
HUTTON ET. AL.: PARAMETERIZED GENERATION OF SYNTHETIC COMBINATIONAL BENCHMARK CIRCUITS 1

Characterization and Parameterized Generation of Synthetic

Combinational Benchmark Circuits

Michael D. Hutton, Member, IEEE, Jonathan Rose, Member, IEEE,

J. P. Grossman and Derek G. Corneil

Abstract| The development of new Field-Programmed,

Mask-Programmed and Laser-Programmed Gate Array ar-

chitectures is hampered by the lack of realistic test circuits

that exercise both the architectures and their automatic

placement and routing algorithms. In this paper, we present

a method and a tool for generating parameterized and re-

alistic synthetic circuits. To obtain the realism, we pro-

pose a set of graph-theoretic characteristics that describe

a physical netlist, and have built a tool that can measure

these characteristics on existing circuits. The generation

tool uses the characteristics as constraints in the synthetic

circuit generation. To validate the quality of the generated

netlists, parameters that are not speci�ed in the generation

are compared with those of real circuits, and with those of

more \random" graphs.

I. Introduction

There is a need for benchmark netlists in order to com-

pare and test the quality of new ASIC architectures and

physical design algorithms. However, useful benchmarks

are rare|they are usually too small to e�ectively test large

future-generation products, and those large enough are of-

ten proprietary. Architectural research for FPGAs is even

further constrained because large numbers of benchmarks

are needed for speci�c sizes corresponding to the �xed ca-

pacity of the device.

Some attempts to alleviate this problem have been the

e�orts at MCNC to collect public benchmarks benchmarks

[24], the de�nition of a set of representative benchmarks by

PREP [21], and the use of random graphs [15], [16], [18].

The use of random graphs is appealing because the supply

is in�nite, and the circuit size can be speci�ed. However,

only a small subset of random graphs can be considered

reasonable with respect to electrical constraints such as

gate fanin or fanout, topological properties such as maxi-

mum delay, and packaging constraints such as the number

of pins. Compared to random graphs, circuits are inher-

ently tame for implementation in gate arrays, and exhibit a

hierarchical structure that leads to empirical observations

such as Rent's Rule1[17].

Research supported by grants from the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) and Hewlett Packard.
A preliminary version of this paper appeared at the 1996 Design Au-
tomation Conference [11].

Jonathan Rose is with the Department of Electricial and Com-
puter Engineering, other authors are a�liated with the Depart-
ment of Computer Science at the University of Toronto, Canada
M5S 3G4. M. Hutton's current a�liation is the Altera Cor-
poration, San Jose, CA. Email to Mike Hutton@altera.com, ja-
yar@eecg.toronto.edu, dgc@cs.toronto.edu or jpg@ai.mit.edu.
1Rent's Rule: For a \reasonable" partition of a circuit into at least

5 modules, the relationship between the average number P of termi-
nals/pins on a module, and the average size B of a module follows
the relationship P = k �Br , where k is a constant and r is the Rent
parameter which is a characteristic of the circuit in question. Typical
circuits have Rent parameters in the range 0:5 to 0:8.

In independent work, Darnauer and Dai [5] have pro-

posed a method of generating random undirected graphs

to meet a given ratio of I/O to logic and Rent parameter.

Their work is primarily aimed at a study of routability and

for creating partitioning benchmarks. They showed results

for small circuits (from 77 to 128 lookup-tables) but it is not

yet clear how successful the results are for evaluating new

architectures and place and route software, or for larger

circuits. Iwama et. al. [13], [14] and also Kapur et. al.

[20] discuss the creation of benchmark circuits from exist-

ing circuits by function transformations, with applications

to logic synthesis algorithms.

The key question for any work on benchmark generation

is \How good are the circuits that are produced?" Thus, it

is important both to have a strong experimental platform

and to have objective measures of circuit quality with which

to evaluate the output of the generation process.

As a measure of circuit quality we use other important

characteristics that are not speci�ed to the generation al-

gorithm. In particular, one of the primary applications

of automatic benchmark generation would be for testing

physical-design CAD tools, so we place and global-route the

circuits using vpr [2] and compare wirelength and channel

width for the original circuits with circuits produced by

gen and with random graphs not produced by gen. We

call this step \validation" and illustrate it in Figure 1.

CIRC GEN

Original
Circuit

GEN "clone"
(from complete
parameterization)

(same number of
nodes, edges and I/O)

Random Graph

Generation
Quality
Comparison

(characterization) (generation)

original

clone

random

Circuit

Parameterization

Place and Route with VPR

MCNC
Benchmark
Circuit

Fig. 1. Approach to Circuit Generation and Validation.

We de�ne a set of graph-theoretic characteristics and

parameters of circuits and measure these on real circuits up

to 4500 LUTs (lookup tables) to form a pro�le of realistic

circuits. This measurement is done with a new software

tool called circ.

A second tool, gen, generates a constrained synthetic

circuit with values for the speci�ed parameters either taken

from the default pro�le or chosen by the user. In this way

we can combine the advantages of parameterized random

graph generation with the realism obtained by using actual

circuits. This approach also allows for features not possible

with standard benchmark sets. For example, one parame-

ter can vary while others are �xed or scaled appropriately,

to generate a \family" of circuits. The interaction between

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH 1999

the analysis and generation tools is of fundamental impor-

tance: circ can be used to analyze any private collection

of circuits and determine alternative pro�les for input to

gen.

The paper is organized as follows: Section 2 outlines the

characterizations of circuits used for generation and val-

idation of the synthetic circuits. In Section 3 we de�ne

the new algorithmic problem of synthetic combinational

circuit generation with constraints. This problem is very

di�cult, and we present a heuristic algorithm to solve it

exactly. The implementation of that algorithm is gen. In

Section 4 we describe the validation process and present

results comparing gen circuits with existing real bench-

marks and random graphs. Some examples are presented

in Section 5 and conclusions are drawn in Section 6.

II. Circuit Characterization

This section describes some of the statistical and struc-

tural characteristics of circuits which we have identi�ed.

In this paper we focus on combinational circuits only, and

have used the MCNC benchmark circuits [24] to form the

basis for characterization and parameterization. Note that

the users of our system could pro�le their own circuits with

circ and specify the results as parameters to gen (or mod-

ify the program default �le) to customize the types of cir-

cuits generated.

A. Pre-processing of Analyzed Circuits

The MCNC benchmark circuits were converted from

EDIF to BLIF, optimized with sis [23] (keeping the better

result of script.rugged and script.algebraic) then technol-

ogy mapped using flowmap [4] into k-input lookup tables.

Speci�cally, each circuit was mapped 7 times, into 2-input

LUTs, 3-input LUTs up to 8-input LUTs. We chose to use

lookup-tables because of their simplicity, functional com-

pleteness and the ease of changing to di�erent LUT-sizes.

We believe that the structural properties of circuits are suf-

�ciently captured by the use of LUTs to determine valid

characterizations without the added complexity of more

technology-dependent libraries.

B. Characteristics and Parameters

There are two di�erent types of characterizations: those

needed to determine reasonable defaults for generation pa-

rameters which the user does not specify and those which

characterize the fundamental structure of a circuit. In the

remainder of this section we propose a set of characteris-

tics. The complete default gen-script for combinational

circuits is available from our web-site [19].

B.1 Circuit Size and Number of I/Os.

The most basic characteristic of a circuit is the rela-

tionship between the size of the circuit (number of LUTs,

n) and the number of primary inputs (nPI) and outputs

(nPO). (De�ne nIO=nPI + nPO.) Using linear regression

and experimentation, we have determined that a Rent-like

functional relationship, log(nIO) = a + b � log(n) best cap-

|
8

|
16

|
32

|
64

|
128

|
256

|
512

|
1024

|
2048

|
4096

|
8192

|
16384

|0

|60

|120

|180

|240

|300

|360

|420

|480

 size

 n
IO

All circuits:
log(nIO) = 0.46156 + 0.524 log(size)
RSQ = .4605

� �� ���
� ��� �

�
���
��
���
� �

�
�
�

�
�

�

�

�
��
�

�
�
�
�

�

�

�
��
��

�

�

��

��
�

�

�

�
�

��

�

��

�

�

�

�

����
�
�

�

����
�
�

�

�
�

�

�

�

��

�

�

��

��

��
�

�

��

�

�

�

�

�

�

��

�

�

�
�
�

�

�

�

�

�

�

�

�

�

�
�

�

��

�

�

��

�

�

�

�
����

�

�

�

�

�

�

�
���

��

�
�

�
�

�

�

�

�

�

�

��

�

�

�

�

�

�

�
�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

Fig. 2. Size (2-LUTs) vs. I/O for MCNC circuits.

tures the relationship between IOs and circuit size2. A sim-

ple linear relationship best describes the division of I/Os

between inputs and outputs: nPI= c + d � nPO. Figure 2

shows a plot of log(n) vs. log(nIO), and a least-squares

regression line for the Rent-like relationship. We note that

simply determining values for the coe�cients a; b; c; and

d does not capture the increase in variance with n so we

model these coe�cients as Gaussian distributions around

the best-�t line. The actual equations are given in the

IOFrame section of comb.gen available from [19].

