
CSC326 Object Oriented Programming
i

CSC326 Object Oriented Programming

CSC326 Object Oriented Programming
ii

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

1.0 2011-09 JZ

CSC326 Object Oriented Programming
iii

Contents

1 Agenda 1

2 Classes and Objects 1

3 Classes and Functions 3

4 Classes and Methods 4

5 Operator Overloading 5

6 Inheritance 6

7 Recap 7

CSC326 Object Oriented Programming
1 / 7

1 Agenda

• Classes and Objects

• Classes and Attributes

• Classes and Methods

• Operator Overloading

• Inheritance

2 Classes and Objects

• We have seen built-in types

• User defined types: class

• Example: point in 2-D space

class Point(object) :
"""reprsents a point in 2-D space"""

• header: indicates a new class with name "Point"

• header: indicates the class is a kind of "object", a built-in type

• body: a docstring explaining what the class is for

>>> print Point
<class ’__main__.Point’>

• Class is a factory of objects

– Call Point() to create instance as if it were a function

– returns a "reference" to a Point object

>>> blank = Point()
>>> print blank
<__main__.Point instance at 0xb7e9d2ac>

• Note Point instance and Point class is NOT the same thing

>>> print type(blank)
<class ’__main__.Point’>

• Attributes

– Each object has named elementes, called attributes (or fields) In

– python, attribuites are introduced by use (with dot notation), not by declaration (C++)

CSC326 Object Oriented Programming
2 / 7

>>> blank.x = 3.0
>>> blank.y = 4.0
>>> print blank.x
3.0
>>> distance = math.sqrt(blank.x**2 + blank.y**2)
>>> print distance
5.0

• Rectangle

class Rectangle(object) :
""" represent a rectangle.

attributes: width, height, corner
"""

box = Rectangle()
box.width = 100.0
box.height = 200.0
corner = Point()
box.corner.x = 0.0
box.corner.y = 0.0

def find_center(box) :
p = Point()
p.x = box.corner.x + box.width/2.0
p.y = box.corner.y + box.height/2.0
return p

• Objects are mutable

def grow_rectangle(rect, dwidth, dheight) : rect.width = dwidth rect.height = dheight

• Copying Objects

– Alias (copying references) is not always wanted

– Copying content of object to another object is sometimes wanted

– Shallow Copy

>>> p1 = Point()
>>> p1.x = 3.0
>>> p1.y = 4.0
>>> import copy
>>> p2 = copy.copy(p1)
>>> print p2.x, p2.y
3.0 4.0
>>> p1 is p2
False

>>> box2 = copy.copy(box)
>>> box2 is box
>>> False
>>> box2.corner is box.corner
True

CSC326 Object Oriented Programming
3 / 7

Note
Shallow copy copies the object and any references it contains, but not the embedded objects.

• Deep Copy

>>> box3 = copy.deepcopy(box)
>>> box3 is box
False
>>> box3.corner is box.corner
False

3 Classes and Functions

• Pure function

time = Time()
time.hour = 11
time.minute = 59
time.second = 30

• Function that does not modify objects

def add_time(t1, t2)
sum = Time()
sum.hour = t1.hour + t2.hour
sum.minute = t1.minute + t2.minute
sum.second = t1.second + t2.second
return sum

• protype and patch!

def add_time(t1, t2)
sum = Time()
sum.hour = t1.hour + t2.hour
sum.minute = t1.minute + t2.minute
sum.second = t1.second + t2.second
if sum.second >= 60 :

sum.second -= 60
sum.minute += 1

if sum.minute >= 60 :
sum.minute -= 60
sum.hour += 1

return sum

• modifiers

def increment(time, seconds) time.second = seconds if time.second >= 60 : if time.second >= 60 :
time.second -= 60 time.minute = 1 if time.minute >= 60 : time.minute -= 60 time.hour += 1

Note
Is it correct? Write the correct version without using loops

CSC326 Object Oriented Programming
4 / 7

• Planning

def time_to_int(time) :
minutes = time.hour * 60 + time.minute
seconds = minute * 60 + time.second
return seconds

def int_to_time(seconds) :
time = Time()
minutes, time.second = divmod(seconds, 60)
time.hour, time.minute = divmod(minutes, 60)
return time

def add_time(t1, t2) :
seconds = time_to_int(t1) + time_to_int(t2)
return int_to_time(seconds)

4 Classes and Methods

• What is object orientation?

