CSC326 Python Sequences

CSC326 Python Sequences

CSC326 Python Sequences

REVISION HISTORY

NUMBER

DATE

DESCRIPTION

NAME

1.0

2011-09

JZ

CSC326 Python Sequences

Contents

1 Agenda

2 while Statement

3 Sequence Overview

4 String

5 Lists

6 Dictionary

7 Tuples

8 What We have Learned for Sequences
9 Sequences are Objects

10 List Comprehension

11 Cross product of two sets

12 Accessing Matrics

13 Prime Number with List Comprehension
14 Quick Sort

15 Recap

10

10

11

12

12

12

12

CSC326 Python Sequences
1/12

1 Agenda

e iteration construct

¢ sequences

string
list

dictionary

tuple

2 while Statement

e recall recursive construction of countdown
e cost of function calls

* good old while loop

def countdown(n)
while n > 0
print n
n=mn-1
print ’'Blastoff!’

* forever loop

while True
line = raw_input("> 7)
if line == ’done’
break
print line
print ’‘Done’

* square root approximation algorithm

while True:
print x
y = (x + a/x) / 2
if y == x:
break
X =Yy

* Newton’s algorithm

e A few caveats

epsilon = 0.01
def sra(a) :
x =a / 2
while True:
print x
y = (x + a/x) / 2
if abs(y—x) < epsilon
break
X =y
return x

CSC326 Python Sequences
2/12

* Recap

— Multiple assignment: vars are initialized and assigned more than once
— loop often has loop index, incremented by one each iteration

— conditional evaluation and branch forming cycle

3 Sequence Overview

 an ordered collection (set) of values

— membership test
— subset

— eumeration
* another angle: a mapping from an index to value

— lookup

— reverse lookup (searching, content address memory)

e data structures in C

* native data types with native operators in Python

— make python enjoyable to read and write!

4 String

* We have already seen one: string is a sequence!
* sequence of characters

* indexed lookup using []

>>>> fruit = ’'banana’
>>>> print fruit[O0]
>>>> print fruit([1l]

* index has to be an integer

>>>> letter = fruit[1l.5]
TypeError: string indices must be integers

¢ builtin function len

>>>> len (fruit)
6

* index has to be within range

>>>> letter = fruit[len (fruit)]
IndexError: string index out of range

CSC326 Python Sequences
3/12

e enumeration: for statement

for char in fruit
print char

* compare with C
for(i = 0; i < strlen(fruit); i ++)

printf("$c", fruitli]);

* subsetting: string slices

first:last]: from first to last, excluding last
first:]
last]

] ?

[
[
[
[

print fruit|[
print fruit|[
print fruit[:3
print fruit|

* strings are "immutable"”

— element cannot be assigned (NOT an Lvalue)

— has to create new string of wants to modify

greeting = "hello, world’
greeting[0] = ’J’ # wrong!
new_greeting = ’J’ + greeting[l:]

* searching (reverse lookup)

def find(word, letter)

index = 0
while index < len (word)
if word[index] == letter
return index
index = index + 1

return -1

* membership/subset test: in operator

>>>> "a’ in ’banana’
True

>>>> "seed’ in ’'banana’
False

* print all letters appears in both word1 and word2

CSC326 Python Sequences
4/12

def in_both(wordl, word2)
for letter in wordl
if letter in word2
print letter

* comparison operator ==

>>>> stringl = ’"hello’

>>>> string2 = "he’ + ’'1lo’
>>>> print stringl == string2
True

 Python strings are values C strings are references

strcpy (stringl, "hellol");
strcpy (string2, "he");

strcat (string2, "1llo");

printf("%d", stringl == string2)

* How do we compare by reference? is operator

>>>> stringl = "hello’

>>>> string2 = "he’ + ’'1lo’
>>>> print stringl is string2
False

e 1= <, >, <, >= works too!

5 Lists

* Strings are sequence of values of fixed type: characters
* Lists are sequence of values (element, item) of arbitary types
* Form:

- [ab,c,...]

— []: empty list

* Examples

[10, 20, 30, 40] #uniform types
["spam’, 2.0, 5, [10, 20]] #non-uniform types, even nested!

