extracting the last

column may not be
awk's strong point

Copyright (C) 2008, http://www.dabeaz.com 1-

Food for Thought

• At no point in our generator solution did
we ever create large temporary lists

• Thus, not only is that solution faster, it can
be applied to enormous data files

• It's competitive with traditional tools

47

Copyright (C) 2008, http://www.dabeaz.com 1-

More Thoughts

• The generator solution was based on the
concept of pipelining data between
different components

• What if you had more advanced kinds of
components to work with?

• Perhaps you could perform different kinds
of processing by just plugging various
pipeline components together

48

Copyright (C) 2008, http://www.dabeaz.com 1-

This Sounds Familiar

• The Unix philosophy

• Have a collection of useful system utils

• Can hook these up to files or each other

• Perform complex tasks by piping data

49

Copyright (C) 2008, http://www.dabeaz.com 1-

Part 3

50

Fun with Files and Directories

Copyright (C) 2008, http://www.dabeaz.com 1-

Programming Problem

51

You have hundreds of web server logs scattered
across various directories. In additional, some of
the logs are compressed. Modify the last program
so that you can easily read all of these logs

foo/

 access-log-012007.gz

 access-log-022007.gz

 access-log-032007.gz

 ...

 access-log-012008

bar/

 access-log-092007.bz2

 ...

 access-log-022008

Copyright (C) 2008, http://www.dabeaz.com 1-

os.walk()

52

import os

for path, dirlist, filelist in os.walk(topdir):

 # path : Current directory

 # dirlist : List of subdirectories

 # filelist : List of files

 ...

• A very useful function for searching the
file system

• This utilizes generators to recursively walk
through the file system

Copyright (C) 2008, http://www.dabeaz.com 1-

find

53

import os

import fnmatch

def gen_find(filepat,top):

 for path, dirlist, filelist in os.walk(top):

 for name in fnmatch.filter(filelist,filepat):

 yield os.path.join(path,name)

• Generate all filenames in a directory tree
that match a given filename pattern

• Examples

pyfiles = gen_find("*.py","/")

logs = gen_find("access-log*","/usr/www/")

Copyright (C) 2008, http://www.dabeaz.com 1-

Performance Contest

54

pyfiles = gen_find("*.py","/")

for name in pyfiles:

 print name

% find / -name '*.py'

559s

468s

Wall Clock Time

Wall Clock Time

Performed on a 750GB file system
containing about 140000 .py files

Copyright (C) 2008, http://www.dabeaz.com 1-

A File Opener

55

import gzip, bz2

def gen_open(filenames):

 for name in filenames:

 if name.endswith(".gz"):

 yield gzip.open(name)

 elif name.endswith(".bz2"):

 yield bz2.BZ2File(name)

 else:

 yield open(name)

• Open a sequence of filenames

• This is interesting.... it takes a sequence of
filenames as input and yields a sequence of open
file objects

Copyright (C) 2008, http://www.dabeaz.com 1-

cat

56

def gen_cat(sources):

 for s in sources:

 for item in s:

 yield item

• Concatenate items from one or more
source into a single sequence of items

• Example:
lognames = gen_find("access-log*", "/usr/www")

logfiles = gen_open(lognames)

loglines = gen_cat(logfiles)

Copyright (C) 2008, http://www.dabeaz.com 1-

grep

57

import re

def gen_grep(pat, lines):

 patc = re.compile(pat)

 for line in lines:

 if patc.search(line): yield line

• Generate a sequence of lines that contain
a given regular expression

• Example:

lognames = gen_find("access-log*", "/usr/www")

logfiles = gen_open(lognames)

loglines = gen_cat(logfiles)

patlines = gen_grep(pat, loglines)

Copyright (C) 2008, http://www.dabeaz.com 1-

Example

58

• Find out how many bytes transferred for a
specific pattern in a whole directory of logs

pat = r"somepattern"

logdir = "/some/dir/"

filenames = gen_find("access-log*",logdir)

logfiles = gen_open(filenames)

loglines = gen_cat(logfiles)

patlines = gen_grep(pat,loglines)

bytecolumn = (line.rsplit(None,1)[1] for line in patlines)

bytes = (int(x) for x in bytecolumn if x != '-')

print "Total", sum(bytes)

Copyright (C) 2008, http://www.dabeaz.com 1-

Important Concept

59

• Generators decouple iteration from the
code that uses the results of the iteration

• In the last example, we're performing a
calculation on a sequence of lines

• It doesn't matter where or how those
lines are generated

• Thus, we can plug any number of
components together up front as long as
they eventually produce a line sequence

Copyright (C) 2008, http://www.dabeaz.com 1-

Part 4

60

Parsing and Processing Data

Copyright (C) 2008, http://www.dabeaz.com 1-

Programming Problem

61

Web server logs consist of different columns of
data. Parse each line into a useful data structure
that allows us to easily inspect the different fields.