• So far

– Encapsulation: we have seen it with class attributes

– Actions (the verb phrase) are captured in ordinary function

– Function call on objects (verb-centric)

• Change of perspective (noun-centric)

– Object is given a function (method) to act on

– Leads to change of syntax:

– method(o, . . .) → o.method(. . .)

class Time(object) :
""" .. """

def print_time(time) :
print ’%.2d:%.2d:%.2d’ % (time.hour, time.minute, time.second)

>>> Time.print_time(start)

class Time(object) :
""" .. """
def print_time(time) :

print ’%.2d:%.2d:%.2d’ % (time.hour, time.minute, time.second)

>>> start.print_time()

• By convention, first parameter is named self

class Time(object) :
""" .. """
def print_time(self) :

print ’%.2d:%.2d:%.2d’ % (self.hour, self.minute, self.second)

CSC326 Object Oriented Programming
5 / 7

inside class Time
def increment(self, seconds) :

seconds += self.time_to_int()
return int_to_time(seconds)

• Contract-based programming

– Contract between class developer and user

– A limited set of functions (methods) are defined for a class

– Users use and only uses method to modify attributes

– In reality it is often violated (e.g., C++ friend class)

• Constructor

– invoked when an object is instantiated (when Time() is called)

inside class TimeXS
def __init__(self, hour=0, minute=0,second=0) :

self.hour = hour
self.minute = minute
self.second = second

• Dumper

– invoked when print the object

inside class TimeXS
def __str__(self) :

return ’%.2d:%.2d:%.2d’ % (time.hour, time.minute, time.second)

• get rid of print_time, and allow it to be printed the same way as all other types

5 Operator Overloading

• operators are nothing but methods

inside class Time
def __add__(self, other) :

seconds = self.time_to_int() + other.time_to_int()
return int_to_time(seconds)

>>> start = Time(9, 45)
>>> duration = Time(1, 35)
>>> print start + duration
11:20:00

• type-based dispatch

CSC326 Object Oriented Programming
6 / 7

inside class Time
def __add__(self, other) :

if isinstance(other, Time) :
return self.add_time(other)

else :
return self.increment(other)

>>> start = Time(9, 45)
>>> duration = Time(1, 35)
>>> print start + duration
11:20:00
>>> print start + 1337
10:07:17

• What if you do

>>> print 1337 + start
TypeError: unsupported operand type(s) for +: ’int’ and ’instance’

• Rescue

inside class Time
def __radd__(self, other) :

return self.__add__(other)

• Polymorphic Programming again!

6 Inheritance

• Classes are used to model real world objects

• Real world objects have relationships among each other

• has-a relation: often an object is a container of other objects

class Card(object) :
def __init__(self, suit=0, rank=2) :

self.suit = suit
self.rank = rank

def __cmp__(self, other) :
if self.suit > other.suit : return 1
if self.suit < other.suit : return -1
if self.rank > other.rank : return 1
if self.rank < other.rank : return -1
return 0

class Card(object) :
def __init__(self, suit=0, rank=2) :

self.suit = suit
self.rank = rank

def __cmp__(self, other) :
return cmp((self.suit, self.rank), (other.suit, other.rank))

CSC326 Object Oriented Programming
7 / 7

class Deck(object) :
def __init__(self, suit=0, rank=2) :

self.cards = []
for suit in range(4) :

for rank in range(1, 14) :
card = Card(suit, rank)
self.cards.append(card)

def pop_cards(self) ...
def add_cards(self) ...
def shuffle_cards(self) ...

• is-a relation: often objects belong to the same catogries

– Share similarities→ can be abstracted by base class

– Have own "personality→ define inherited class

class Hand(Deck) :
def __init__(self, label = ’’) :

self.cards = []
self.label = label

• Note that init method is overridden

• In the mean time, all other attributes/methods for Deck can be used

– class diagram

[NOTE] Do not be too carried away with inheritance. It is a pitfall to create too many level of inheritance because each level adds
one level of indirection and one barrier of understanding. You may end up spending too much time designing the class rather
than the actual work, and create code too hard to evolve.

7 Recap

• Change of perspective from procedural programming to object oriented programming

• Attributes and Methods

• Polymorphic programming: operator overloading

• Class relations: is-a / has-a

• Mindful of abuse

	Agenda
	Classes and Objects
	Classes and Functions
	Classes and Methods
	Operator Overloading
	Inheritance
	Recap