B.2 Combinational Delay.

De�ne d(x), the delay of node x, as the maximum length

over all directed paths beginning at a PI and terminating at

x, corresponding to the unit delay model. The delay, d(C)

(or just d), of a circuit is the maximumdelay over all nodes

in C. Using a similar empirical analysis to the above, we

have determined a stochastic relationship between delay d

and circuit size n in which d is roughly log logn on average

(see the appendix).

B.3 Circuit Shape.

Combinational delay is very important in the character-

ization of circuits, precisely because it is so important in

the design and synthesis process. De�ne the shape func-

tion, shape(C), of a circuit as the number of nodes at each

combinational delay level. Figure 3 shows a small exam-

ple circuit (cm151a), and its shape function (12, 4, 2, 2)

displayed as a histogram. Note that even though the pri-

mary outputs are shown in circuit drawings we do not count

them in determining delay or the shape function. Rather,

we de�ne \primary output" as a property of a node. While

these examples are mapped to 4-LUTs, the basic form of

the function remains similar for di�erent LUT sizes.

The interesting thing about shape is that most circuits

tend to have similar shapes. Figure 4 shows four shape

functions. Of the 109 combinational multilevel circuits in

the MCNC set, 36 have a shape which is strictly decreas-

ing from the primary inputs (as \example2"), 53 have a

conical shape, fanning out from the inputs to an extreme

point, then strictly decreasing (as \alu2"), 12 have the con-

2Note that Rent's Rule explicitly does not apply uniformly for the
circuit as a whole (i.e. to predict I/O given n), so we use di�erent
functional forms for ranges of n, determined empirically. The ac-
tual relationship is a piecewise combination. See [19] for the exact
equations.

HUTTON ET. AL.: PARAMETERIZED GENERATION OF SYNTHETIC COMBINATIONAL BENCHMARK CIRCUITS 3

|
0

|
1

|
2

|
3

|0

|4

|8

|12

 Delay Level

 n
um

 n
od

es

�

�

� �

1

19 21

2

18 11

3

7

45

17 14 10

6 8 912131516

20 22

Fig. 3. Shape function.

�

�

� �

�

example2

(36)

�

�

�

� � � �

� � �
�

alu2

(53)

�

�

�

�

�

�

�
� � �

cordic

(12)

�

�

� �

�

�

�

�

� �

�

C1908

(8)

Fig. 4. Di�erent shape functions.

ical shape with a \bump" and only 8 did not �t into these

categories. This is fundamentally di�erent from degree-

constrained random graphs (de�ned in Section 4 and dis-

cussed further in Section 5) which have much \
atter"

shapes.

B.4 Edge Length Distribution.

Since nodes have a well-de�ned delay, we can de�ne the

length of a directed edge by length(x; y) = d(y) � d(x).

Clearly, the edge length is always between 1 and delay(C),

and we de�ne a related edge length distribution. In the

example of Figure 3 there are 24 edges of length 1, and 2

each of length 2 and 3, so the edge length distribution is

(0,24,2,2,0). (For technical reasons there is a component

for length-0 edges which always has the value 0.) We �nd

that almost all circuits have an edge-length distribution

with a similar shape: a large number of edges of length 1,

and a quickly falling distribution over the combinational

delay of the circuit. In the default �les, we model this with

a function based on the exponential distribution.

B.5 Fanout Distribution.

De�ne fanout(x) as the number of edges leaving a node

x. A circuit's fanout distribution (the number of nodes

with fanout 0, 1, 2, etc.) is an important structural pa-

rameter. Note that fanin is less interesting for technology-

mapped circuits because they have an a priori constraint

on fanin. We have determined the fanout distributions of

the MCNC circuits, and have developed a heuristic algo-

rithm [10] which generates reasonable fanout distributions

for speci�ed size and shape parameters. This algorithm

uses a greedy probabilistic sampling approach, parameter-

ized by the number of nodes and edges, delay and the max-

imum fanout, whereby we take a truncated, exponential-

based function and sample it for fanout values, occasion-

ally re-building the function to avoid taking too many more

high-fanout values than possible for the number of edges.

B.6 Reconvergence.

Reconvergence occurs when multiple fanouts from a sin-

gle node x, after travelling through subsequent nodes in the

circuit, branch back together at a later point y|we say the

circuit is reconvergent at y. Many circuits exhibit reconver-

gent fanout, but in widely varied degree, so an appropriate

characterization is to quantify this amount.

De�ne the out-cone of a node x (in a circuit with no

directed cycles) to be the recursive fanout of x: all nodes

reachable by a directed path from x. Figure 5 shows out-

cone(a). Edges which are not in the out-cone, but are

adjacent to nodes which are, are shown as dashed lines.

For circuits mapped to 2-LUTs, de�ne the reconvergence

number of node x, R(x), as the ratio of the number of fanin-

2 (i.e. \reconvergent") nodes in out-cone(x) to the size of

out-cone(x):

R0(x) =
j fy 2 outcone(x) j y has fanin 2 in outcone(x)g j

joutcone(x)j
(1)

This value arises from its combinatorial interpretation.

By Kircho�'s theorem [9, pp. 49-54], the numerator counts

the log2 t where t is the number of spanning out-trees
3

rooted at x in the directed graph representation of the

circuit. Essentially, each reconvergent node represents a

choice of two alternatives in the construction of a span-

ning out-tree, which multiplies the number of trees by two

(adds 1 to log2(t)). Each non-reconvergent node represents

a \required" in-edge, hence does not a�ect the number.

The purpose of taking the logarithm is simply to obtain

tractable numbers when dealing with large graphs. The

denominator then scales that value with the size of the

out-cone so that di�erent graphs can be compared based

on their relative amount of reconvergence, which otherwise

would be dominated by the size of the circuit.

For circuits mapped to k-LUTs, k > 2, the reconvergence

calculation generalizes, both algorithmically and combina-

torially, if we set the numerator as the sum, over all nodes

y in the out-cone of x, of log2(y). Thus 0�R(x)� log2(k).

R(x) =

P
y2outcone(x) log2(fanin(y))

joutcone(x)j
(2)

Further generalizations yield various di�erent quanti�ca-

tions of reconvergence in sequential circuits[10], but these

are beyond the scope of this paper.

To identify the reconvergence R(C) present in an en-

tire circuit C, we compute the weighted (by out-cone size)

average of R(x) for all primary inputs x in C. Thus

0� R(C)� log2(k) continues to hold for circuits. In this

way, highly reconvergent small portions of a circuit will not

unduly a�ect the overall quanti�cation.

The observed reconvergence numbers for the 198 com-

binational and sequential 2-LUT-mapped MCNC circuits

3A spanning out-tree rooted at r is a spanning tree such that each
node, except the designated root node, has exactly one fanin. Hence
each node lies on a unique directed path from the root.

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH 1999

a

bc

d

e

f

g

h
i

j

k

m

Fig. 5. Reconvergence in combinational circuits.

vary between 0.0 and 0.92, with a relatively even distribu-

tion of circuits through the range 0.0 to 0.85. R is some-

what a measure of complexity of the logic|we �nd that

intuitively simple, tree-like, logical functions have low R

(e.g. parity: R = 0:00, decod: R = 0:00, mux: R = 0:14),

and more complex functions have higher R (e.g. alu2:

R = 0:53, sqrt8ml: R = 0:56). Combinational logic and

the combinational parts of sequential arithmetic logic fall

mostly in the range 0.0 to 0.6, whereas the combinational

parts of �nite state machines are mostly in the range 0.5

to 0.85.

There is a high degree of correlation between R and the

other characteristics of a circuit; in particular, the number

of edges (when k>2), and the shape and out-degree func-

tions. Using the examples of Figure 4, circuits which have

an exaggerated conical shape, such as alu2 (R=0:53) and

cordic (R=0:45) tend to have higher reconvergence values,

whereas circuits like example2 (R= 0:17) are lower. This

also tends to explain the di�erence between combinational

and sequential circuits because the �rst \sequential level"

of most �nite state machines tends to be very conical, due

to a low I/O to logic ratio.

III. Circuit Generation

Now that we have de�ned a number of parameters to de-

scribe circuits, we proceed to the second goal of the paper,

an algorithm to generate parameterized synthetic circuits.

