
Midterm Examination

CSC 326 - Programming Languages

Fall 2011

October 27, 2011

University of Toronto
Department of Computer Science

Clearly print your name and student number below:
Name:
Student Number:

Grade:

Question Mark

1
2
3
4

Total:

1

Problem 1. (12 points) Below is a list of code blocks. Circle the letter beside each code block that never
causes an error to occur when the code is run.

A l s =["a " ,"b" ," c " ,"d" ," e " ," f " ,]
p r i n t " , " . j o i n ([l e t t e r . upper () f o r l e t t e r in l s])

B l s =["a " ,"b" ," c " ,"d" ," e " ," f " ,]
p r i n t " , " . j o i n (l e t t e r . upper () f o r l e t t e r in l s)

C a s_ l i s t = [(" key1 " , 1) , (" key2 " , 2) ,]
p r i n t {k : v f o r k , v in a s_ l i s t }

D my_list = {1 ,2 , 3 , 4 , 5 , 6 , }
p r i n t my_list [1 : 3]

E matrix = [[1 , 0 , 0] ,
[0 , 1 , 0] ,
[0 , 0 , 1]]

p r i n t matrix [0 , 1]

F de f i s_true (r e s) :
i f r e s :

r e turn "True"
return " Fal se "

numbers = [0 , 1 , 2 , 3 , 4 , 5]

i f i s_true (Fa l se) :
p r i n t numbers

e l s e :
p r i n t numbers [0] / 0

2

Problem 2. (18 points) Below is a list of valid Python code blocks that never result in errors. In the box
provided below each code block, write out the output of the program.

A l s = [0 , 1 , 2 , 3 , 4]
p r i n t l s i s l s
p r i n t l s i s l s [:]

B l s = [0 , 1 , 2 , 3 , 4]
p r i n t [l s [l en (l s) � i] f o r i in l s [1 :]]

C l s = range (2)
p r i n t [l s . append (l s [�2] + l s [�1]) or l s [�2] f o r _ in range (8)]

Hint: list.append returns None.
Hint: if a=[1,2,3] then a[-1] returns 3.

D par t s = [[l i s t (part) f o r part in s t r (x) . s p l i t (" . ")] f o r x in [1 0 . 5 5 , 1 9 . 1 1]]
p r i n t par t s
par t s = z ip (⇤ par t s)
p r i n t par t s
par t s = z ip (⇤ par t s [0]) + z ip (⇤ par t s [1])
p r i n t par t s
par t s = [s t r (i n t (a) + in t (b)) f o r (a , b) in par t s]
p r i n t par t s
p r i n t f l o a t (" " . j o i n (par t s [: 2]) + " ." + "" . j o i n (par t s [2 :]))

Hint: if a=[[1,2],[’a’,’b’]] then zip(*a) returns [(1, ’a’), (2, ’b’)].
Hint: if a="abaca" then a.split("a") returns ["","b","c",""].

3

Problem 3. (15 points) If s and t are two strings then we say the longest common subsequence of
s and t is some string si0si1 . . . sin�1 = tj0tj1 . . . tjn�1 such that 0 i0 < i1 < . . . < in�1 < |s| and
0 j0 < j1 < . . . < jn�1 < |t|, where |s| and |t| denotes the length of the string s and t, respectively. For
example, if s = abbacad and t = abaccad then the longest common subsequence of s and t is abacad, and has
length 6. The following highlights the common letters of the subsequence: s = abbacad and t = abaccad.

