
Advanced Computer Architecture
Instructor: Andreas Moshovos
moshovos@eecg.toronto.edu

Fall 2006

Some material is based on slides developed by profs. Mark Hill, David Woord, Guri Sohi and Jim Smith at the University of
Wisconsin-Madison, and Dave Patterson at the University of California Berkeley.

All other material (c) A. Moshovos.

Today’s Lecture
• Course Content:

– Building the best processor
• Who cares
• How to define “best”
• Needs/Metrics
• Forces that determine “needs”

– Applications
– Technology

• What is “Computer Architecture”
– Implementation

• Role of the Architect
• Overview of course policies

Course Goal
• Advanced uni-processor/single-chip architecture

– Will use the term “processor”

• Previous courses:
• How to build a processor that works
• Some optimization techniques

• This course:
– What is the BEST processor?
– Recent Research Developments

• Some overlap with the undergrad Comp. Arch.

What is Computer Architecture
• Goal:

– Build the best “processor”

• Today this means:
– Here’s a piece of silicon
– Here are some of its properties
– Tell me what to build

• Two challenges:
1. Understand your building blocks:

• today its semiconductors
2. Understand what best means

• Take into account design/production time
• Takes 4-5 years to design a new high-performance processor

Architecture and Technology

• Source: H&P, CA: A Quantitative Approach 4th Edition

Transistor speed
improvement

Evolution of Microprocessors

Recent Designs
• AMD Athlon 64 FX-62:

– 243M xtors, 90nm, 2.8Ghz, 220 mm^2, 2 cores
• Intel Core Duo Extreme X6900

– 291M xtors, 65nm, 3.2Ghz, 143 mm^2, 2 cores
• AMD Turion 64 ML-40

– 114M, 90nm, 2.2Ghz, 125mm^2, 1 core
• SUN T1 “Niagara”

– 300M, 90nm, 1.2Ghz, 379 mm^2, 8 cores

Understanding the building Blocks

Moore’s “Law”
• “Cramming More Components onto Integrated Circuits”

– G.E. Moore, Electronics, 1965

• Observation: (DRAM) transistor density doubles annually
– Became known as “Moore’s Law”
– Wrong, density doubles every 2 years

• Had only four data points

• Corollaries
– cost / transistor halves annually
– power decreases with scaling
– speed increases with scaling
– reliability increases with scaling (??)

• Recent trends somewhat different
– We will return to this throughout the lectures

The Other “Moore’s Law”
• “Performance doubles every 18 months”

– common interpretation of Moore’s Law, not original
intent

– wrong, “performance” doubled every ~2 years
– wrong, lately other parameters slowed down

performance

• Self-fulfilling prophecy (Moore’s Curve)
– doubling every 18 months = ~4% increase per month
– 4% per month used to judge performance

features,
– if feature adds 2 months to schedule, it should add at

least 8% to performance

Intel Processor Family

Technology Scaling
• ICs characterized by Feature Size

– minimum xtor/wire size in x or y dimension
– 10 microns in 1971, 0.65 microns today, ~154x reduction

• Xtor density:
– quadratic w/ respect to feature size

• Xtor performance:
– complex, but almost linear (lower Vdd required for correct

operation)
• Wire Delay:

– complex, distances shorter, but R and C higher/unit. Net effect,
wires do not scale as well as xtors.

• Power:
– dynamic and static. ~CxFxV^2 . Currently a big problem.

• Die Size:
– Mostly unrelated

Technology Scaling
• Feature Size 30% every 2 to 3 years
• Transistor Density ~50% (0.7x0.7)
• Transistor speed ~50%
• Die size 10% - 20%
• Transistor Count 60%-80%

• IDEAL Shrink:
– 1x xtors
– 0.5x area
– 1.5x frequency
– 1x IPC
– 1.5x performance
– 0.5x power

Not what is possible most of the time
R. Ronnen et. al. IEEE Proceedings 2001

• IDEAL New Design:
• 2x xtors
• 1x area
• 1.5x frequency
• 2x IPC
• 3x performance
• 1x power

FYI: Actual Scaling

Shrink

New uArch

Many factors determine what the new arch should be.