Figure 6 shows an example output from gen for

the parameterization: n=23, nedges = 32, k=2,

nPI=7, nPO=2, d=4, shape=(.38,.31,.19,.12), max out=4,

fanouts=(.09,.65,.13,.04,.09), edges=(0,.9,.1).

n = 23
nedges = 32

k = 2
nPI = 7
nPO = 2

d = 4
shape = (7;6;5;3; 2)
edges = (0;29;3)

max out = 4
fanouts = (2;15;3;1;2)

L = 6

Fig. 6. Example of a completely parameterized circuit.

The gen program consists of two functional stages. The

�rst is to determine an exact and complete parameteriza-

tion of the circuit to be generated, using partially-speci�ed

user parameters and default distributions. The exact pa-

rameterization shown to the right of Figure 6 is such an

instantiation of the more general parameters just given.

The second stage is to output a synthetic circuit with that

exact parameterization, which we deal with �rst.

A. The Generation Algorithm

Here we give the details of the generation algorithm.

The inputs to gen are n, nedges, nPI, nPO, d (delay),

k (LUT-size), max out (maximum allowable fanout of any

node), the shape function, the fanout and edge length dis-

tributions and the locality parameter L (not yet de�ned).

The output is a netlist of k-input lookup-tables. Note that

we do not currently specify the contents of the LUTs, so

the output is a physical netlist only. Reconvergence is not

a generation parameter but we use the reconvergence num-

ber of generated circuits in the validation process of Section

IV.
Since parameter expansion (the �rst major step of gen)

has already taken place, we now the distributions are exact,
meaning thatP

d

i=0
shape[i] =

P
max out

i=0
fanouts[i] = n, and

P
d

i=0
edges[i] =

P
max out

i=0
i � fanouts[i] = nedges.

Using the shape distribution, shape[1..d], we are able to

immediately de�ne the number of nodes at each combina-

tional delay level. Fanouts[1..max out] gives us the exact

set of fanouts available (but not yet assigned to nodes).

Edges[1..d] gives us the set of edges to be assigned between

nodes. Our problem is then, as illustrated in Figure 7,

to determine a one to one assignment of fanout values to

nodes, and an assignment of edges between nodes such that

the number of out-edges from a node equals its assigned

fanout, and the number of edges in to a node is no more

than the bound, k, on fanin. We have a number of further

constraints: the resulting graph must be acyclic (as the cir-

cuit is to be combinational); every node must have at least

one fanin from the previous delay level, and no fanins from

later delay levels (so that combinational delay of a node

is as speci�ed by the shape function); all nodes at delay-0

(i.e. the inputs) have no fanins, and all other nodes have

at least 2 fanins; and all fanins to a node must come from

distinct nodes (no duplicate inputs).

We need the following de�nitions:
(a) Ni, i=0::d is the set of nodes at delay level i,

where N =
S
fNig,

(b) F = ffj , j= 1::ng, is the set of node-fanouts,

and

(c) E = feh, h = 1::nedgesg, is the set of edge-

lengths (abstractly, the set of all edges).
We formally de�ne the generation problem in Figure 7.

This assignment problem appears to be computationally

di�cult and we conjecture it is NP-hard. It is important,

moreover, to have a nearly linear time algorithm in order

to generate large circuits. Therefore we solve the prob-

lem heuristically, as described in detail in the sub-sections

which follow.

The general line of approach is as follows: First we de-

termine an assignment of edges and out-degree to levels Ni,

but not yet to individual nodes within each level. We call

HUTTON ET. AL.: PARAMETERIZED GENERATION OF SYNTHETIC COMBINATIONAL BENCHMARK CIRCUITS 5

Circuit Generation Problem

4

3

N

2

1

0

N

N

N

N

node setsedge setfanout set

EF

4 4

1

0

32
2 2

1
1

1
1

1
1

1

11
1

01

1
1 1

Given: F , E, Ni.

Find: assignments of nodes in N to each fj 2 F , and pairs
of nodes for each eh 2 E such that:

1. The number of edges leaving any x 2 N is exactly its
corresponding fanout fx.

2. All x 2 Ni have at least one fanin from Ni�1 (i > 0).
(i.e. calculated delay(x) equals its assigned value.)

3. Fanin(x) � k for all x 2 N .
4. Fanins of x 2 N are distinct (i.e. no two fanouts of gate

y are both inputs to x.)

Fig. 7. The generation/construction problem.

the Ni level-nodes and the graph at this point the level-

graph. We then split each level into nodes and assign �rst

fanouts and then edges, previously assigned only to levels,

to the individual nodes. A post-processing step designates

any additional primary outputs required.

There are 5 major steps in the algorithm for generating a

combinational circuit from an exact speci�cation. We pro-

vide enough detail here to understand the important as-

pects of the algorithm. Readers who are interested in the

more detailed aspects of the software are referred to the

external documentation and the public-domain implemen-

tation and source-code [19]. Throughout the description

of the algorithm, we will follow through the small example

of Figure 6, from the exact parameterization to the �nal

circuit.

A.1 Boundaries on in/out-degree (pre degree.c).

To assign edges between levels, we �rst determine the

maximumand minimum fanin (in-degree) and fanout (out-

degree) for each delay level: vectors min in[i], max in[i],

min out[i] and max out[i]. While the number of nodes at

each level is known, the total fanin is not known exactly

in general because a four input LUT may only have two or

three inputs in many cases. For 2-LUTs (as in our example)

the fanin bound is deterministic. The reason we need these

bounds is to more tightly constrain the problem before we

proceed with edge assignment.

We require each node at level i to have between two

and k fanins, one of which must come from the preced-

ing delay level to establish combinational delay. This

gives immediate rough bounds of min in[i] = 2 � ni and

max in[i]=k �ni. Similarly, each non-primary-output node

must have at least one fanout, providing an initial lower-

bound min out[i]=ni�(nPO�nd) (noting that level d has

all POs, so level i can have at most S (nPO�nd) fanout-0

POs).

6..6

5..7

3..4
3

2

5

6

7
0..0

0..0

12..12

10..10

4..4

10..11

12..13

A.1

7

6

5

2

3

A.2

(3)
1 1 1

1 1 4 1 4 1 1

1 1 2 3 2 1

(13)

(10)

(5)

0 0

1 1 1 1 1

A.3

111

1 1 1

11

2

22 3

1

1

4 111 411

A.4

Fig. 8. Example at the conclusion of Steps A.1 to A.4.

Max out[i] is calculated heuristically using the fanout

distribution and the previously calculated vectors for later

levels, based on a number of rules: For example, max out[i]

is bounded above by
P

d

j=i+1max in[j] -
P

d�1

j=i+1min out[j]

representing the remaining inputs in the LUTs at later

levels less the reserved output edges for later levels.

Max out[i] is also bounded by ni
P

d

j=i+1 nj to avoid dou-

ble connections from any node, and by the sum of the ni
largest elements in the fanout list F .

The initial bounds are improved iteratively: the bounds

on max out just determined necessitate an updated calcu-

lation of max in and min in for later levels which in turn

a�ect max out[i]. We continue until no more tightening of

the boundaries is possible, typically only a few iterations,

and provably no more than d2.

The result of this step is the determination of the bound-

ary vectors min in[i], max in[i], min out[i] and max out[i],

i=0::d, as pictured in Figure 8 (Step A.1). Each level-node

Ni is labeled with ni and its fanin boundaries (northwest

corner) and fanout boundaries (southwest corner).

A.2 Assign edges between levels (level.c).

There are three phases to edge assignment. As edges

are assigned, we calculate two new vectors, assigned in[i]

and assigned out[i] to represent the \used up" in and out-

degree for level i. The available in and out-degree to a level

is de�ned as the di�erence between the assigned and the

maximum, and the required in and out-degree is de�ned as

the di�erence between the assigned and the minimum (or

0 when assigned is larger than minimum).

Step A.2(a). We �rst consider the \critical" unit

edges, edges which connect to the �rst and last lev-

els of the circuit or which are required to ensure that

combinational delay constraints can be met. We assign

MAX(min out[0], min in[1]) edges between levels 0 and 1,

and MAX(min out[d�1], min in[d]) edges between levels

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH 1999

d�1 and d. Then we establish the combinational delay for

each other level i, i= 2::d�1, by assigning ni edges between

levels i�1 and i.

Step A.2(b). Secondly, we assign the long (length > 1)

edges. This is a crucial step, because if these are assigned

poorly it becomes di�cult or impossible to complete the

graph construction without violating the shape or edge-

length distributions. Long edges are assigned probabilis-

tically. We calculate the number of possible level to level

starting and ending point combinations for edges of length

l at each level i, MIN([avail out[i], avail in[i+l]), and sam-

ple the resulting discrete probability distribution to assign

the edges, updating the distribution after each assignment.

