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1 Agenda

e iteration construct

¢ sequences

string
list

dictionary

tuple

2 while Statement

e recall recursive construction of countdown
e cost of function calls

* good old while loop

def countdown( n )
while n > 0
print n
n=mn-1
print ’'Blastoff!’

* forever loop

while True
line = raw_input( "> 7 )
if line == ’done’
break
print line
print ’‘Done’

* square root approximation algorithm

while True:
print x
y = (x + a/x) / 2
if y == x:
break
X =Yy

* Newton’s algorithm

e A few caveats

epsilon = 0.01
def sra( a ) :
x =a / 2
while True:
print x
y = (x + a/x) / 2
if abs(y—x) < epsilon
break
X =y
return x
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* Recap

— Multiple assignment: vars are initialized and assigned more than once
— loop often has loop index, incremented by one each iteration

— conditional evaluation and branch forming cycle

3 Sequence Overview

 an ordered collection (set) of values

— membership test
— subset

— eumeration
* another angle: a mapping from an index to value

— lookup

— reverse lookup (searching, content address memory)

e data structures in C

* native data types with native operators in Python

— make python enjoyable to read and write!

4 String

* We have already seen one: string is a sequence!
* sequence of characters

* indexed lookup using []

>>>> fruit = ’'banana’
>>>> print fruit[O0]
>>>> print fruit([1l]

* index has to be an integer

>>>> letter = fruit[1l.5]
TypeError: string indices must be integers

¢ builtin function len

>>>> len (fruit)
6

* index has to be within range

>>>> letter = fruit[len (fruit) ]
IndexError: string index out of range




CSC326 Python Sequences
3/12

e enumeration: for statement

for char in fruit
print char

* compare with C
for( i = 0; i < strlen(fruit); i ++ )

printf( "$c", fruitli] );

* subsetting: string slices

first:last]: from first to last, excluding last
first:]
last]

] ?

[
[
[
[

print fruit|[
print fruit|[
print fruit[:3
print fruit|

* strings are "immutable"”

— element cannot be assigned (NOT an Lvalue)

— has to create new string of wants to modify

greeting = "hello, world’
greeting[0] = ’J’ # wrong!
new_greeting = ’J’ + greeting[l:]

* searching (reverse lookup)

def find( word, letter )

index = 0
while index < len (word)
if word[index] == letter
return index
index = index + 1

return -1

* membership/subset test: in operator

>>>> "a’ in ’banana’
True

>>>> "seed’ in ’'banana’
False

* print all letters appears in both word1 and word2
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def in_both( wordl, word2 )
for letter in wordl
if letter in word2
print letter

* comparison operator ==

>>>> stringl = ’"hello’

>>>> string2 = "he’ + ’'1lo’
>>>> print stringl == string2
True

 Python strings are values C strings are references

strcpy ( stringl, "hellol" );
strcpy ( string2, "he" );

strcat ( string2, "1llo" );

printf( "%d", stringl == string2 )

* How do we compare by reference? is operator

>>>> stringl = "hello’

>>>> string2 = "he’ + ’'1lo’
>>>> print stringl is string2
False

e 1= <, >, <, >= works too!

5 Lists

* Strings are sequence of values of fixed type: characters
* Lists are sequence of values (element, item) of arbitary types
* Form:

- [ab,c,... ]

— []: empty list

* Examples

[10, 20, 30, 40] #uniform types
["spam’, 2.0, 5, [10, 20]] #non-uniform types, even nested!