The length of the longest common subsequence of two strings can be computed as follows:

de f LCS(s , t , i =�1, j =�1):
the only subsequence in common between a s t r i n g and the
empty s t r i n g i s the empty s t r i n g
i f i < �l en (s) or j < �l en (t) :

r e turn ""

i f the i t h charac t e r o f s i s the j th charac t e r o f t , then
extend the l ong e s t common subsequence found by " shor t en ing "
both s and t with s [i] .
e . g .
ababa [d] abca [d]
take :
LCS(ababa , abca) + d
i f s [i] == t [j] :

r e turn LCS(s , t , i �1, j �1) + s [i]

the two cha ra c t e r s are not equal , f i nd the l ong e s t one by
" shor t en ing " e i t h e r s or t by one l e t t e r
e . g .
ababa [d] abca [e]
take the l onge r o f :
LCS(ababad , abca)
LCS(ababa , abcae)
e l s e :

long_from_i = LCS(s , t , i �1, j)
long_from_j = LCS(s , t , i , j � 1)
i f l en (long_from_i) < len (long_from_j) :

r e turn long_from_j
e l s e :

r e turn long_from_i

The above algorithm works backward through s and t, starting from the end (because i and j default to -1

when not explicitly specified) and computes the longest common subsequence. When run, LCS("abbacad", "abaccad")

will return "abacad".

Unfortunately, the above algorithm is very slow, particularly because it will end up re-computing various
intermediate results.

Convert the above recursive algorithm into a Python function LCS_fast(s,t) that uses for loops and a data
structure of your choice, such that the data structure can represent the following table, and the algorithm
fills the table out in a similar manner to below. Your function should return the longest common subsequence
of two arbitrary strings s and t and should not repeat work.

4

a b b a c a d
"" "" "" "" "" "" "" ""

a ""

b ""

a ""

c ""

c ""

a ""

d ""

! . . . !

a b b a c a d
"" "" "" "" "" "" "" ""

a "" "a" "a" "a" "a" "a" "a" "a"

b "" "a" "ab"

a ""

c ""

c ""

a ""

d ""

Answer:

5

Problem 4. (15 points) Given an n⇥n grid/matrix of live/dead (live = 1, dead = 0) cells, a single iteration
of Conway’s Game of Life applies one of the following rules to each cell of the grid (note: different cells will
satisfy different rules) in order to get the next state of the grid.

1. Any live cell with fewer than two live neighbours dies, as if caused by under-population.

2. Any live cell with two or three live neighbours lives on to the next generation.

3. Any live cell with more than three live neighbours dies, as if by overcrowding.

4. Any dead cell with exactly three live neighbours becomes a live cell, as if by reproduction.

These rules can be implemented in Python as follows:

de f i t e r a t e (board) :
""" board i s a l i s t o f l i s t s in row�major form ."""

num_rows , num_cols = len (board) , l en (board [0])

dup l i c a t e the o ld board , but extend i t with rows/ c o l s o f z e r o s
along the edges so that we don ’ t need to do bounds checking , but
ins t ead do 1�based index ing in s t ead o f 0�based index ing
old_board = [[0] ⇤ (num_cols + 2) f o r _ in xrange (num_rows + 2)]
f o r r in xrange (num_rows) :

f o r c in xrange (num_cols) :
old_board [r +1] [c +1] , board [r] [c] = board [r] [c] , 0

count the ne ighbors o f each c e l l and apply the r u l e s
f o r r in xrange (1 , num_rows + 1) :

f o r c in xrange (1 , num_cols + 1) :
num_neighbors = old_board [r �1] [c] + old_board [r] [c�1] + \

old_board [r �1] [c�1] + old_board [r +1] [c] + \
old_board [r] [c+1] + old_board [r +1] [c+1] + \
old_board [r �1] [c+1] + old_board [r +1] [c�1]

i f old_board [r] [c] :
board [r �1] [c�1] = in t (num_neighbors in (2 , 3))

e l s e :
board [r �1] [c�1] = in t (3 == num_neighbors)

re turn board

For example, the following is three iterations of Conway’s Game of Life when run on the 3⇥ 3 starting grid:

1 1 0
0 1 0
0 1 0

!
1 1 0
0 1 1
0 0 0

!
1 1 1
1 1 1
0 0 0

!
1 0 1
1 0 1
0 1 0

Use NumPy’s slicing and broadcasting features, create a function iterate(board) that performs one iteration
of Conway’s Game of Life on two dimension NumPy array. You will be penalized if you use for loops. Hint:
count neighbor cells!

6

Answer:

7

This page is intentially left blank as a worksheet.

8