It is an important feature of gen that we sample from this

distribution rather than just choosing the \optimal" assign-

ment, because we want to produce circuits with di�erent

features on each execution with the same parameterization.

Step A.2(c). We have only unit edges left. The last

part of this step is to assign the remaining required edges|

those necessary in order to meet the required min in[i] and

min out[i] for each level i. This part is purely deterministic.

Any remaining unit edges are held back for assignment later

in A.3. Typically, these remaining edges are about 10-25%

of the original unit edges (or 7-18% of all edges).

The output of A.2, shown in Figure 8 (A.2), is a modi�-

cation to each level-node Ni in the level-graph, this being

a vector (though shown pictorially in the �gure) indicating

the number of assigned fanout edges of each length that

have been assigned to the level. A.2 also guarantees that

the assignment has met the minimum in and out degree

requirements for each level.

A.3 Partition the total fanout at each level (degree.c).

We have the vectors assigned in[i], assigned out[i],

max in[i] and max out[i]. However, the assigned out-

degree is a total for the level, not a list of individual node

values from the fanout distribution.

In this step we partition the total out-degree (e.g. 10)

of level i into ni (e.g. 4) individual values taken from the

fanouts distribution (e.g. f4, 3, 2, 1g, summing to 10).

First calculate target fanouts, target[i], i=0::d�1, in the

range assigned[i] to max out[i], such that
P

d

i=0 target[i] =

nedges. Again, we sample a probability distribution calcu-

lated as in A.2(b), rather than performing a determinis-

tic allocation. The goal is to assign the target out-degrees

which are, on average, proportionate to the amount of slack

between the minimum and maximum values for each level,

but probabilistically rather than in exact proportion so that

the resulting circuit is di�erent with each execution of gen

with the same inputs.

We are left with the problem of partitioning each

target[i] into ni values taken from the fanout distribution.

Even for a single level, this integer partitioning problem

is NP-complete [7, page 223] to compute exactly, so we

can only manage a heuristic solution. Fortunately, this

is made easier because of the remaining unassigned unit-

edges|target[i] is
exible within the range min out[i] to

max out[i], so we need only an approximate integer par-

tition for each level, and can allocate the remaining unit

edges as required to make the result exact.

Before entering the main operation of the degree-

allocation step, we examine the low fanout levels, de�ned

as levels which have a total fanout less than 2*ni. Assign-

ing a high-fanout value to such a level could result in later

di�culties as we \run out" of edges for giving individual

nodes at least one fanout. To dispose of these levels, as-

sign fanouts of 0, 1, and 2 deterministically, based on the

availability of fanout-0 values in the fanout set (some, but

not all PO nodes will have fanout 0).

The main operation of this step is probabilistic and iter-

ative. For each level, compute average out[i]=target[i]/ni,

and the values min possible out[i] and max possible out[i]

indicating the degrees which could feasibly be assigned to

any node at level i (using the rules of A.1 applied to individ-

ual nodes). Then iterate through the values in the fanout

distribution F from largest to smallest (the largest being

usually the more restrictive, hence more di�cult to place).

Among the levels that can accept the current fanout fj
(based on min possible out and max possible out) we sam-

ple average out[i] as a probability distribution (with the

same goals as just mentioned for targets) to choose the level

to which fj will be assigned. Each time we update the sta-

tus vectors (assigned out, available out, average out, min-

imum fanout, maximum fanout, min possible fanout and

max possible fanout) for the chosen level.

Because of the probabilistic assignment, some levels will

receive more than the target number of edges (based on the

sum of their fanouts) and some will receive fewer. However,

the details of the assignment do guarantee that all levels

will receive between their minimum and maximum total

fanout.

On the relatively rare occasion that a fanout cannot be

accepted by any level, we decrement the fanout value by 1

and continue. This can lead to a minor modi�cation of the

input speci�cation, as discussed further in Section III-C.

At the completion of A.3, all edges have been assigned

to levels, and the level-node for each level i contains a list

of edges (and their length) which leave that level, and a

list of ni fanout values fij, j=1::ni, which sum to the to-

tal fanout of the level. Figure 8 illustrates this situation:

the breakdown of total fanout into an (unordered) set of

out-degrees is shown above A.3, and the edge-length distri-

bution is as in A.2. (Unfortunately, to get an edge-length

distribution which di�ers from steps A.2 to A.3, we would

need to use k > 2 and a larger n, which would make the

main operation of the algorithm more di�cult to view.)

A.4 Split levels into nodes (nodes.c).

For this step, levels are treated independently. We need

to split each level-node Ni into ni individual nodes, and as-

sign each of these a fanout from the list of available fanouts

fij now assigned to level i. This would be trivial, were it

not for the necessity to introduce locality into the resulting

circuit, and so we �rst discuss how we impose locality in

the generation.

Because of the way that real circuits are designed,

HUTTON ET. AL.: PARAMETERIZED GENERATION OF SYNTHETIC COMBINATIONAL BENCHMARK CIRCUITS 7

whether a bottom-up or top-down methodology is used, an

inherent local structure develops in graph representation of

the circuit. Nodes tend to exhibit a clustered behaviour,

whereby nodes in a cluster tend to accept fanin from ap-

proximately the same set of nodes as other nodes in their

cluster. This local clustering is described by Rent's Rule

[17] and theoretical models to explain it have been pro-

posed by Donath [6] and others. Without some method of

modeling local behaviour, our circuits would be \too ran-

dom" and hence not realistic.

Our approach to introducing locality into the genera-

tion algorithm is to impose an ordering on the nodes, and

use proximity in this order as a metric of locality when

we later choose the edge-connections between nodes. This

can also be viewed as trying to generate graphs which will

\look good" when displayed as pictures such as Figure 6,

because minimization of edge lengths in a graph drawing

also has the e�ect of reducing crossings and of displaying

any inherent locality in the graph [8]|by creating a circuit

with one known good ordering/drawing we have simulated

this form of locality in the generation. The ordering we will

use is simply the sorted order within the linear list of nodes

within each level. Note that any ordering of the nodes is

arbitrary until we have associated distinguishing features

such as fanout or edge connections to the nodes. The mea-

sure of the goodness of an edge is then measured as the

distance between the source and destination nodes in their

levels node-lists, relative to competitors. As a result, the

order in which fanouts are assigned within the node list

becomes important, because placing high-fanout nodes in

an unbalanced way into the node list will skew the e�ects

of locality measurement in step A.5.

The locality index assigned to each of the ni nodes in the

nodelist for level i is a scaled proportion of the maximum

sized level. Thus if the maximum level contains 100 nodes,

and the current level 10, then its nodes will have locality

indices 5, 15, 25, ..., 95. Before fanout allocation the order

of nodes is arbitrary, so the nodes are now indistinguishable

other than for this index.

Our goal in assigning fanouts to nodes in the list is to

distribute the high fanout nodes well for maximum lo-

cality generation. To do this, we sample a binary tree

distribution to allocate fanouts, in order from the high-

est to lowest fanout. To calculate the distribution, la-

bel the nodes of a balanced binary tree on ni nodes with

the number of leaves in its subtree. Then perform an in-

order traversal of the tree, and place the labels in pdf[i],

i= 1::ni. For example, the binary tree pdf of length 15 is

[1,2,1,4,1,2,1,8,1,2,1,4,1,2,1]. In the most likely case, then,

the highest fanout node would be assigned in the middle,

the next two highest fanouts at the quartiles, and so on.

Another way to view this distribution is to take an ordered

list of ni nodes, assign a value p to the middle node ni=2,

a value p=2 to the nodes ni=4 and 3�ni=4, p=8 to the mid-

dle nodes in the resulting ranges and so on, then scale the

resulting distribution to integers. The point of this opera-

tion is to (on average) place the highest fanout node in the

middle of the ordering, the next two highest fanout nodes

at the quartile points, and so on. Again, probabilistic sam-

pling means we don't get exactly the same result each time,

and just as importantly that we don't generate arti�cially

symmetric circuits.

The purpose of assigning fanouts in this way is so that we

do not place high-fanout nodes at the edges of the ordering:

observe how placing the two higher fanout nodes towards

the centre of the drawing of Figure 6 serves to reduce the

wirelength of the drawing. We want to emulate this e�ect

in the generated circuits.

This algorithm assigns, to each node xj in level i, a value

fanout(xj) from ffijg and a value index(xj) to each xj,

j = 1::ni. A further calculation assigns pj, 0 � pj � fj ,

the long-edge fanout of node xj, de�ned as the number of

edges of length greater than one from xj. This is again

probabilistic, sampled uniformly over all out-edges in the

level.