* Indexed lookup

fruit = [’appple’ 'orange’ ’lemon’]
print fruit[O0]
— index has to be within range
— if negative value: counts back from the end
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e Mutable

fruit[0] = ’grape’

¢ Eumeration

for cheese in cheeses
print cheese

* range(.) create a integer sequence from a scalar

for i in range( len (numbers) )
numbers[i] = numbers[i] * 2

» Concatenation and Repetitiong (just like strings)

print [1, 2, 3] + [4, 5, 6]
print [0] * 4
print [1, 2, 3] x 4

* Subsetting: list slices

t = [’a’, 'b’', 'c’,
t[1.3] = ['x", "y"]

This gives you:

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: list indices must be integers, not float

* Comparison (same as string)
— By value: ===

— By reference: is

NOTE - assignment is always by reference - assignment create alias

6 Dictionary

* The index of list has to be integers
* The index of dictionary can be arbitary types
e Form:

— { key:val, key:val, ... }

— {}: empty dictionary
— dict(): empty dictionary
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>>> print { 0: 2, 1: 3, 2: 5}

>>> eng2sp = { ’'one’:"uno’, ’"two’:’'dos’, ’‘three’:’tres’
>>> print type (eng2sp)

>>> print eng2sp[’one’]

* Lookup: index of any types
>>> print eng2sp[’one’]

* Membership: in operator (constant time algorithm)
— use key to test

* Example

def histogram( s )
assert isinstance(s,str) # Do we need it?
d = {}
for ¢ in s
if ¢ not in d :
dlc] =1
else
dlc] +=1
return d

* histogram( good )?

* histogram( [good, good, bad] )?

}

Note
Do we need the assertion? polymorphic programming!

¢ Enumeration

— of keys (indices)

— list/string enumerate values

def print_histogram( h )
for ¢ in h
print c, hlc]

e Search

def reverse_lookup( h, v )
for k in h
if( h[k] == v )
return k
return None

¢ I lied that key can be arbitary types

— they have to be immutable!
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— Why? (hint: think about hash table implementation)
* Example: cache/dynamic programming

— We use divide/conquer to solve problem
— typically map well to recursion

— Recall fibonacci

def fibonacci (n)
if n in [0,1]
result = n
else
result = fibonacci(n-1) + fibonacci (n-2)
return result

* Souce of inefficiency

* Dictionary comes to the rescue

cache = {}
def fibonacci (n)
if( n in cache )
return cache[n]
if n in [0,1]

result = n
else

result = fibonacci(n-1) + fibonacci (n-2)
cache[n] = result

return result

¢ Enhancement

cache = { 0:0, 1:1 }
def fibonacci (n)
if( n in cache )
return cache[n]
result = fibonacci(n-1) + fibonacci (n-2)
cache[n] = result
return result

Note
We have used global variable cache if a variable is reassigned in a function, by default it is considered as a local variable (scope
is within function). To tell Python it is a global variable, use global foo

7 Tuples

* Sequence of values (just like list)
e Immutables!

¢ Forms

- a/b,c, ...
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- (a,b,c,...)
-0
— tuple()

* Lookup(Index), Subsetting(Slice), Enumeration (for) works as usual

* Tuple variable assignment

- InC

temp = a;
a = b;
b = temp;

* In Python

* Multiple return values

quot, rem = divmod( 7, 3 )
print quot # gives 2

print rem # gives 1
def min max( t ) : # t is a sequence
return min(t), max(6) # min/max are builtin functions

* Variable argument: Gather

- InC
void printall( ... ) {
va_list va;
va_start( va, ... );
for( ... ) {
arg = va_arg( va, int );

printf( "%d ", arg );
}
va_end( va );

}
* In Python (* operator): Gather all arguments into a tuple

def printall (xargs)
print args

>>> print printall( 1, 2.0, "3’ )
(1, 2.0, "3")

e Scatter: expand tuple into arguments
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>>> t = (7,3)

>>> print divmod( =t )
(2,1)

* Zip

— Builtin function
— From: two or more sequences

— To: alist of tuples, each element of tuple is taking from respective element from sequence

>>> s = ’abc’ # a string
>>> t = [0, 1, 2] # a list
>>> zip( s, t )

[("a",0"), ('b",1), ('c,2)]

* Interesting to see how we can enumerate

for letter, number in t
print number, letter

* Did you ever need to travese two sequences at the same time?

def has_match( tl, t2 )
for x, y in zip( tl1, t2 )
if x ==y :
return True
return False

* Do you need the index and value at the same time?

for index, val in enumerate( ’"abc’ )
print index, element

 Fast way to create dictionary

d = dict( zip(’abc’,range(3)) )
print d

* Tuple can be key for dictionary

8 What We have Learned for Sequences

* We have seen different types of sequences

' "

string ..., "...
list[...]
dictionary { ... }
tuple (...)