Technology Scaling Contd.
• DRAM density 40% - 60% (4x in 3 years)
• DRAM speed 4% (1/3 in 10 years)
• Disk density 100% (4x in 2 years)
• Disk speed 4% (1/3 in 10 years)

Technology Scaling: Latency vs. Bandwidth

• Not all technologies scale similarly
• Source: H&P, CA: A Quantitative Approach 4th Edition

FYI: DRAM/Disk Technology Evolution

•Source: H&P, CA: A Quantitative Approach 4th Edition

Putting things into Perspective

Classes of Computers

Not to be taken literally.

Recall
• Goal:

– Build the best “processor”

• Two challenges:
1. Understand your building blocks:

• today its semiconductors

2. Understand what best means

What BEST means?
• Really depends on what your goal is:

– Moving: Best take truck - unless you have nothing...
– SUV? I don’t know, you tell me
– Porche? Have money to burn - cruising

• Observation #1:
– Before we can decide what is best we need to know

the Needs are.
• Moving vs. cruising
• Observation #2:

– Then we need to be able to judge how well each
option serves these needs. Metrics

• Truck vs. Porche
• What if you had to build the best car for a given

purpose?

What BEST processor means?
• Needs:

– Performance: word processing vs. weather
simulation

– Cost: would you pay 5x $ for 2x performance?
– Complexity: Design/validation time -> cost and perf.
– Power: PDA, laptop, server
– Reliability: Must work correctly

• There are a number of forces at work:
– 1. What does the user needs: applications
– 2. What does technology offers: semiconductors

• Why this is challenging:
– Many applications, some yet to be developed
– Technology changes

What is Computer Architecture?
• Architecture: How are things organized and what you

can do with them (functionality)

• Many different “Architectures” exist in a system
– Application/System architecture

• Structure of the application itself

– Interface to outside world (API, libraries, GUIs, etc.)
– Operating system calls
– Often appear as layers

• For our purposes Computer architecture is the
Interface between hardware and software

What is Computer Architecture?
System attributes as seen by the programmer
The term architecture is used here to describe the attributes of a system as seen by

the programmer, i.e., the conceptual structure and functional behavior as distinct from
the organization of the dataflow and controls, the logic design, and the physical

implementation.

Gene Amdahl, IBM Journal of R&D, April 1964

• What you the user needs to know to reason about how the machine
behaves

• A contract between users and the designer/architect
– Architect: I guarantee these features, anything else can change

across different designs
– User can develop applications and reason about what they will

do having a guarantee that they will work across different
designs

Architecture, µArch and Implementation
• Computer “Architecture”: HW/SW interface

– instruction set
– memory management and protection
– interrupts and traps
– floating-point standard (IEEE)
– Could include others: designer beware

• µMarch (micro-Arch): also called organization
– number/location of functional units
– pipeline/cache configuration
– programmer transparent techniques: prefetching

• Implementation (Hardware): low-level circuits

Architecture vs. Implementation
• AND Gate:

– Architecture is the interface:
• 2 inputs - 1 output and function
• Truth table defines behavior

– Implementation?
• Transistor based (How many can you think?)

– static, dynamic? CMOS, NMOS?
• Moshovos™ implementation
• others?

Computer Architecture
• The big question is what goes into Architecture
• Too much:

– Too restrictive
• Additions take 1 cycle to complete

• Too little:
– Lost opportunity
– Substandard performance

• Subtract and branch if negative is good enough
• Multimedia instruction set extensions

• Challenge is to forsee how technology/application trends
may create problems in the future
– Delay slots

Architecture vs. µMarch vs. Impl.
The boundaries are a bit blurred, still
64-bit Adder:

— Arch: What it does
— take two 64-bit numbers produce 64-bit sum

— µMarch: How it does it:
— Ripple carry
— Carry lookahead
— Carry prediction

— Implementation
— static, dynamic, CMOS, Synthesized, Custom, etc...