81.107.39.38 - - [24/Feb/2008:00:08:59 -0600] "GET ..." 200 7587

host referrer user [datetime] "request" status bytes

Copyright (C) 2008, http://www.dabeaz.com 1-

Parsing with Regex
• Let's route the lines through a regex parser

62

logpats = r'(\S+) (\S+) (\S+) \[(.*?)\] '\

 r'"(\S+) (\S+) (\S+)" (\S+) (\S+)'

logpat = re.compile(logpats)

groups = (logpat.match(line) for line in loglines)

tuples = (g.groups() for g in groups if g)

• This generates a sequence of tuples

('71.201.176.194', '-', '-', '26/Feb/2008:10:30:08 -0600',

'GET', '/ply/ply.html', 'HTTP/1.1', '200', '97238')

Copyright (C) 2008, http://www.dabeaz.com 1-

Tuples to Dictionaries
• Let's turn tuples into dictionaries

63

colnames = ('host','referrer','user','datetime',

 'method','request','proto','status','bytes')

log = (dict(zip(colnames,t)) for t in tuples)

• This generates a sequence of named fields

{ 'status' : '200',

 'proto' : 'HTTP/1.1',

 'referrer': '-',

 'request' : '/ply/ply.html',

 'bytes' : '97238',

 'datetime': '24/Feb/2008:00:08:59 -0600',

 'host' : '140.180.132.213',

 'user' : '-',

 'method' : 'GET'}

Copyright (C) 2008, http://www.dabeaz.com 1-

Field Conversion
• Map specific dictionary fields through a function

64

def field_map(dictseq,name,func):

 for d in dictseq:

 d[name] = func(d[name])

 yield d

• Example: Convert a few field values

log = field_map(log,"status", int)

log = field_map(log,"bytes",

 lambda s: int(s) if s !='-' else 0)

Copyright (C) 2008, http://www.dabeaz.com 1-

Field Conversion

• Creates dictionaries of converted values

65

{ 'status': 200,

 'proto': 'HTTP/1.1',

 'referrer': '-',

 'request': '/ply/ply.html',

 'datetime': '24/Feb/2008:00:08:59 -0600',

 'bytes': 97238,

 'host': '140.180.132.213',

 'user': '-',

 'method': 'GET'}

• Again, this is just one big processing pipeline

Note conversion

Copyright (C) 2008, http://www.dabeaz.com 1-

The Code So Far

66

lognames = gen_find("access-log*","www")

logfiles = gen_open(lognames)

loglines = gen_cat(logfiles)

groups = (logpat.match(line) for line in loglines)

tuples = (g.groups() for g in groups if g)

colnames = ('host','referrer','user','datetime','method',

 'request','proto','status','bytes')

log = (dict(zip(colnames,t)) for t in tuples)

log = field_map(log,"bytes",

 lambda s: int(s) if s != '-' else 0)

log = field_map(log,"status",int)

Copyright (C) 2008, http://www.dabeaz.com 1-

Packaging

• To make it more sane, you may want to package
parts of the code into functions

67

def lines_from_dir(filepat, dirname):

 names = gen_find(filepat,dirname)

 files = gen_open(names)

 lines = gen_cat(files)

 return lines

• This is a generate purpose function that reads all
lines from a series of files in a directory

Copyright (C) 2008, http://www.dabeaz.com 1-

Packaging
• Parse an Apache log

68

def apache_log(lines):

 groups = (logpat.match(line) for line in lines)

 tuples = (g.groups() for g in groups if g)

 colnames = ('host','referrer','user','datetime','method',

 'request','proto','status','bytes')

 log = (dict(zip(colnames,t)) for t in tuples)

 log = field_map(log,"bytes",

 lambda s: int(s) if s != '-' else 0)

 log = field_map(log,"status",int)

 return log

Copyright (C) 2008, http://www.dabeaz.com 1-

Example Use

• It's easy

69

lines = lines_from_dir("access-log*","www")

log = apache_log(lines)

for r in log:

 print r

• Different components have been subdivided
according to the data that they process

