
  

 

 

Abstract— A novel 2-dimension Vernier Time to digital 

converter (TDC) is presented. The proposed architecture 

reduces drastically the number of delay stage required by 

linear TDCs minimizing the power consumption and the 

area of the design. A 7bits TDC prototype realized in 65nm 

CMOS technology is presented. The chip has a resolution 

of 4.8ps with a power consumption of 1.7mW at a 

conversion rate of 50Msps.  

I. INTRODUCTION 

 ime to digital converters are commonly used in a wide 

range of applications, especially in physic measurement 

setup, more recently they have appeared in digital frequency 

synthesizers for wireless communications [1]. In such kind of 

applications, the time resolution provided by self-loaded 

inverters not always satisfies the requirements and thus new 

solutions based on Vernier algorithm and others interpolation 

techniques were investigated [2-7].  

The scheme of a classic Vernier TDC is shown in Fig. 

1[2]. The converter  is realized starting from two delay lines 

formed by stages with a delay of 1 and 2 so that 1- 2= , 

where  is the TDC resolution. The two lines are connected to 

a series of flip-flops which stores a 1 or a 0 depending if the 

rising edge  of the reference arrives before or after that of the 

signal one. Actually, a signal edge, which lags a reference 

edge by n at the input of TDC, will be lined up with it after n 

stages producing a thermometric code at the flip-flop outputs. 

(Fig. 1). In practice, such kind of TDC works as traditional 

ADC flash where the delay lines creates a set of time 

references and the flip-flops are used as time comparators. 

Several modified linear Vernier architectures proposed in 

literature try to increase resolution and/or reduce power 

consumption by interpolation techniques [4] or exploiting the 

periodicity of the input signals [5]. However in all cases, the 

number of stages grows exponentially with the number of bits 

and with it the jitter noise and the sensitivity to mismatches. 

The TDC presented in this paper wants to reduce drastically 

these problems acting on the generation of the time references 

through a 2-dimensions (2-D) Vernier approach. This reduces 

significantly the length of delay lines required for a given full-

scale. 

The paper is structured as follow: in section II the 2-D 

Vernier algorithm is presented. In section III the TDC circuit 

implementation is reported and finally, in section IV, the 

measurement results of the TDC prototype are shown and 

compared with the state of art. 

II. FROM LINEAR TO 2-D VERNIER TDC 

In the linear Vernier  drawn in Fig. 1, the time quantization 

is realized by taking the time differences only between taps 

located in the same position of the two delay lines (Fig. 2.a). If 

all possible differences between the taps are used, the plane of 

time references (named Vernier plane) can be built, where the 

number of quantization levels is given by the product of the 

elements of two delay lines (Fig. 2.b). An immediate 

consequence of this 2-D solution is a potential improvement of 

the TDC range, since the uniform quantization provided by the 

linear Vernier (form  to 5  is extended to the range from -

3  to 9 (grey zone). In the following it will be shown that an 

even higher efficiency in the use of the time references 
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Fig. 2 Time quantization: (a) linear Vernier, (b) 2-D Vernier 

 

 

 

 

 

Fig. 1 Classic linear Vernier 
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Fig. 3 Generic Vernier Plane 

 

Fig. 4 Extension of Vernier plane 

generated can be obtained exploring a wider region of the 

Vernier plane. 

Notice that, the structure proposed can be considered as a 

generalization  of the delay line [1] and of the linear Vernier 

TDC [2], which lie respectively on the borders and on the 

diagonal of the plane in Fig. 2.b. 

A. From the Vernier plane to a 2-D TDC  

To realize a time to digital converter, the set of time 

references generated in the Vernier plane (Fig. 3) must be 

arranged into a vector to obtain an ordered set with a constant 

quantization step (i.e. the final TDC resolution). This 

operation is performed by a function i=i(x,y)  that 

associates the position i in the vector  with the coordinates 

(x,y) of the Vernier plane so that 

             

where D(x,y) is the delay associated with the position (x,y).  

The function i(x,y) depends on the choice of 1 and 2 and can 

be found dividing (1) by  : 

                 

Notice that the existence of i(x,y) in  is guaranteed only 

by the assumption that both  and  are multiple of . 

Indeed, starting from the Bezout’s identity [9], it can be 

proved that the resolution  is always equal to the Greatest 

Common Divider (GCD)
1
 between 1 and 2. 

A particular family of 2-D Vernier plane is given by the set 

1=k  2=(k-1)  (e.g. and as shown in Fig. 2), where 

GCD( 1, 2)= 1- 2= and the linear and the 2-D TDC are 

equivalent in terms of resolution. In all the other cases, it’s 

easy to prove that the 2-dimension TDC has a time resolution 

always smaller then the linear Vernier. (e.g. 1=5  and 2=3  

still have a GCD =  but their difference is 2 ). 

B. Uniform quantization with finite delay lines  

Equation (2) assures a uniform mapping of the Vernier 

plane only if no boundary are set for the (x,y) domain. 