• This course: Architecture, µMarch and its interactions/
implications to software and implementation

Role of the Computer (µ)Architect
• Architect: Define hardware/software interface
• µArchitect: Define the hardware organization, usually

same person as above
• Goal:

– 1. Determine important attributes (e.g., performance)
– 2. Design machine to maximize those attributes under

constraints (e.g., cost, complexity, power).
• How : Study applications

Consider underlying technology
Cost
Performance
Complexity
Power
Reliability

Two Aspects of CA
• Techniques:

— This is the accumulated experience
— Typically, there is no formal way of developing these (innovation)
— Know how to evaluate

• When to use them?
RISC architectures: Could fit a CPU within a single chip in the early
80’s

Architecture is a “science” of tradeoffs
No underlying one-truth - we build our own world and mess
Too many options -> too many different ways of being wrong

Why Study Computer Architecture
• Build faster/better processors

– Why? my MS-Word, Latex runs quite fast on my Pentium 166
MMX thank you very much

– How about weather simulation? Speech recognition? MRI
Processing? MPEG-4 (7?), Your Killer-App circa 2010?

• Bottom line:
– Historically, faster processors facilitated new applications
– Similarly, novel applications created a need for faster machines
– Cost is factor
– Facilitate further scientific development
– Any reason why this will change?

• Also performance not the only requirement
– #1: User requirements are constantly changing

Implications of Implementation Technology
• Caches (“bad” for IBM-XT, “a must” for Pentium 4):
• 70’s: thousands of xtors, DRAM faster than 8088 microprocessor
• nice way of slowing down your program
• 80’s: depends on machine
• 90’s: millions of xtors, what to do with them, DRAM much slower than

processor
• a must, otherwise your ~3Ghz processor spends most of its time waiting for

memory

• #2: Technology changes rapidly making past
choices often obsolete

• #3: Also opens up new opportunities (e.g., out-of-
order)

Perpetually Open Problems in CA
• Performance
• Cost
• Complexity
• Power
• Reliability
• Architectural Support for…

Texts
• These slides
• • Computer Architecture: A Quantitative Approach, Hennessy

and Patterson, 4th Edition, Morgan Kaufmann
• Readings in Computer Architecture, Hill, Jouppi and Sohi.
• Related conference papers - both classic and cutting-edge
• Conferences:
• • ISCA (international symposium on CA)
• • ASPLOS (arch. support for progr. languages & OSes)
• • MICRO (microarchitecture)
• • HPCA (all encompassing?)
• • Others: PACT, ICS...
• GENERAL INFO: www.cs.wisc.edu/~arch/www
• Online papers: www.computer.org, citeseer.nj.nec.com

About the Course
• Instructors: Andreas Moshovos
• Office hours: via appointment only, but feel free to stop by, EA311
• best way to communicate with me: e-mail

– Persist if I don’t respond the “first” time
– moshovos@eecg.toronto.edu

• Please use “ACA: Your header here” for all your e-mails
• Course web site: www.eecg.toronto.edu/~moshovos/ACA06
• nothing there yet
• There is no TA

• You are responsible for all material discussed in class
• Notes will not be provided for all discussions

Schedule
• First half (you attend lectures):
• Lectures on advanced architecture topics
• Some assignments

• • Second half (you give lectures and discuss):
• In groups you select among a set of research papers
• You give a presentation
• We discuss them in class
• You work on a project
• (you define or pick from a set of suggestions)

Expected Background
• Organization and Comp. Arch. (some overlap)
• Design simple uniprocessor
• Instruction set concepts: registers, instructions, etc.
• Organization
• Datapath design
• Hardwired/microprogrammed control
• Simple pipelining
• Basic caches, main memory
• High-level programming experience (C is a must)
• Compilers (back-end) and VLSI highly desired
• You are expected to read on your own and fill-in any

gaps

Topics
1. Technology Trends / Performance Metrics / Methodology
2. Pipelinining
3. Advanced Instruction Level Parallel Processing
4. Control Flow Prediction
5. Memory System
6. Instruction Set Principles
7. New Challenges: Power/Reliability
8. State-of-the-Art Research Papers and Classics