Copyright (C) 2008, http://www.dabeaz.com 1-

A Query Language

• Now that we have our log, let's do some queries

70

stat404 = set(r['request'] for r in log

 if r['status'] == 404)

• Find the set of all documents that 404

• Print all requests that transfer over a megabyte
large = (r for r in log

 if r['bytes'] > 1000000)

for r in large:

 print r['request'], r['bytes']

Copyright (C) 2008, http://www.dabeaz.com 1-

A Query Language

• Find the largest data transfer

71

print "%d %s" % max((r['bytes'],r['request'])

 for r in log)

• Collect all unique host IP addresses

hosts = set(r['host'] for r in log)

• Find the number of downloads of a file
sum(1 for r in log

 if r['request'] == '/ply/ply-2.3.tar.gz')

Copyright (C) 2008, http://www.dabeaz.com 1-

A Query Language

• Find out who has been hitting robots.txt

72

addrs = set(r['host'] for r in log

 if 'robots.txt' in r['request'])

import socket

for addr in addrs:

 try:

 print socket.gethostbyaddr(addr)[0]

 except socket.herror:

 print addr

Copyright (C) 2008, http://www.dabeaz.com 1-

Performance Study

73

lines = lines_from_dir("big-access-log",".")

lines = (line for line in lines if 'robots.txt' in line)

log = apache_log(lines)

addrs = set(r['host'] for r in log)

...

• Sadly, the last example doesn't run so fast on a
huge input file (53 minutes on the 1.3GB log)

• But, the beauty of generators is that you can plug
filters in at almost any stage

• That version takes 93 seconds

Copyright (C) 2008, http://www.dabeaz.com 1-

Some Thoughts

74

• I like the idea of using generator expressions as a
pipeline query language

• You can write simple filters, extract data, etc.

• You you pass dictionaries/objects through the
pipeline, it becomes quite powerful

• Feels similar to writing SQL queries

Copyright (C) 2008, http://www.dabeaz.com 1-

Part 5

75

Processing Infinite Data

Copyright (C) 2008, http://www.dabeaz.com 1-

Question

• Have you ever used 'tail -f' in Unix?

76

% tail -f logfile

...

... lines of output ...

...

• This prints the lines written to the end of a file

• The "standard" way to watch a log file

• I used this all of the time when working on
scientific simulations ten years ago...

Copyright (C) 2008, http://www.dabeaz.com 1-

Infinite Sequences

• Tailing a log file results in an "infinite" stream

• It constantly watches the file and yields lines as
soon as new data is written

• But you don't know how much data will actually
be written (in advance)

• And log files can often be enormous

77

Copyright (C) 2008, http://www.dabeaz.com 1-

Tailing a File

• A Python version of 'tail -f'

78

import time

def follow(thefile):

 thefile.seek(0,2) # Go to the end of the file

 while True:

 line = thefile.readline()

 if not line:

 time.sleep(0.1) # Sleep briefly

 continue

 yield line

• Idea : Seek to the end of the file and repeatedly
try to read new lines. If new data is written to
the file, we'll pick it up.

Copyright (C) 2008, http://www.dabeaz.com 1-

Example

• Using our follow function

79

logfile = open("access-log")

loglines = follow(logfile)

for line in loglines:

 print line,

• This produces the same output as 'tail -f'

Copyright (C) 2008, http://www.dabeaz.com 1-

Example

• Turn the real-time log file into records

80

logfile = open("access-log")

loglines = follow(logfile)

log = apache_log(loglines)

• Print out all 404 requests as they happen

r404 = (r for r in log if r['status'] == 404)

for r in r404:

 print r['host'],r['datetime'],r['request']

Copyright (C) 2008, http://www.dabeaz.com 1-

Commentary

• We just plugged this new input scheme onto
the front of our processing pipeline

• Everything else still works, with one caveat-
functions that consume an entire iterable won't
terminate (min, max, sum, set, etc.)