At the conclusion of step A.4, each node x in the cir-

cuit has an assigned delay, fanout, long-fanout and index,

but no actual edges have been assigned between nodes at

di�erent levels in the graph. The fanout values are shown

in Figure 8 (A.4). This information, plus the edge-length

assignments from A.2 in the �gure comprise the input to

A.5 of the algorithm.

A.5 Assign edges to nodes (edges.c).

The major remaining step is to connect the fanout edges

on each node to a corresponding input port on a node on

a later delay level, as speci�ed by the edge-length. We

proceed from level 1 to level d, connecting the edges to

each level i.

To connect the in-edges to level i, we �rst calculate the

source list, of unconnected edges preceding level i which are

of the correct length to connect to level i. Nodes with mul-

tiple fanouts are inserted only once in the list, and nodes

are deleted as their fanout is exhausted. The destination

list consists of all nodes at level i. Both these lists are

maintained in sorted order by node index (as de�ned in

A.4).

Step A.5(a). If the size (in edges) of the source list is

more than twice the number of available nodes in the des-

tination list, we preprocess the high-fanout nodes (those

with fanout more than 1/8 the number of nodes in the des-

tination list) separately. To process a single high-fanout

node x, we randomly choose a range of nodes of size be-

tween fanout(x) and 3*fanout(x)/2, centered at the closest

index node y in the destination list to index(x). Choosing

a random set of fanout(x) nodes from this set, we make

the physical edge connections, and update all status vec-

tors. This process is repeated for all high-fanout nodes in

the source list. The purpose of this step is to avoid a sit-

uation where we have a large number of out-edges from

the same source node x later in the edge-assignment phase

which cannot be assigned without creating double connec-

tions from node x to some node y.

Step A.5(b). Establish combinational delay by connect-

ing each node in the destination list which does not already

have a fanin edge from 5(a) to one node from the source

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH 1999

list which is at the previous combinational delay level. To

choose the fanin for node y, we sample the unit-edges in

the source list L times, where L is the locality parameter

of generation (discussed below), choosing the result x with

the closest index to index(y).

Step A.5(c). Perform a second sweep similar to 5(b)

(including locality) to ensure that each node y in the des-

tination list receives a second incoming edge. There is no

longer a restriction on the length of the edge, but we can-

not choose the same fanin as is already attached to y from

step 5(b).

Step A.5(d). Now that the minimum requirements are

met for each node in the destination list, iteratively choose

a random node from the destination list, and choose an

input from the source list as per 5(b) and (c), including

locality generation. Continue until the source and destina-

tion lists are exhausted.

At the conclusion of A.5, the circuit is complete, except

that we may have fewer out-degree zero nodes than the

required number of primary outputs. We post-process the

circuit to (randomly) label the required number of addi-

tional LUT nodes as primary outputs.

The �nal result of the generation algorithm (for one ran-

dom seed) on the progression of Figure 8 from the original

speci�cation is the original example of Figure 6.

B. The Locality Parameter

The locality parameter L has not been formally discussed

to this point. As mentioned in Step 4, we �nd that a purely

random connection of edges between levels does not model

the type of clustering found in real circuits. At the same

time, deterministically connecting the edges based on align-

ing index values yields a circuit which is overly local, and

is actually too easy to place and route. We �nd that a rea-

sonable approach is to de�ne a locality parameter L, and

use it to bias the above algorithm towards greater locality:

when choosing an input for a given destination node, we

sample L times, and choose the source node which is closest

in index value to the destination node under consideration.

For higher values of L, the probability of directly lining

up indices increase, for L=1, the algorithm is as originally

described.

Though L can be speci�ed as a user-parameter to gen-

eration it does not currently tie to the characterization of

a circuit. That is, we have no way to measure it for a

speci�c given circuit. Through experimentation, we have

found that there is no constant locality parameter which

yields the correct results, but a value which scales logarith-

mically with the size of the circuit yields good results.

We �nd that the locality parameter can signi�cantly af-

fect the properties of the resulting circuit, an issue dis-

cussed further in Section 5. Though the empirical results

from the algorithm for introducing locality are good, we feel

that there is an underlying combinatorial structure which

would give a better theoretical understanding of the con-

nectivity in digital circuits. The ideal case would be to

measure locality in the analysis of a circuit then parame-

terize and model it in the generation of a random circuit.

We are currently pursuing further work to this end.

C. Meeting the input speci�cation

It is not always the case that gen determines a circuit

which meets the input speci�cation. As with any heuris-

tic algorithm, there exist input possibilities for which the

heuristics fail. In the case of gen, we �nd that we are oc-

casionally (1-2% of the time) unable to complete a valid

circuit. In these cases, the tool reports a \failure to deter-

mine a circuit with this speci�cation." About 2-3% of the

time, gen will complete a circuit, but will report that it

was forced to signi�cantly modify the input speci�cation

in order to �nish (though this is necessarily minor enough

to not warrant failure). We consider these to be minor

problems, because the user can re-run the tool with a new

random seed, and typically will get an acceptable output

on the second try.

D. Parameterization and Default Scripts

The discussion to this point has involved the generation

of a circuit with a completely speci�ed exact speci�cation.

In practice, the user would choose only a small number

of parameters (or possibly just n), and the remaining are

chosen from default parameter distributions.

gen is augmented with a sophisticated C-like language,

symple, for parameter generation. The default distribu-

tions are written in this language, and the user can specify

modi�cations in the control script for a circuit. symple

provides a great deal of control over parameters. For exam-

ple, nIO is currently de�ned as a set of piecewise Rent-like

equations, each of which has the Rent parameter drawn

from a gaussian distribution.

The current default sets and parameters have been deter-

mined from experimentation with the MCNC benchmark

circuits. It would be possible to perform the same exper-

imentation with an alternate set of benchmarks, and gen-

erate a modi�ed default script.

Symple allows parameters to be speci�ed as constants,

drawn from statistical distributions or chosen as functions

of other parameters. Figure 9 shows a series of circuits

generated with the varying n but other parameters �xed,

to generate a family of related circuits. Symple scales re-

lated parameters (e.g. depth and shape) yet retains the

similarity of other properties. This ability to scale circuits

while retaining fundamental similarities introduces an en-

tirely new paradigm for evaluating the scalability of archi-

tectures and algorithms.

E. Input scripts and clone circuits

The input to gen takes basically two forms. The user can

specify either a parameterization which they create them-

selves, or use circ to extract a parameterization from an

existing circuit and generate a clone of that circuit. The

two approaches can be mixed by modifying a clone script.

Figure 10 shows the second case, in the form of a gen-

script output from circ given the MCNC circuit alu4.

The object \comb circ" referred in the script to is the de-

fault frame in the script comb.gen, and the speci�cations

HUTTON ET. AL.: PARAMETERIZED GENERATION OF SYNTHETIC COMBINATIONAL BENCHMARK CIRCUITS 9

1

12

2

11

3

10

4

9

5

7

8

60

53

6 21

22

24

26

36

69

40

63

37

39

42

43

48

50

20 2931 32 3368 72

59

13

2534

49

23

46 57

14 151630

38

5870

1945

1844 47

1735

61

2871

27

51

41

54 64

62 52

55

56

66

65

67

n = 70

1

7

2

6

3

5

48

9

12

13

20

23

24

28

25

26

31

35

32

34

43

44

46

47

57

58

69

70

72

73

84

85

89

90

1930 36374267 758082 8688 91

10

1115 50215159 68 83

16

14 3345

3822 76

39

18

17

40

4179

87

62

7848

81

53

52

61

60 7177

27

29 74

49

54

5563

5664

65

66

n = 80
1

11

2

10

3

9

4

8

5

7

6

50

12

13

15

20

16

17

32

38 79

41

35

36

45

46

48

49

54

55

67

68

77

78

87

88

94

95

2330 31 4244 528486 92 9698 100

1858 9365 6697

6364

14 243399 25 34

3743 61

53

2128

22

19 2657

89

29

2747

40

39

62 59

70

69

90

91

60

72

71 51

5673 80

74

7585

76 81

82

83

n = 90

1

9

2

8

3

7

4

6

5 10

12

20

64 103

24

34

22

23

40

44

41

43

46

48

49

52

54

55

86

73

77

75

76

81

82

95

98

102

105

1819 3637 72 8092 101 106108 110112

111314

5684 85 96 2629 38 74107 109

3950

17

21252728

4793

15111

16

519483

33

32

97

3158

30

66

89

57

104

42 78

67

65

5988 99

90

87

45 35

53

91

100

60 79

6168

6370

6269

71

n = 100

Fig. 9. A gen circuit family (fk=2; n=70..100 by 10g).