¢ Common set of operation

— indexing and slicing: [...]
— search

— eumeration: for /in
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9 Sequences are Objects

¢ Constructors

* string methods

— s.upper()
— s.find(a)
— s.split()

e list methods

L.append( e )
Lextend(12)
L.sort()

l.pop( index )

L.pop(): remove last element

L.remove( val )
del I[index]

» Simple Stack

def stack_init ()
return []

def stack_push( s, e )
s.append( e )
return s

def stack_pop( s )
e = s.pop()
return e

» Simple FIFO?

def fifo_init ()
return []

def fifo_enqueue( s, e )
s.append( e )
return s

def fifo_dequeue( s )
e = s.pop( 0 )
return e

10 List Comprehension
e Common pattern of deriving sequence from other sequences

11 = ...
12 =[]
for i in 11
12 = 1 = 2
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* So common that Python devise a construct for it
* List comprehension! (Since Python 2.0)
— Contributors: Greg Ewing, Skip Montanaro and Thomas Wouters
12 = [ 1 » 2 for i in 11]
¢ Look like math notation
S = {x$72$ x 1in {0 9}}
Vo= (1, 2, 4, 8, ..., 2871$$"28)
M= {x | x in S and x even}
>>> S = [x*x*x2 for x in range(10)]
>>> V = [2%x%x1 for i in range(1l3)]
>>> M = [x for x in S 1if x $ 2 == 0]
>>> print S; print V; print M
* Applying to any element type
>>> words = ’'The quick brown fox jumps over the lazy dog’ .split ()
>>> print words
["The’, ’'quick’, ’'brown’, ’'fox’, ’Jjumps’, ’over’, ’'the’, ’'lazy’, ’"dog’]
>>> stuff = [[w.upper(), w.lower(), len(w)] for w in words]
* General syntax
L = [ F(x) for x in S if P(x)]
— Function F(x) is mapped to every x
— Function P(x) is the filter
— F(x) and P(x) are really just expressions
— Nested: there could be multiple for with its own predicte
* Big deal:
— Expression, not statement
— Almost like Math notation
11 Cross product of two sets
>>> colours = [ "red", "green", "yellow", "blue" ]
>>> things = [ "house", "car", "tree" ]
>>> coloured_things = [ (x,y) for x in colours for y in things ]
>>> print coloured_things
[("red”, "house’), ('red’, ’'car’), ('red’, 'tree’), ('green’, "house’), ('green’, ’'car’), <~
("green’, ’'tree’), ('yellow’, ’'house’), ('yellow’, 'car’), ('yellow’, ’'tree’), ('blue’, ¢«
"house’), ('blue’, ’"car’), ('blue’, "tree’)]

>>>
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12 Accessing Matrics

>>> M1l = [[1, 2, 3],
(4, 5, 6],
[7, 8, 911

>>> M2 = [[9, 8, 7],
[6, 5, 41,
[3, 2, 111

>>> M1[2]

[7,8,9]

* No easy way to find column!

>>> [r[2] for r in M1]
[3, 6, 9]

13 Prime Number with List Comprehension

« sieve of Eratosthenes
>>> noprimes = [j for i in range(2, 8) for j in range(ix2, 50, 1i)]
>>> primes = [x for x in range (2, 50) if x not in noprimes]

>>> print primes
t2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]

14 Quick Sort

def gsort (s)

if( len(s) <= 2 ) : return s

pivot = s[0]

less = [e for e in s if e < pivot]

grt = [e for e in s if e > pivot]

eq = [e for e in s if e == pivot]

result = [gsort(v) for v in [less, grt]]

return result[0] + eq + result[l]
print gsort( [2, 1, 5, 3, 4] )

15 Recap

* Data Structures are native types

» Common set of operations

-1
- [
- in
— for
* Polymorphic programming

— Canadian value: care what you can do, not who you are

¢ Immutables
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