• Nevertheless, we can easily write processing
steps that operate on an infinite data stream

81

Copyright (C) 2008, http://www.dabeaz.com 1-

Thoughts

• This data pipeline idea is really quite powerful

• Captures a lot of common systems problems

• Especially consumer-producer problems

82

Copyright (C) 2008, http://www.dabeaz.com 1-

Part 6

83

Feeding the Pipeline

Copyright (C) 2008, http://www.dabeaz.com 1-

Feeding Generators

• In order to feed a generator processing
pipeline, you need to have an input source

• So far, we have looked at two file-based inputs

• Reading a file

84

lines = open(filename)

• Tailing a file

lines = follow(open(filename))

Copyright (C) 2008, http://www.dabeaz.com 1-

Generating Connections

• Generate a sequence of TCP connections

85

import socket

def receive_connections(addr):

 s = socket.socket(socket.AF_INET,socket.SOCK_STREAM)

 s.setsockopt(socket.SOL_SOCKET,socket.SO_REUSEADDR,1)

 s.bind(addr)

 s.listen(5)

 while True:

 client = s.accept()

 yield client

• Example:

for c,a in receive_connections(("",9000)):

 c.send("Hello World\n")

 c.close()

Copyright (C) 2008, http://www.dabeaz.com 1-

Generating Messages

• Receive a sequence of UDP messages

86

import socket

def receive_messages(addr,maxsize):

 s = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)

 s.bind(addr)

 while True:

 msg = s.recvfrom(maxsize)

 yield msg

• Example:

for msg, addr in receive_messages(("",10000),1024):

 print msg, "from", addr

Copyright (C) 2008, http://www.dabeaz.com 1-

I/O Multiplexing

• Generating I/O events on a set of sockets

87

import select

def gen_events(socks):

 while True:

 rdr,wrt,err = select.select(socks,socks,socks,0.1)

 for r in rdr:

 yield "read",r

 for w in wrt:

 yield "write",w

 for e in err:

 yield "error",e

• Note: Using this one is little tricky

• Example : Reading from multiple client sockets

Copyright (C) 2008, http://www.dabeaz.com 1-

I/O Multiplexing

88

clientset = []

def acceptor(sockset,addr):

 for c,a in receive_connections(addr):

 sockset.append(c)

acc_thr = threading.Thread(target=acceptor,

 args=(clientset,("",12000))

acc_thr.setDaemon(True)

acc_thr.start()

for evt,s in gen_events(clientset):

 if evt == 'read':

 data = s.recv(1024)

 if not data:

 print "Closing", s

 s.close()

 clientset.remove(s)

 else:

 print s,data

Copyright (C) 2008, http://www.dabeaz.com 1-

Consuming a Queue

• Generate a sequence of items from a queue

89

def consume_queue(thequeue):

 while True:

 item = thequeue.get()

 if item is StopIteration: break

 yield item

• Note: Using StopIteration as a sentinel

• Might be used to feed a generator pipeline as a
consumer thread

Copyright (C) 2008, http://www.dabeaz.com 1-

Consuming a Queue

• Example:

90

import Queue, threading

def consumer(q):

 for item in consume_queue(q):

 print "Consumed", item

 print "Done"

in_q = Queue.Queue()

con_thr = threading.Thread(target=consumer,args=(in_q,))

con_thr.start()

for i in xrange(100):

 in_q.put(i)

in_q.put(StopIteration)

Copyright (C) 2008, http://www.dabeaz.com 1-

Part 7

91

Extending the Pipeline

Copyright (C) 2008, http://www.dabeaz.com 1-

Multiple Processes

• Can you extend a processing pipeline across
processes and machines?

92

process 1

process 2
socket

pipe

Copyright (C) 2008, http://www.dabeaz.com 1-

Pickler/Unpickler

• Turn a generated sequence into pickled objects

93

def gen_pickle(source):

 for item in source:

 yield pickle.dumps(item)

def gen_unpickle(infile):

 while True:

 try:

 item = pickle.load(infile)

 yield item

 except EOFError:

 return

• Now, attach these to a pipe or socket

Copyright (C) 2008, http://www.dabeaz.com 1-

Sender/Receiver
• Example: Sender

94

def sendto(source,addr):

 s = socket.socket(socket.AF_INET,socket.SOCK_STREAM)

 s.connect(addr)

 for pitem in gen_pickle(source):

 s.sendall(pitem)

 s.close()

• Example: Receiver
def receivefrom(addr):

 s = socket.socket(socket.AF_INET,socket.SOCK_STREAM)

 s.setsockopt(socket.SOL_SOCKET,socket.SO_REUSEADDR,1)

 s.bind(addr)

 s.listen(5)

 c,a = s.accept()

 for item in gen_unpickle(c.makefile()):

 yield item

 c.close()

Copyright (C) 2008, http://www.dabeaz.com 1-

Example Use

• Example: Read log lines and parse into records

95

netprod.py

lines = follow(open("access-log"))

log = apache_log(lines)

sendto(log,("",15000))