* Indexed lookup

fruit = [’appple’ 'orange’ ’lemon’]
print fruit[O0]
— index has to be within range
— if negative value: counts back from the end

CSC326 Python Sequences
5/12

e Mutable

fruit[0] = ’grape’

¢ Eumeration

for cheese in cheeses
print cheese

* range(.) create a integer sequence from a scalar

for i in range(len (numbers))
numbers[i] = numbers[i] * 2

» Concatenation and Repetitiong (just like strings)

print [1, 2, 3] + [4, 5, 6]
print [0] * 4
print [1, 2, 3] x 4

* Subsetting: list slices

t = [’a’, 'b’', 'c’,
t[1.3] = ['x", "y"]

This gives you:

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: list indices must be integers, not float

* Comparison (same as string)
— By value: ===

— By reference: is

NOTE - assignment is always by reference - assignment create alias

6 Dictionary

* The index of list has to be integers
* The index of dictionary can be arbitary types
e Form:

— { key:val, key:val, ... }

— {}: empty dictionary
— dict(): empty dictionary

CSC326 Python Sequences

6/12

>>> print { 0: 2, 1: 3, 2: 5}

>>> eng2sp = { ’'one’:"uno’, ’"two’:’'dos’, ’‘three’:’tres’
>>> print type (eng2sp)

>>> print eng2sp[’one’]

* Lookup: index of any types
>>> print eng2sp[’one’]

* Membership: in operator (constant time algorithm)
— use key to test

* Example

def histogram(s)
assert isinstance(s,str) # Do we need it?
d = {}
for ¢ in s
if ¢ not in d :
dlc] =1
else
dlc] +=1
return d

* histogram(good)?

* histogram([good, good, bad])?

}

Note
Do we need the assertion? polymorphic programming!

¢ Enumeration

— of keys (indices)

— list/string enumerate values

def print_histogram(h)
for ¢ in h
print c, hlc]

e Search

def reverse_lookup(h, v)
for k in h
if(h[k] == v)
return k
return None

¢ I lied that key can be arbitary types

— they have to be immutable!

CSC326 Python Sequences
7/12

— Why? (hint: think about hash table implementation)
* Example: cache/dynamic programming

— We use divide/conquer to solve problem
— typically map well to recursion

— Recall fibonacci

def fibonacci (n)
if n in [0,1]
result = n
else
result = fibonacci(n-1) + fibonacci (n-2)
return result

* Souce of inefficiency

* Dictionary comes to the rescue

cache = {}
def fibonacci (n)
if(n in cache)
return cache[n]
if n in [0,1]

result = n
else

result = fibonacci(n-1) + fibonacci (n-2)
cache[n] = result

return result

¢ Enhancement

cache = { 0:0, 1:1 }
def fibonacci (n)
if(n in cache)
return cache[n]
result = fibonacci(n-1) + fibonacci (n-2)
cache[n] = result
return result

Note
We have used global variable cache if a variable is reassigned in a function, by default it is considered as a local variable (scope
is within function). To tell Python it is a global variable, use global foo

7 Tuples

* Sequence of values (just like list)
e Immutables!

¢ Forms

- a/b,c, ...

CSC326 Python Sequences
8/12

- (a,b,c,...)
-0
— tuple()

* Lookup(Index), Subsetting(Slice), Enumeration (for) works as usual

* Tuple variable assignment

- InC

temp = a;
a = b;
b = temp;

* In Python

* Multiple return values

quot, rem = divmod(7, 3)
print quot # gives 2

print rem # gives 1
def min max(t) : # t is a sequence
return min(t), max(6) # min/max are builtin functions

* Variable argument: Gather

- InC
void printall(...) {
va_list va;
va_start(va, ...);
for(...) {
arg = va_arg(va, int);

printf("%d ", arg);
}
va_end(va);

}
* In Python (* operator): Gather all arguments into a tuple

def printall (xargs)
print args

>>> print printall(1, 2.0, "3’)
(1, 2.0, "3")

e Scatter: expand tuple into arguments

CSC326 Python Sequences

9/12

>>> t = (7,3)

>>> print divmod(=t)
(2,1)

* Zip

— Builtin function
— From: two or more sequences

— To: alist of tuples, each element of tuple is taking from respective element from sequence

>>> s = ’abc’ # a string
>>> t = [0, 1, 2] # a list
>>> zip(s, t)

[("a",0"), ('b",1), ('c,2)]

* Interesting to see how we can enumerate

for letter, number in t
print number, letter

* Did you ever need to travese two sequences at the same time?

def has_match(tl, t2)
for x, y in zip(tl1, t2)
if x ==y :
return True
return False

* Do you need the index and value at the same time?

for index, val in enumerate(’"abc’)
print index, element

 Fast way to create dictionary

d = dict(zip(’abc’,range(3)))
print d

* Tuple can be key for dictionary

8 What We have Learned for Sequences

* We have seen different types of sequences

' "

string ..., "...
list[...]
dictionary { ... }
tuple (...)