1 through 7 is my responsibility
8: I provide pointers, you make the presentation, we

discuss the papers in class

Marking
• This is a grad course: You are expected to be able to

seek information beyond what is discussed in class.
• Project 1/3
• Homeworks 1/3
• Presentations 1/3

– If needed (Intention is NOT to have one):
• Take Home Exam ½ (and everything else x ½)

• You must score at least 5/10 in all of the above
separately to pass

Project
• This is probably the most important part of the course
• You will be required to propose and conduct “research” in computer

architecture
• — I will provide some suggestions
• — You are strongly encouraged to suggest your own:
• Validate data in some paper
• Evaluate extension to existing work
• Propose something completely new (difficult)
• Since this is a class project negative results are OK
• — In general it is hard to publish negative results
• You will probably have to use the simplescalar simulator
• Requires strong programming skills in C
• You must be familiar with UNIX or learn your way through it
• Groups of 2 or 3 if necessary (depends on class size too)
• More details coming “soon”

Homeworks
• There will be 3-4 assignments
• May require material that we do not cover in depth in

class
• There will be series of programming assignments that

are designed to help you learn the simulation
infrastructure that is commonly used in our research
community: www.simplescalar.com

• Assignments require strong programming skills primary
in C

• Also require that you are familiar with UNIX systems
• Environment to be determined within two weeks:

– Either cygwin/windows or linux

Policies
• No late work will be accepted

— You will be given able time to complete all coursework

• All work must be your own unless otherwise
specified
– Please take this seriously
– Make sure to reference any external sources
– I will not go looking for plagiarism, but often it’s

obvious and CAN’T BE IGNORED

Integrated Circuit Costs

_
_2

_π

_

)
2

_
(π

/

2

diestest
areadie

diameterwafer
areaDie

diameterwafer

WaferDies
×

×
×

=

Die Size, Wafer and Yield
• Bigger die less dies per wafer

• Bigger die defects much more probable

IC Cost Examples
Chip Metal Line Wafer Defect Area Dies/ Yield Die Cost

layers width cost /cm2 mm2 wafer
386DX 2 0.90 $900 1.0 43 360 71% $4
486DX2 3 0.80 $1200 1.0 81 181 54% $12
PPC 601 4 0.80 $1700 1.3 121 115 28% $53
HP PA 7100

3 0.80 $1300 1.0 196 66 27% $73
DEC Alpha

3 0.70 $1500 1.2 234 53 19% $149
SuperSPARC

3 0.70 $1700 1.6 256 48 13% $272
Pentium 3 0.80 $1500 1.5 296 40 9% $417

• From "Estimating IC Manufacturing Costs,” by Linley Gwennap,
Microprocessor Report, August 2, 1993, p. 15

• New products end up being much more expensive to manufacture

Early Steps: Reading 1
• Arthur W. Burks, Herman H. Goldstine, and John von Neumann,

"Preliminary discussion of the logical design of an electronic
computing instrument", 42pp, Inst. for Advanced Study, Princeton,
N. J., June 28, 1946

• Reprinted in: "Computer Structures: Readings and Examples",
(1971 edition) by C. Gordon Bell & Allen Newell

• Interesting Discussions:
– Selection of word length and number base.
– Discussion of the instructions needed.
– Concern for the input/output structure and the idea of displays
– Rationale for not including floating-point arithmetic (caution

about the technology).
– The lack of necessity for the rather trivial binary-decimal

conversion hardware and the idea of cost effectiveness.
– Analysis of the addition, multiplication, and division hardware

implementation. (This description includes a nice, one-page
discussion of the average carry length for addition.)

The Task of the Referee: Reading #2
• Evaluating research/engineering work in computer

architecture

Strong Inference: Reading #3
• “Strong Inference”, John R. Platt, Science, Vol. 146, No.

3642, Science
• Possible alternative explanations of an observation.
• How to discriminate between alternative explanations.

• 1. Devise alternative hypotheses.
• 2. Devise crucial experiment.
• 3. Carry out the experiment so as to get a clean result.
• Go back to 1 as necessary