• Example: Pick up the log on another machine
netcons.py

for r in receivefrom(("",15000)):

 print r

Copyright (C) 2008, http://www.dabeaz.com 1-

Fanning Out

• In all of our examples, the processing pipeline is
driven by a single consumer

96

for item in gen:

 # Consume item

• Can you expand the pipeline to multiple
consumers?

consumer1 consumer2 consumer3

generator

Copyright (C) 2008, http://www.dabeaz.com 1-

Broadcasting

• Consume a generator and send items to a set
of consumers

97

def broadcast(source, consumers):

 for item in source:

 for c in consumers:

 c.send(item)

• This changes the control-flow

• The broadcaster is what consumes items

• Those items have to be sent to consumers for
processing

Copyright (C) 2008, http://www.dabeaz.com 1-

Consumers

• To create a consumer, define an object with a
send method on it

98

class Consumer(object):

 def send(self,item):

 print self, "got", item

• Example:

c1 = Consumer()

c2 = Consumer()

c3 = Consumer()

lines = follow(open("access-log"))

broadcast(lines,[c1,c2,c3])

Copyright (C) 2008, http://www.dabeaz.com 1-

Consumers

• Sadly, inside consumers, it is not possible to
continue the same processing pipeline idea

• In order for it to work, there has to be a single
iteration that is driving the pipeline

• With multiple consumers, you would have to be
iterating in more than one location at once

• You can do this with threads or distributed
processes however

99

Copyright (C) 2008, http://www.dabeaz.com 1-

Network Consumer

100

import socket,pickle

class NetConsumer(object):

 def __init__(self,addr):

 self.s = socket.socket(socket.AF_INET,

 socket.SOCK_STREAM)

 self.s.connect(addr)

 def send(self,item):

 pitem = pickle.dumps(item)

 self.s.sendall(pitem)

 def close(self):

 self.s.close()

• Example:

• This will route items to a network receiver

Copyright (C) 2008, http://www.dabeaz.com 1-

Network Consumer

101

class Stat404(NetConsumer):

 def send(self,item):

 if item['status'] == 404:

 NetConsumer.send(self,item)

lines = follow(open("access-log"))

log = apache_log(lines)

stat404 = Stat404(("somehost",15000))

broadcast(log, [stat404])

• Example Usage:

• The 404 entries will go elsewhere...

Copyright (C) 2008, http://www.dabeaz.com 1-

Consumer Thread

102

import Queue, threading

class ConsumerThread(threading.Thread):

 def __init__(self,target):

 threading.Thread.__init__(self)

 self.setDaemon(True)

 self.in_queue = Queue.Queue()

 self.target = target

 def send(self,item):

 self.in_queue.put(item)

 def generate(self):

 while True:

 item = self.in_queue.get()

 yield item

 def run(self):

 self.target(self.generate())

• Example:

Copyright (C) 2008, http://www.dabeaz.com 1-

Consumer Thread

103

def find_404(log):

 for r in (r for r in log if r['status'] == 404):

 print r['status'],r['datetime'],r['request']

def bytes_transferred(log):

 total = 0

 for r in log:

 total += r['bytes']

 print "Total bytes", total

c1 = ConsumerThread(find_404)

c1.start()

c2 = ConsumerThread(bytes_transferred)

c2.start()

lines = follow(open("access-log")) # Follow a log

log = apache_log(lines) # Turn into records

broadcast(log,[c1,c2]) # Broadcast to consumers

• Sample usage (building on earlier code)

Copyright (C) 2008, http://www.dabeaz.com 1-

Multiple Sources

• In all of our examples, the processing pipeline is
being fed by a single source

• But, what if you had multiple sources?

104

source1 source2 source3

Copyright (C) 2008, http://www.dabeaz.com 1-

Concatenation

• Concatenate one source after another

105

def concatenate(sources):

 for s in sources:

 for item in s:

 yield item

• This generates one big sequence

• Consumes each generator one at a time

• Only works with generators that terminate

Copyright (C) 2008, http://www.dabeaz.com 1-

Parallel Iteration

• Zipping multiple generators together

106

import itertools

z = itertools.izip(s1,s2,s3)

• This one is only marginally useful

• Requires generators to go lock-step

• Terminates when the first exits

Copyright (C) 2008, http://www.dabeaz.com 1-

Multiplexing

• Consumer from multiple generators in real-
time--producing values as they are generated

107

log1 = follow(open("foo/access-log"))

log2 = follow(open("bar/access-log"))

lines = gen_multiplex([log1,log2])

• Example use

• There is no way to poll a generator. So, how do
you do this?