 
1 Notice that the GCD can be also defined in the time domain being it a 

commutative ring [9].  

Unfortunately, when finite delay lines are used, the generated 

plane cannot assure a uniform quantization of the entire co-

domain i (e.g. in the plane of Fig. 2, 10 , 14  and other values 

are missing). 

The region of the plane (X,Y) that corresponds to a uniform 

quantization for the co-domain i  can be found inverting (2). 

Unfortunately, this operation is not trivial since i=i(x,y)  is 

not biunique. In the following, only the class of Vernier planes  

with 1=k  2=(k-1)  will be studied, so that (2) can be 

rewritten as 

                          

Assuming , this equation can be inverted 

obtaining  

                     

where  is the upper integer of a. As indicated in the 

example of Fig. 2 with  k elements for both lines, a uniform 

quantization can be obtained only in the range between –k+2 

and 2k-1. 

C. Extension of the Vernier plane 

From (4) it is possible to verify that, while y(i) is periodic and 

varies between 0 and k, x(i) exceeds k, for i> 2k-1. This 

suggests that it is possible to extend the TDC range increasing 

only one of the two delay lines. An example of this  is 

reported in Fig. 4 where the TDC range of Fig. 2 has been 

extended from 9  to 24  with the addition of only 3 delay 

stages. Actually, the use of a 2-dimensions approach 

significantly reduce the length of the delay lines compared to a 

linear Vernier. In fact, the number of stages required for N 

quantization levels is proportional to  instead of N.  

Since the power consumption in a Vernier TDC is 

dominated by the delay stages, a 2-D approach results in a 

better power efficiency with the respect to a linear solution. 

Furthermore, the use of shorter delay lines reduces also the 

integral non linearity caused by mismatches between the delay 

stages. In particular, observing the Vernier plane in Fig. 4, it 

can be seen that the entire range is folded with a periodicity 

equal to 5 (i.e. k) which limits the integration of the distortion 
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Fig. 5 2-D Vernier TDC circuit implementation (a. Delay stage,  b. Time comparator) 

for higher output codes. Notice that such kind of folding 

occurs only for the delay sets 1=k  2=(k-1) , while other 

combination of delays generates Vernier planes with  different 

quantization level distributions. 

III. TDC CIRCUIT IMPLEMENTATION 

To validate the theory just presented, a 7-bit TDC was 

designed and implemented. In particular a Vernier plane with 

11 stages for line Y (i.e. k=11) and 19 stages for line X was 

built, resulting in 119 quantization levels, from -9   to +109  

The target resolution of =5ps sets 1=55ps and 2 =50ps 

giving a TDC full scale of 590ps, from -45ps to 545ps. 

The 2-D Vernier TDC circuit is shown in Fig. 5. The core 

is constituted by the two delay lines and the matrix of time 

comparators (one for each time reference). To provide a better 

symmetry, the delay lines were realized by non-inverting 

delay stages in order to perform the digital conversion only on 

rising edges. Furthermore, since not all the generated time 

references are used for the conversions (see Fig. 4), to provide 

the same capacitive load to all the stages of the delay lines, 

dummies time comparators were inserted at the corners of the 

matrix (grey zone). In the test chip, an additional input 

network was added to square the input signals coming from 

outside the chip. 

A. The delay element and the time comparator 

The non-inverting stage was realized through a cascade of 

two CMOS inverters (Fig. 5.a). Since the TDC works only on 

rising edge the critical transistors are the n-MOS of the first 

inverter and the p-MOS of the second one. In particular the 

second inverter has to be able to drive the matrix latches and 

the following delay stage. 

To guarantee proper operation in presence of mismatches, 

process and temperature variation, the value of the delay of 

each stage can be calibrated by a 7-bit array of MOM (metal-

oxide-metal) capacitors which gives a time granularity  of 1ps. 

In order to mitigate the effects of mismatches on the linearity 

of the delay lines, the physical placement of the elementary 

MOM cell has been done according to the common centroid 

criterion.  

The time comparator was realized using a SR latch (Fig. 

5.b) which minimizes systematic time skew thanks to its 

perfect symmetry. Furthermore this structure is very compact 

and this feature is highly desirable since the matrix uses a 

huge number of comparator organized in a bi-dimensional 

architecture. 

B. Calibration loop 

While the value of the delay present in the X line (i.e. 1) is 

controlled in open loop, the correct ratio between the delays 1 

and 2 is set using a delay locked loop (DLL) built-in in the 

matrix. Actually, during the calibration phase the reference 

signal is fed to both lines and the latch at the position (10,11) 

(the black one in Fig. 5) is used to estimate the delay 

difference between 10 stage of the X line and 11 stages of  the 

Y line. The signal coming out from the latch is integrated by a 

IIR (infinite impulse response) and the filter output is used to 

control the values of the elements of the line Y.  In steady 

state, the loop converge to the value of the digital control word 

that forces 10 1=11 2. 