/* CIRC 3.0, compiled Tue Oct 1 14:30:51 EDT 1996.

*/

X = comb_circ { name="alu4clone";

n=1536; kin=4; nPI=14; nPO=8; delay=7; nEdges=5400;

shape=(14, 692, 518, 198, 80, 21, 11, 2);

edges=(0, 4494, 757, 125, 23, 1, 0, 0);

outs=(8,1267,67,41,32,33,14,13,11,3,2,9,9,5,4,0,0,1,1,0,

1,0,0,1,0,

0,

0,

0,

0,0,0,1,0,

0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,1,2,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,3,0,1,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1);

max_out=249; nZeros=8;

};

output(circuit(X));

Fig. 10. A gen clone script for alu4, output by circ.

inside the set brackets indicate modi�cations to parame-

ters in comb circ which override the defaults. Figure 11, in

contrast, shows a user-de�ned gen-script to create a 1000

LUT circuit. Note that all unspeci�ed parameters (shape,

edges, etc...) are chosen from default distributions which

use the speci�ed circuit parameters such as delay and nPI
as input parameters themselves.

F. Time complexity of the gen algorithm

The theoretical time complexity of the algorithm and its

gen implementation is the larger of O(d2) from Step 1 and

O(n logn) from other steps. In practice, we assume that

d<<n, so the complexity reduces to O(n logn). Each step

in the algorithm addresses each element a constant number

of times in processing for a linear factor, with possible con-

stant number of pre-processing sorts or the creations of a

random permutation, each of which takes O(n logn) time.

The algorithm uses a constant amount of space per node,

hence O(n) for the algorithm.

X = comb_circ{name="X"; n=1000; nPI=58; nPO=16; delay=9;};

output(circuit(X));

Fig. 11. A simple user-generated gen-script for a 1000 node circuit.

In practice gen is very fast. Generation of a 2000 LUT

circuit takes about 7 seconds on a Sparc-5, using 500K of

memory. For perspective, the same circuit requires about

45 minutes and 2M of memory to place and route using

even a fast and memory-e�cient tool such as vpr. A cir-

cuit of 30,000 LUTs requires about 30 seconds and 1M to

generate, versus a half-day or more to place and route.

We have successfully generated circuits of up to 200,000

LUTs, well beyond the level of current FPGAs. The gen

implementation is currently limited to about that size, due

simply to the use of 32 bit integers for counters and dis-

tributions. Larger circuits would require special-purpose

arithmetic, at least for speci�c parts of the code, or a hier-

archical approach to generation.

IV. Validation

In this section we deal with the question raised in the

introduction: how realistic are the circuits produced by

gen? We judge the quality of the generated circuits with

respect to parameters not speci�ed in generation: recon-

vergence, and post-placement and routing wirelength and

track count. Since one of the primary applications of the

circuits produced by gen is to test and evaluate physical

design algorithms, the point of this exercise is largely to de-

termine how reasonable the output is for this process. We

note that a validation process for other characteristics such

as node activity in simulation could also be performed; we

leave this for future work.

We constructed the exact pro�le of 42 combinational

MCNC circuits4 with circ (i.e. n, nPI, nPO, d, shape,

fanout and edge length distributions), and generated cor-

responding circuits meeting those pro�les with gen. Our

method of validation is to compare unspeci�ed characteris-

tics of the MCNC circuits against those of the correspond-

ing generated circuits and against \random graphs" of the

same size.

Because the exact de�nition of a random graph varies,

we now have to be precise: the most common usage of the

term refers to a graph G(n; p) on n vertices with each pos-

sible edge existing with equal probability p. However, this

is so drastically unlike a real circuit (G(n; p) would usually

be hopeless to route for even small p) that we have found

it a more reasonable comparison to use a random k-regular

graph|a random directed graph such that each node x has

fanin(x)+fanout(x)=k|as these graphs are more realistic

in an electrical sense and are relatively easy to generate

uniformly [10]. We will compare against circuits mapped

to 4-LUTs, and so we will use, for each circuit, the ap-

propriate k 2 f4; 5; 6; 7g to generate approximately the

same number of edges. Two drawbacks of this method

are that random k-regular graphs have an inordinate num-

ber of I/Os (approximately 20% of nodes) and no high

fanout nodes, but they provide a convenient comparison to

non-parameterized random generation. Earlier work using

random graphs to test algorithms [15], [16] used a similar

4There are actually 109 combinational circuits in the LGSynth93
benchmark suite, but the majority are too small to be useful. We
have restricted the experiments to circuits with 100 LUTs or more.

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH 1999

generation process.

Reconvergence Tracks Wirelength

size mcnc gen rnd mcnc gen rnd mcnc gen rnd

sao2 100 0.48 0.57 0.45 4 4 6 616 602 879

cht 102 0.10 0.17 0.10 3 3 5 353 445 572

9symml 106 0.41 0.57 0.44 4 4 7 606 582 867

C1355 115 0.80 0.56 0.21 5 4 6 677 655 825

C499 115 0.80 0.56 0.22 5 4 6 668 655 831

bw 137 0.67 0.66 0.67 4 4 9 842 794 1342

clip 149 0.59 0.63 0.79 4 4 9 978 896 1579

9sym 153 0.45 0.51 0.44 4 4 8 950 858 1424

C432 160 0.96 0.95 0.15 4 4 7 855 895 1347

rd84 165 0.53 0.78 0.60 5 4 9 1171 999 1927

o64 176 0.00 0.00 0.05 3 3 5 395 375 1204

C1908 178 0.84 0.95 0.28 5 6 8 1196 1249 1777

i3 178 0.00 0.00 0.05 3 3 6 332 344 1209

alu2 207 0.88 0.97 0.64 5 5 10 1425 1425 2591

i5 221 0.00 0.16 0.06 3 3 5 655 1180 1620

exmpl2 223 0.36 0.30 0.05 4 4 6 1053 1289 1523

toolrg 225 0.31 0.46 0.37 5 5 9 1520 1417 2494

t481 230 0.62 0.76 0.62 6 6 10 1763 1728 3071

C880 234 0.57 0.64 0.16 5 6 7 1419 1655 2233

duke2 273 0.56 0.56 0.36 6 5 10 2169 2008 3277

i2 275 0.02 0.06 0.02 3 3 6 727 716 2203

i4 290 0.00 0.01 0.03 3 3 6 592 639 2393

vda 305 0.72 0.77 0.55 7 5 12 2787 2557 4613

i6 320 0.24 0.21 0.05 3 3 7 1181 1262 2501

i7 402 0.20 0.20 0.03 3 3 6 1352 1403 4114

i9 464 1.07 0.72 0.22 5 5 12 2770 3072 6913

C3540 481 0.86 0.84 0.38 6 8 15 3726 4887 8321

cordic 489 0.80 0.89 0.39 7 7 15 4279 4859 8891

table3 494 0.73 0.87 0.49 8 6 15 5442 4847 8840

table5 500 0.78 0.86 0.39 8 7 15 5612 5018 9159

x3 512 0.26 0.24 0.08 4 5 10 3454 4289 7029

ex4p 514 0.41 0.25 0.23 4 5 12 3425 3914 8604

apex6 528 0.25 0.21 0.08 4 6 10 3217 4331 7115

C6288 559 0.90 1.16 0.45 4 8 16 2900 6207 10287

k2 559 0.60 0.60 0.18 7 7 14 5190 5191 9139

misex3c 563 0.53 0.63 0.37 6 5 15 4841 4493 10989

dalu 575 0.46 0.48 0.19 5 6 13 3827 4871 9547

i8 614 0.77 0.43 0.18 5 7 15 5729 6391 10181

apex1 740 0.67 0.56 0.36 8 7 19 8124 7725 15326

apex3 921 0.66 0.59 0.30 8 7 19 10658 9831 34423

C7552 945 0.53 0.45 0.05 5 6 13 5751 10384 15918

ex5p 1072 1.12 1.20 0.27 10 8 21 14343 12615 27904

i10 1252 0.72 0.55 0.09 6 8 19 15085 23915 28738

apex4 1270 0.90 0.69 0.23 9 8 23 16312 14279 34423

misex3 1411 0.55 0.77 0.24 8 7 24 16139 14799 40152

alu4 1536 0.50 0.62 0.22 7 6 26 15818 13561 45177

seq 1791 0.48 0.67 0.21 8 7 27 21348 19796 57040

des 1847 0.50 0.39 0.07 6 9 23 17898 33925 50294

apex2 1916 0.47 0.64 0.20 8 8 29 23203 22742 63418

spla 3706 0.97 1.07 0.13 10 9 19 49724 52583 167832

pdc 4591 1.01 1.27 0.10 11 10 19 74553 66131 225679

signed diff 9% -45% 3% 123% 10% 119%

absolute diff 22% 48% 14% 123% 17% 119%

TABLE I

Reconvergence and routability comparisons for MCNC vs.

gen vs. random graphs.