Copyright (C) 2008, http://www.dabeaz.com 1-

Multiplexing Generators

108

def gen_multiplex(genlist):

 item_q = Queue.Queue()

 def run_one(source):

 for item in source: item_q.put(item)

 def run_all():

 thrlist = []

 for source in genlist:

 t = threading.Thread(target=run_one,args=(source,))

 t.start()

 thrlist.append(t)

 for t in thrlist: t.join()

 item_q.put(StopIteration)

 threading.Thread(target=run_all).start()

 while True:

 item = item_q.get()

 if item is StopIteration: return

 yield item

Copyright (C) 2008, http://www.dabeaz.com 1-

Multiplexing Generators

109

def gen_multiplex(genlist):

 item_q = Queue.Queue()

 def run_one(source):

 for item in source: item_q.put(item)

 def run_all():

 thrlist = []

 for source in genlist:

 t = threading.Thread(target=run_one,args=(source,))

 t.start()

 thrlist.append(t)

 for t in thrlist: t.join()

 item_q.put(StopIteration)

 threading.Thread(target=run_all).start()

 while True:

 item = item_q.get()

 if item is StopIteration: return

 yield item

Each generator runs in a
thread and drops items

onto a queue

Copyright (C) 2008, http://www.dabeaz.com 1-

Multiplexing Generators

110

def gen_multiplex(genlist):

 item_q = Queue.Queue()

 def run_one(source):

 for item in source: item_q.put(item)

 def run_all():

 thrlist = []

 for source in genlist:

 t = threading.Thread(target=run_one,args=(source,))

 t.start()

 thrlist.append(t)

 for t in thrlist: t.join()

 item_q.put(StopIteration)

 threading.Thread(target=run_all).start()

 while True:

 item = item_q.get()

 if item is StopIteration: return

 yield item

Pull items off the queue
and yield them

Copyright (C) 2008, http://www.dabeaz.com 1-

Multiplexing Generators

111

def gen_multiplex(genlist):

 item_q = Queue.Queue()

 def run_one(source):

 for item in source: item_q.put(item)

 def run_all():

 thrlist = []

 for source in genlist:

 t = threading.Thread(target=run_one,args=(source,))

 t.start()

 thrlist.append(t)

 for t in thrlist: t.join()

 item_q.put(StopIteration)

 threading.Thread(target=run_all).start()

 while True:

 item = item_q.get()

 if item is StopIteration: return

 yield item

Run all of the
generators, wait for them
to terminate, then put a
sentinel on the queue

(StopIteration)

Copyright (C) 2008, http://www.dabeaz.com 1-

Part 8

112

Various Programming Tricks (And Debugging)

Copyright (C) 2008, http://www.dabeaz.com 1-

Putting it all Together

• This data processing pipeline idea is powerful

• But, it's also potentially mind-boggling

• Especially when you have dozens of pipeline
stages, broadcasting, multiplexing, etc.

• Let's look at a few useful tricks

113

Copyright (C) 2008, http://www.dabeaz.com 1-

Creating Generators
• Any single-argument function is easy to turn

into a generator function

114

def generate(func):

 def gen_func(s):

 for item in s:

 yield func(item)

 return gen_func

• Example:
gen_sqrt = generate(math.sqrt)

for x in gen_sqrt(xrange(100)):

 print x

Copyright (C) 2008, http://www.dabeaz.com 1-

Debug Tracing
• A debugging function that will print items going

through a generator

115

def trace(source):

 for item in source:

 print item

 yield item

• This can easily be placed around any generator

lines = follow(open("access-log"))

log = trace(apache_log(lines))

r404 = trace(r for r in log if r['status'] == 404)

• Note: Might consider logging module for this

Copyright (C) 2008, http://www.dabeaz.com 1-

Recording the Last Item
• Store the last item generated in the generator

116

class storelast(object):

 def __init__(self,source):

 self.source = source

 def next(self):

 item = self.source.next()

 self.last = item

 return item

 def __iter__(self):

 return self

• This can be easily wrapped around a generator
lines = storelast(follow(open("access-log")))

log = apache_log(lines)

for r in log:

 print r

 print lines.last

Copyright (C) 2008, http://www.dabeaz.com 1-

Shutting Down
• Generators can be shut down using .close()

117

import time

def follow(thefile):

 thefile.seek(0,2) # Go to the end of the file

 while True:

 line = thefile.readline()

 if not line:

 time.sleep(0.1) # Sleep briefly

 continue

 yield line

• Example:

lines = follow(open("access-log"))

for i,line in enumerate(lines):

 print line,

 if i == 10: lines.close()