IV. MEASUREMENTS RESULTS 

The microphotograph of the TDC test chip, fabricated in 

65nm Low Power standard CMOS technology by TSMC, is 

reported in Fig. 6. The active area of the TDC is  260um x 

260um dominated for more than 2/3 by the digital part used  

for chip control and post processing.  

All the measurement results are done for a 1.2V of voltage 

supply and a 100MHz clock. The TDC performs 50Msample/s 

measurements but the double clock allows to interleave the 

calibration with the measurements. Since the bandwidth of the 

calibration loop is very small, it is not necessary to calibrate 

the chip after each measurement but this solution was chosen 

for simplicity.  

The TDC has been tested injecting at its inputs two signals  

provided by a Data Timing Generator (Tektronix  DTG5274) 

able to generate square waves with edges slope of 5 GV/s and 

a variable phase difference. The entire TDC characteristic was 

explored  generating a phase ramp between the two signals 

with a constant slope. 

The TDC resolution was measured by tuning the capacitors 

banks present in the X delay line, while the Y line was set by 

the calibration loop, and it was found to vary from 4.8ps to 

7.9ps. At the  resolution of  4.8ps the  power consumption for 

 

 

 

Fig. 6 TDC Microphotograph 
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TABLE I 

MEASUREMENT RESULTS AND STATE OF ART 

 

# of bits 

Resolution [ps] 

INL [LSB] 

DNL[LSB] 

Bandwidth [MHz]  

Area [mm2] 

Supply Voltage [V]  

Power dissipation [mW] 

FoM [pJ/step] 

Technology 

* Extrapolated TDC intrinsic INL
 

** TDC core
 

Delay stages /step

[5] 

6 

12 

1.15 

1 

40 

0.04 

1.2 

2.5 

0.96 

120nm 

1

0.02**

This work 
 

7 

4.8 

3.3 (<1*) 

<1 

50 

 

1.2 

1.7 

0.28 

65nm 

0.26

[1] 

6 

17 

0.7 

0.7 

26 

0.01 

1.3 

1.8 

1 

90nm 

1

[2] 
 

7 

30 

1 

 

130 

10 

5 

 

 

0.7 μm

2

-

-

-

[6] 

9 

1.25 

2  

0.8 

10 

0.06 

1  

3  

0.58 

90nm 

0.1

[8] 

11 

1.2*** 

-  

- 

1  

0.04 

1.5 

2.2-21 

0.23 

130nm 

n.a.

*** Equivalent overall 

       1MHz of bandwidth

 

 

Fig. 7 DNL and INL measurements @ 4.8ps of resolution 

 

Fig. 8 INL measurements for different gain (a) and TDC 

intrinsic INL extrapolation (b) 

 the conversion phase was 1.7mW (1.1mW dissipated by the 

delay stages). 

The integral and differential non linearities (INL and DNL) 

were evaluated for a resolution of 4.8ps by a data processing 

based on the histogram method (Fig 7). The DNL is always 

less the one LSB while the INL shows a bump with a 

maximum of 3.3 LSB. The big bump present in the INL 

measure is incompatible with the folding existing in the 

proposed architecture, that should produce a periodicity in the 

INL. This problem was investigated performing further 

measurements at different TDC resolutions (Fig. 8.a). These 

measurements show an invariance with respect to resolution of 

both the bump height and its position in time (300ps). From 

this we concluded that the bump is not caused by the 

quantization process but it is generated before entering in the 

TDC core. We believe that when the rising edges of the input 

signals are very closed to each other, and not yet well squared, 

a cross-talk through the power supply in the input network 

generates a pulling which distorts the phase ramp. Fig. 8.a 

shows also that this pulling effect become negligible for 

delays higher than 500ps. For this reason, to evaluated the 

intrinsic TDC INL, the measure was done at a resolution of 

7.9ps that extends the TDC range to a zone where the 

phenomena is negligible. In this region the INL is below one 

LSB and the expected INL periodicity due to the folding (11 

codes) appears. 

A summary of the measured results, compared with those 

of other solutions, are reported in Table I. The architecture 

proposed shows the lowest power consumption (1.7mW). 

Referring to the FoM used in [8], the 2-D Vernier provides 

0.28pJ/step, which is overcome only by the Gated-Ring 

Oscillator (GRO) TDC [8]. However the GRO approach has 

an inferior bound in the power consumption since the gated 

ring oscillator requires a minimum number of cycles to 

perform the conversion. This limit (equal to 2.2mW in [8]) 

does not scale with the number of bits and it is greater than the 

total power drawn by TDC reported here. Among the solutions 

based on delay lines, the number of stages required by the 2-D 

Vernier is comparable only to the two steps architecture [6]. 

Notice also that, thanks to the shorter delay lines, the TDC 

core has one of  the smallest area occupancy. 

CONCLUSION 

A novel 2-dimension TDC Vernier architecture was 

presented. In 2-D approach the number of stages required for 

N quantization levels grows with , resulting in a more 

compact and efficient solution in terms of area, power 

consumption and distortion. 
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