¢ Common set of operation

— indexing and slicing: [...]
— search

— eumeration: for /in

CSC326 Python Sequences

10/12

9 Sequences are Objects

¢ Constructors

* string methods

— s.upper()
— s.find(a)
— s.split()

e list methods

L.append(e)
Lextend(12)
L.sort()

l.pop(index)

L.pop(): remove last element

L.remove(val)
del I[index]

» Simple Stack

def stack_init ()
return []

def stack_push(s, e)
s.append(e)
return s

def stack_pop(s)
e = s.pop()
return e

» Simple FIFO?

def fifo_init ()
return []

def fifo_enqueue(s, e)
s.append(e)
return s

def fifo_dequeue(s)
e = s.pop(0)
return e

10 List Comprehension
e Common pattern of deriving sequence from other sequences

11 = ...
12 =[]
for i in 11
12 = 1 = 2

CSC326 Python Sequences

11/12
* So common that Python devise a construct for it
* List comprehension! (Since Python 2.0)
— Contributors: Greg Ewing, Skip Montanaro and Thomas Wouters
12 = [1 » 2 for i in 11]
¢ Look like math notation
S = {x72 x 1in {0 9}}
Vo= (1, 2, 4, 8, ..., 2871$$"28)
M= {x | x in S and x even}
>>> S = [x*x*x2 for x in range(10)]
>>> V = [2%x%x1 for i in range(1l3)]
>>> M = [x for x in S 1if x $ 2 == 0]
>>> print S; print V; print M
* Applying to any element type
>>> words = ’'The quick brown fox jumps over the lazy dog’ .split ()
>>> print words
["The’, ’'quick’, ’'brown’, ’'fox’, ’Jjumps’, ’over’, ’'the’, ’'lazy’, ’"dog’]
>>> stuff = [[w.upper(), w.lower(), len(w)] for w in words]
* General syntax
L = [F(x) for x in S if P(x)]
— Function F(x) is mapped to every x
— Function P(x) is the filter
— F(x) and P(x) are really just expressions
— Nested: there could be multiple for with its own predicte
* Big deal:
— Expression, not statement
— Almost like Math notation
11 Cross product of two sets
>>> colours = ["red", "green", "yellow", "blue"]
>>> things = ["house", "car", "tree"]
>>> coloured_things = [(x,y) for x in colours for y in things]
>>> print coloured_things
[("red”, "house’), ('red’, ’'car’), ('red’, 'tree’), ('green’, "house’), ('green’, ’'car’), <~
("green’, ’'tree’), ('yellow’, ’'house’), ('yellow’, 'car’), ('yellow’, ’'tree’), ('blue’, ¢«
"house’), ('blue’, ’"car’), ('blue’, "tree’)]

>>>

CSC326 Python Sequences

12/12

12 Accessing Matrics

>>> M1l = [[1, 2, 3],
(4, 5, 6],
[7, 8, 911

>>> M2 = [[9, 8, 7],
[6, 5, 41,
[3, 2, 111

>>> M1[2]

[7,8,9]

* No easy way to find column!

>>> [r[2] for r in M1]
[3, 6, 9]

13 Prime Number with List Comprehension

« sieve of Eratosthenes
>>> noprimes = [j for i in range(2, 8) for j in range(ix2, 50, 1i)]
>>> primes = [x for x in range (2, 50) if x not in noprimes]

>>> print primes
t2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]

14 Quick Sort

def gsort (s)

if(len(s) <= 2) : return s

pivot = s[0]

less = [e for e in s if e < pivot]

grt = [e for e in s if e > pivot]

eq = [e for e in s if e == pivot]

result = [gsort(v) for v in [less, grt]]

return result[0] + eq + result[l]
print gsort([2, 1, 5, 3, 4])

15 Recap

* Data Structures are native types

» Common set of operations

-1
- [
- in
— for
* Polymorphic programming

— Canadian value: care what you can do, not who you are

¢ Immutables

	Agenda
	while Statement
	Sequence Overview
	String
	Lists
	Dictionary
	Tuples
	What We have Learned for Sequences
	Sequences are Objects
	List Comprehension
	Cross product of two sets
	Accessing Matrics
	Prime Number with List Comprehension
	Quick Sort
	Recap