Copyright (C) 2008, http://www.dabeaz.com 1-

Shutting Down
• In the generator, GeneratorExit is raised

118

import time

def follow(thefile):

 thefile.seek(0,2) # Go to the end of the file

 try:

 while True:

 line = thefile.readline()

 if not line:

 time.sleep(0.1) # Sleep briefly

 continue

 yield line

 except GeneratorExit:

 print "Follow: Shutting down"

• This allows for resource cleanup (if needed)

Copyright (C) 2008, http://www.dabeaz.com 1-

Ignoring Shutdown
• Question: Can you ignore GeneratorExit?

119

import time

def follow(thefile):

 thefile.seek(0,2) # Go to the end of the file

 while True:

 try:

 line = thefile.readline()

 if not line:

 time.sleep(0.1) # Sleep briefly

 continue

 yield line

 except GeneratorExit:

 print "Forget about it"

• Answer: No. You'll get a RuntimeError

Copyright (C) 2008, http://www.dabeaz.com 1-

Shutdown and Threads

• Question : Can a thread shutdown a generator
running in a different thread?

120

lines = follow(open("foo/test.log"))

def sleep_and_close(s):

 time.sleep(s)

 lines.close()

threading.Thread(target=sleep_and_close,args=(30,)).start()

for line in lines:

 print line,

Copyright (C) 2008, http://www.dabeaz.com 1-

Shutdown and Threads

• Separate threads can not call .close()

• Output:

121

Exception in thread Thread-1:

Traceback (most recent call last):

 File "/Library/Frameworks/Python.framework/Versions/2.5/

lib/python2.5/threading.py", line 460, in __bootstrap

 self.run()

 File "/Library/Frameworks/Python.framework/Versions/2.5/

lib/python2.5/threading.py", line 440, in run

 self.__target(*self.__args, **self.__kwargs)

 File "genfollow.py", line 31, in sleep_and_close

 lines.close()

ValueError: generator already executing

Copyright (C) 2008, http://www.dabeaz.com 1-

Shutdown and Signals
• Can you shutdown a generator with a signal?

122

import signal

def sigusr1(signo,frame):

 print "Closing it down"

 lines.close()

signal.signal(signal.SIGUSR1,sigusr1)

lines = follow(open("access-log"))

for line in lines:

 print line,

• From the command line
% kill -USR1 pid

Copyright (C) 2008, http://www.dabeaz.com 1-

Shutdown and Signals

• This also fails:

123

Traceback (most recent call last):

 File "genfollow.py", line 35, in <module>

 for line in lines:

 File "genfollow.py", line 8, in follow

 time.sleep(0.1)

 File "genfollow.py", line 30, in sigusr1

 lines.close()

ValueError: generator already executing

• Sigh.

Copyright (C) 2008, http://www.dabeaz.com 1-

Shutdown

• The only way to externally shutdown a
generator would be to instrument with a flag or
some kind of check

124

def follow(thefile,shutdown=None):

 thefile.seek(0,2)

 while True:

 if shutdown and shutdown.isSet(): break

 line = thefile.readline()

 if not line:

 time.sleep(0.1)

 continue

 yield line

Copyright (C) 2008, http://www.dabeaz.com 1-

Shutdown

• Example:

125

import threading,signal

shutdown = threading.Event()

def sigusr1(signo,frame):

 print "Closing it down"

 shutdown.set()

signal.signal(signal.SIGUSR1,sigusr1)

lines = follow(open("access-log"),shutdown)

for line in lines:

 print line,

Copyright (C) 2008, http://www.dabeaz.com 1-

Part 9

126

Co-routines

Copyright (C) 2008, http://www.dabeaz.com 1-

The Final Frontier

• In Python 2.5, generators picked up the ability
to receive values using .send()

127

def recv_count():

 try:

 while True:

 n = (yield) # Yield expression

 print "T-minus", n

 except GeneratorExit:

 print "Kaboom!"

• Think of this function as receiving values rather
than generating them

Copyright (C) 2008, http://www.dabeaz.com 1-

Example Use

• Using a receiver

128

>>> r = recv_count()

>>> r.next()

>>> for i in range(5,0,-1):

... r.send(i)

...

T-minus 5

T-minus 4

T-minus 3

T-minus 2

T-minus 1

>>> r.close()

Kaboom!