A. Validating Reconvergence

Reconvergence (from Section 2.2.6), R, is not a param-

eter to gen. Reconvergence captures numerous properties

of a circuit, including high fanout, and the interaction be-

tween shape, edge length and fanout distribution, all of

which a�ect the ability to place and route the circuit. We

calculated R for the generated circuits and compared them

to those of the original circuits from which the generation

pro�les were extracted and to those of random graphs of

the same size. The results for the MCNC circuits and their

corresponding gen-clones and random graphs are shown in

Table I. Recall that 0 � R � 2 for 4-LUT mapped circuits.

We found that, for over half of generated circuits, R

was within 0.1 of the value for the corresponding MCNC

circuit. On average R di�ered by 22% in absolute value

(if cancellation is allowed the di�erence is only 9%). This

indicates that the correlation for an important descriptive

parameter, R, did carry through the generation process.

In contrast, the reconvergence numbers of the random

graphs did not match the MCNC circuits well at all. We

observe (and can prove [10]) that these random graphs also

exhibit diminishing R as n increases. This is partly due

to the two factors mentioned earlier: the absence of high-

fanout nodes and the large number of I/Os. Thus any

generator which does not take these factors into account

will fail to emulate crucial behaviour of real circuits.

B. Validating Routability

To test the \routability" of our output circuits, we used

a locally available tool, vpr [2], to place and global route

the sets of MCNC circuits, generated circuits, and random

graphs described above. The circuits are compared on two

di�erent metrics: the maximumnumber of tracks per chan-

nel required to successfully route, and the total wirelength

of the global routing.

Vpr [2] chooses a minimal square grid to support the

size of the circuit, and minimizes both maximum track-

count per channel and total wirelength (by re-routing with

successively fewer tracks per channel until failure occurs).

Table I also shows the routing statistics for the MCNC

circuits, clones and random graphs with summary statistics

(percentage pairwise di�erences) on the last line. We see

that the track count for the generated circuits di�ered by

14%, on average, from the corresponding MCNC circuit,

whereas the random graphs di�ered by 123%. Wirelength

di�ered by 17% for the generated circuits and 119% for

random graphs.

For both track-count and wirelength, we note that the

variation for gen clones lies in both directions whereas ran-

dom graphs were universally harder to place and route.

Thus, the signed di�erences for the gen clones were only

3% in track-count and 10% in wirelength, meaning that the

di�erence speaks as much to the variance of gen circuits

as to an inherent speci�cation bias. The random graphs,

on the other hand, showed an obvious and consistent bias.

These results clearly show the circuits produced by gen

are very similar to the MCNC originals and signi�cantly

more realistic than random graphs as benchmark circuits.

C. Locality parameter revisited

It is important to point out that the locality parameter of

generation is crucial in the above results. If the gen circuits

are created with a locality parameter of 1 (i.e. no locality),

we �nd wirelength and track-count results which are about

70% above the original circuits on average. Similarly, a

locality parameter that is too high for the given n can result

in circuits which are all easier to place and route than the

originals. Since the goal is to generate circuits which are as

similar as possible to real circuits, the defaults are tuned

to generate circuits which are similar on average to the

original circuits. In these experiments a constant locality

parameter, L = 6, was used.

This discussion further underscores the need for a char-

acterization of locality which can tie the original circuit to

its gen clone, in order to reduce this variance.

V. Examples

For smaller circuits, we can observe the output of gen

pictorially.

HUTTON ET. AL.: PARAMETERIZED GENERATION OF SYNTHETIC COMBINATIONAL BENCHMARK CIRCUITS 11

A. Gen circuits from defaults

Figure 12 shows four di�erent circuits produced by gen

using the default parameter distributions. We note that

these circuits appear to be \normal" circuits, and include

many features such as areas of high-fanout. The visual

\quality" of the circuits is most striking when one ob-

serves the similarity to MCNC circuits, shown in Figure 13,

and the contrast between MCNC circuits and the random

graphs shown in Figure 14.

1

35 202754 88

91

2

2930 6266 102

4

174080

7

3739

13 34

8

1011 19 36 7275

9

16

79

15

2641 53

25

48 52

33

47

60 86

61

84

64

97 99 101 104

612 55 59

77

18 21 858749

22

28 63100317638

43

42 6773 98 103

50

51 57

5681 89

14

68

23

32

9244 69

74

35 657882 90

24 45 587083 93

46 7194

96

95

1

3

2

31

4

5

6

10

7

9

8 12

14

1315

17

1622

24

2325

26

27

29

2830 48

50

4951

52

47 5760 62

18

19

32

5311 33

21

2034

39 35 5436 58 61

4042

38

37 5559

43 41 56

45

44

46

1

5

2

4

3

8 1113 18263640 4549 5162 6469 82 8590 100104 115 123127135144147 151156166168 171 191 196 200

46 176 192

6

9

7 12 16

19

1721

24

22

23

2534

37

3538

41

39 4447

50

4857

60

58

59

61

63

67

70

68 71

74

72

73

80

83

8184

86

88

91

89 98

101

99102

105

103106

109

107

108

111

112

114 121

124

122 125

128

126 133

136

134 137

140

138

139

142

145

143 146

148

149

152

150 154

157

155165 169

172

170 174

175

189

193

190 195 198

201

199

188 194 203

15

14 2752 65 113116167

173

197

10

20

29

28

43

42

55

53

78

66

76

75

87

92 120

110

118

117

129 141

160

153

158

179

177

202

79

3394 180

32

5477

93

119 130

161

15917830

131

56

132

31

162

183

164184

163181

96

95

182

97 185

186

187

1

349 69

2

53 142159

4

6 125

106

5

8

139 183

7

12115 185

11

88104

13

15 68

127

14

108

17

19 155182

18

112 153

20

2243 8284

21

96

200

23

25

37 154

24

138

26

141184

27 89

32

3379

34

36 126

110

35

105128

201

39

41

113

40

151

42

55109

44

46

48 95

47

150

80

50

52

87

51

140

54

137

70

64

66199

152

65

83

143

67 75

77

76

114

78 124

186

123 167 174180 194 198207

10

9 16

29

2838 45

91

60

58

57

56

72 188

7181 86

85

90

98

97107 111

117

116

131

129

147

145

144

156160

187

30 59 16192118 130 146157 189

31

62

6194

93

120

119 190158

202

7399

162

63

132 148 163

191

178

100

205121

203 74102 135

195

101 133

177103

136 176 192

168

197

204 149 181134 164 169171 175

122

165 196172

206

170

193166 173179

Fig. 12. Varied circuits produced by gen, using defaults.

1

173514

28

11 29344 38 40

2

23

22 161512 25

3

27

132030

5

9

6

21

36

7 8

26

10

31

33 37 39 41

18

32

24 19

1

615918 30 67

72

27 46 2126153 38

2

71

4

88 84221270

62

35

3231

40

13

5

19

55

81

11

73

50 49

4854 63

7896 3692 983 57

6

79 56

7

29

74 68

9323 80 9516 8699

28

20 5853

45

8

33

47

9034

10

41

52

14

37 89

17

39

82

44 6677 104

60

76

98

24

101

85

7525

102

100 87 51

42

43

6469

65

97 94

91

103

Fig. 13. MCNC circuits sqrt8 and sa02.

1

5

60 126

2

119 123

3

434 101

7

836 41

9

115

10

93

11

12 57

102

13

1471 91

15

81

16

121

19

20

21

22

46

23

24 84

112

26

27 114

85

30

32104

120

31

53

35

107

37

38

43

44 75

88

48

49 64

50

51

106

55

83

58

56

6796

62

105

66

63

89

69

70

116 124

98

109

99

6 1829 3340 47 545961 6568748082 86 9094 97100 103 108110 113 118122 125127

45 92 52

17

72

28

77 9539 42

73

8776

117

111

25

79

78

1

2

170

154

4

639 227

5

129140

8

9 255

167

10

11 222

225

15

212

20

16

18

173

17

251

69

19

108 220

22

23152 210

24

216

28

50

25

27

192

123

26

194

206

29

31 160245

30

190

121

34

37

57114

35

145 239

36

234

104

40

122 157

41

43

119

44

45 89253

46

48

47

202

52

186

58

53

54

68 217

55

56

132

60

198

63 164

61

62 228 238

65 66

67118

229

71

72

73

74

236

76

77

78

79176

83

84 166

85

199

91

116

86

87 211

88

182 224

93

94 243

98

203

105

99

171233

100

103

207

101

102

209

107

137

110

127

111

183

115

112

113242

196

125

126

133

180

136

134

135153

139

169

142

144

231

146

148

150

149

188

156

247

159162

163

177

175

249

179185

14 21 333842 51 5964 7082 9297 106 109117120124 128130 138143147 151 155158 161165168 174178 181184 187 189191193 197201 205208 215 219 221223226230 232 235237 241244 246250 252254 256

37 12

32

49 131

81

75

218

80 90 141 195200

172

240

204 214

213248

13 95

96

Fig. 14. Random 4-regular digraphs

B. Gen clone-circuits

Figures 15 and 16 show two MCNC circuits, each original

circuit pictured with two di�erent clones generated from

its characterization by circ. Notice that the clones have

a similar structure in terms of the parameters de�ned in

this paper, but are di�erent in the implementation of that

structure, just as they are di�erent from the original.