>>>

Note: must call .next() here

Copyright (C) 2008, http://www.dabeaz.com 1-

Co-routines

• This form of a generator is a "co-routine"

• Also sometimes called a "reverse-generator"

• Python books (mine included) do a pretty poor
job of explaining how co-routines are supposed
to be used

• I like to think of them as "receivers" or
"consumer". They receive values sent to them.

129

Copyright (C) 2008, http://www.dabeaz.com 1-

Setting up a Coroutine
• To get a co-routine to run properly, you have to

ping it with a .next() operation first

130

def recv_count():

 try:

 while True:

 n = (yield) # Yield expression

 print "T-minus", n

 except GeneratorExit:

 print "Kaboom!"

• Example:
r = recv_count()

r.next()

• This advances it to the first yield--where it will
receive its first value

Copyright (C) 2008, http://www.dabeaz.com 1-

@consumer decorator

• The .next() bit can be handled via decoration

131

def consumer(func):

 def start(*args,**kwargs):

 c = func(*args,**kwargs)

 c.next()

 return c

 return start

• Example:
@consumer

def recv_count():

 try:

 while True:

 n = (yield) # Yield expression

 print "T-minus", n

 except GeneratorExit:

 print "Kaboom!"

Copyright (C) 2008, http://www.dabeaz.com 1-

@consumer decorator

• Using the decorated version

132

>>> r = recv_count()

>>> for i in range(5,0,-1):

... r.send(i)

...

T-minus 5

T-minus 4

T-minus 3

T-minus 2

T-minus 1

>>> r.close()

Kaboom!

>>>

• Don't need the extra .next() step here

Copyright (C) 2008, http://www.dabeaz.com 1-

Coroutine Pipelines

• Co-routines also set up a processing pipeline

• Instead of being defining by iteration, it's
defining by pushing values into the pipeline
using .send()

133

.send() .send() .send()

• We already saw some of this with broadcasting

Copyright (C) 2008, http://www.dabeaz.com 1-

Broadcasting (Reprise)

• Consume a generator and send items to a set
of consumers

134

def broadcast(source, consumers):

 for item in source:

 for c in consumers:

 c.send(item)

• Notice that send() operation there

• The consumers could be co-routines

Copyright (C) 2008, http://www.dabeaz.com 1-

Example

135

@consumer

def find_404():

 while True:

 r = (yield)

 if r['status'] == 404:

 print r['status'],r['datetime'],r['request']

@consumer

def bytes_transferred():

 total = 0

 while True:

 r = (yield)

 total += r['bytes']

 print "Total bytes", total

lines = follow(open("access-log"))

log = apache_log(lines)

broadcast(log,[find_404(),bytes_transferred()])

Copyright (C) 2008, http://www.dabeaz.com 1-

Discussion

• In last example, multiple consumers

• However, there were no threads

• Further exploration along these lines can take
you into co-operative multitasking, concurrent
programming without using threads

• That's an entirely different tutorial!

136

Copyright (C) 2008, http://www.dabeaz.com 1-

Wrap Up

137

Copyright (C) 2008, http://www.dabeaz.com 1-

The Big Idea

• Generators are an incredibly useful tool for a
variety of "systems" related problem

• Power comes from the ability to set up
processing pipelines

• Can create components that plugged into the
pipeline as reusable pieces

• Can extend the pipeline idea in many directions
(networking, threads, co-routines)

138

Copyright (C) 2008, http://www.dabeaz.com 1-

Code Reuse

• I like the way that code gets reused with
generators

• Small components that just process a data
stream

• Personally, I think this is much easier than what
you commonly see with OO patterns

139

Copyright (C) 2008, http://www.dabeaz.com 1-

Example

140

import SocketServer

class HelloHandler(SocketServer.BaseRequestHandler):

 def handle(self):

 self.request.sendall("Hello World\n")

serv = SocketServer.TCPServer(("",8000),HelloHandler)

serv.serve_forever()

• SocketServer Module (Strategy Pattern)

• My generator version

for c,a in receive_connections(("",8000)):

 c.send("Hello World\n")

 c.close()

Copyright (C) 2008, http://www.dabeaz.com 1-

Pitfalls

141

• I don't think many programmers really
understand generators yet

• Springing this on the uninitiated might cause
their head to explode

• Error handling is really tricky because you have
lots of components chained together

• Need to pay careful attention to debugging,
reliability, and other issues.

Copyright (C) 2008, http://www.dabeaz.com 1-

Thanks!

142

• I hope you got some new ideas from this class

• Please feel free to contact me

http://www.dabeaz.com