0

0 00 00 0 00 00000 0 00

0

0

0

0

0

00 0

0 0

0

0

0 0

0

0 00 00 000

0 0 0

0

0

0 0

(original)

0

0 00 00 000 0 0 00 00

000

0

0 0000

0

0

0 0 00

0

0

0

0

0 000 0 0 00

0 0

0 0

0

0

0 0 0000 00 00 00

0 00

0

0000 00 0

0

0

0

0

0

00 0

0

0 00 0000 0

0

0 0

00

0

Fig. 15. MCNC circuit squar5 and two clones from gen.

0

0 00 0 000 00 0

00

00

00

0 0

00

0

00

0 00

0 0 0 0

0

0 00 000

0

0

0

0

0

(original)

0

0 0 00

0

0

0

0

00 0 0

0

0

000

0

0

0

0

0

0

0

0

0

0

0

0

00

0

0 00 0

0

0 00

0

0

0

00 0 0

0 0

0

0

0 00 000

00 0

0

0

00

0

0

0

0

0

0

0

00

00 0 0

00 0

0

0

0

0

0

Fig. 16. MCNC circuit sqrt8ml and two clones from gen.

VI. Concluding Remarks

In this paper we have introduced a new method for gen-

erating realistic parameterized combinational benchmark

circuits. The circuit generation is derived from the mea-

surement of a number of new graph-theoretic properties of

digital circuits which we propose in this paper. As a result

the circuits are much more realistic than random graphs.

It has been shown that the quality of the circuits (as mea-

sured by reconvergence and routability) is comparable to

an existing benchmark set and much better than that of

random graphs that don't use these properties. Because of

the close tie between characterization and generation, users

are able to characterize their own circuits using circ and

create defaults which more closely meet their own needs

(rather than the MCNC defaults).

Using this method, we can generate a large set of cir-

cuits with the properties of the largest MCNC benchmark

circuits. It remains to be seen if even larger circuits (which

could easily be generated, just not as clones) have realistic

circuit behaviour.

The gen algorithm is fast, requiring less than 1 minute

of SUN Sparc4 time to produce a circuit with 30,000 4-LUT

nodes. The binary and source-code is freely available [19].

The output format for gen and the input format for circ

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH 1999

is BLIF [23]. Circ can translate BLIF to a number of other

netlist formats, such as Xininx XNF, Altera AHDL/TDF,

Actel ADL and a subset of Verilog.

In the future we will expand the gen system to generate

sequential circuits (with
ip-
ops, back-edges and cycles)

[12] and to join sub-circuits together hierarchically. We

also hope to add the ability to generate regular (datapath)

structures and introduce LUT functionality so that we can

apply our circuits to logic synthesis as well as physical-

design problems. The most important area for further ex-

ploration is to determine justi�able models of locality in

base level circuits which can be both measured and gener-

ated.

Acknowledgments. Thanks to Stephen North and

AT&T Bell Labs for academic license to use dot[8] and

Vaughn Betz for the use of his place-and-route software

vpr[2].

References

[1] V. Betz and J. Rose. Directional Bias and Non-Uniformity in
FPGA Global Routing Architectures. In Proc. IEEE/ACM In-
ternational Conference on Computer Aided Design (ICCAD),
pages 652{659, 1996. (Submitted for journal publication.).

[2] V. Betz and J. Rose. VPR: A New Packing, Placement and
Routing Tool for FPGA Research. In Proc. 7th International
Conference on Field-Programmable Logic, pages 213{222, Au-
gust, 1997.

[3] T. Bui, S. Chaudhuri, T. Leighton, and M. Sipser. Graph bisec-
tion algorithms with good average case behaviour. Combinator-
ica, 7(2), 1987.

[4] J. Cong and Y. Ding. FlowMap: An Optimal Technology Map-
ping Algorithm for Delay Optimization in Lookup-Table Based
FPGA Designs. IEEE Trans. CAD, 13(1):1{12, June, 1994.

[5] J. Darnauer and W. Dai. A Method for Generating Random
Circuits and Its Application to Routability Measurement. In
Proc. 4th ACM/SIGDA Int'l Symp. on FPGAs, FPGA96, pages
66{72, Feb., 1996.

[6] W. E. Donath. Placementand average interconnection lengths of
computer logic. IEEE Trans. Comp., CAS-26(4):272{277, 1979.

[7] M. R. Garey and D. S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman
and Company, New York, 1979.

[8] E. R. Gasner, E. Koutso�os, S. C. North, and K-P. Vo. A Tech-
nique for Drawing Directed Graphs. IEEE. Trans. Soft. Eng.,
19(3):214{230, 1993.

[9] A. Gibbons. Algorithmic Graph Theory. Cambridge University
Press, Great Britain, 1985.

[10] M. D. Hutton. Characterization and Automatic Generation of
Benchmark Circuits. PhD thesis, University of Toronto, 1997.

[11] M. D. Hutton, J. P. Grossman, J. S. Rose, and D. G. Corneil.
Characterizationand ParameterizedRandomGeneration of Dig-
ital Circuits. In Proc. 33rd ACM/SIGDA Design Automation
Conference (DAC), pages 94{99, June., 1996.

[12] M. D. Hutton, J. S. Rose, and D. G. Corneil. Generation
of Synthetic Sequential Benchmark Circuits. In Proc. 5th
ACM/SIGDA Int'l Symp. on FPGAs, FPGA97, pages 149{155,
Feb., 1997.

[13] K. Iwama and K. Hino. RandomGenerationof Test Instances for
Logic Optimizers. In Proc. 31st Design Automation Conference,
pages 430{434, 1994.

[14] K. Iwama, K. Hino, H. Kurokawa, and S. Sawada. Random
Benchmark Circuits with Controlled Attributes. In To appear,
Proc. 1997 European Design and Test Conference, 1997.

[15] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon.
Optimization by simulated annealing: An experimental evalua-
tion (Part I). Preprint, AT&T Bell Laboratories. Murray Hill,
NJ, 1985.

[16] B. W. Kernighanand S. Lin. An E�cient Heuristic Procedure for
PartitioningGraphs. Bell Systems Technical Journal, 49(2):291{
307, Feb., 1970.

[17] B. S. Landman and R. L. Russo. On a Pin Versus Block Re-
lationship for Partitions of Logic Graphs. IEEE Trans. Comp.,
C-20(12):1469{1479, 1971.

[18] Thomas Lengauer.Combinatorial Algorithms for Integrated Cir-
cuit Layout. Wiley, New York, 1990.

[19] M. D. Hutton and J. S. Rose. Circ/Gen website.

http://www.eecg.toronto.edu/~jayar/software/software.html.
[20] D. Ghosh N. Kapur and F. Brglez. Towards A New Benchmark-

ing Paradigm in EDA: Analysis of Equivalence Class Mutant
Circuit Distributions. In Proc. ACM International Symposium
on Physical Design, 1997.

[21] Programmable Electronics Performance Corporation. PREP
PLD Benchmark Suite#1, V1.2. 504 Nino Ave. Los Gatos, CA
95032. http://www.prep.org, 1993.

[22] Y. Saab. New methods for construction of test cases for parti-
tioning heuristics. Progress in VLSI Design, 1998 (to appear).

[23] E. M. Sentovich et.al. SIS: A System for Sequential Circuit
Analysis. Tech. Report No. UCB/ERL M92/41. University of
California, Berkeley, 1992.

[24] S. Yang. Logic Synthesis and Optimization Benchmarks, Ver-
sion 3.0. Tech. Report. Microelectronics Centre of North Car-
olina. P.O. Box 12889, Research Triangle Park, NC 27709
USA. Also see NCSU CAD Benchmarking Laboratory at
http://www.cbl.ncsu.edu, 1991.

