
ECE 1773 Toronto ECE, A. Moshovos, 2006 1

 Memory Systems
Basic caches

• introduction

• fundamental questions

• cache size, block size, associativity

Advanced caches

Prefetching

ECE 1773 Toronto ECE, A. Moshovos, 2006 2

Motivation
CPU can go only as fast as memory can supply data

Assume 3Ghz CPU = 333ps cycle

4 insts per cycle = 4 references per cycle

30% is reads -> 1.2 references per cycle

total 5.2 references per 330ps

Assume 4 byte refs = 20.8 bytes per cycle

Bandwidth demand?

(even with ~2 IPC bandwidth is high)

BUT CAN’T HAVE A LARGE AND FAST MEMORY

ECE 1773 Toronto ECE, A. Moshovos, 2006 3

Technology
• Can tradeoff size for speed

• Can build smaller memories that are faster

• or, Large memories that are slower

• Registers for example:

about 32-128 these days

<1 cycle access time

CPU

$

Main Memory

fast/small

large/slooooow

ECE 1773 Toronto ECE, A. Moshovos, 2006 4

Memory Hierarchy
This is terribly out of date

Mem Element Size Speed Bandwidth

Register <1K 1-5ns 8000 MB/s

L1 cache <128K 5-10 1000

L2 cache <4M 30-50 400

Main Memory <4G 100 133

Disk > 2 G 20,000,000 4

ECE 1773 Toronto ECE, A. Moshovos, 2006 5

How do Programs Behave
Programs:

Recall they do not behave randomly

Locality in time (temporal locality)

 if a datum is recently referenced,

 it is likely to be referenced again soon

Locality in space (spacial locality)

 If a datum is recently referenced,

 closeby data is likely to be referenced soon

ECE 1773 Toronto ECE, A. Moshovos, 2006 6

History Repeats Itself
Recall: make common case fast

• common: temporal and spatial locality

• fast: smaller, more expensive memory

Guess that a memory reference:

1. Will have temporal locality

2. Will have spatial locality

Or, in other words:

1. Will be accessed again

2. Others, nearby will be accessed to

ECE 1773 Toronto ECE, A. Moshovos, 2006 7

Storage Presence Speculation
Key Idea: A memory location may reside in multiple places

Some are fast some are slow

Speculate: Be optimistic! What you want is in fast storage

If it is good! If not, speculate it’s in slow storage

then, in slower storage and so on.

This is the conventional memory hierarchy

ECE 1773 Toronto ECE, A. Moshovos, 2006 8

Conventional Memory Hierarchy
• Linear: Speculate closest, on fail move down linearly

CPU

$

Main Memory

• Correct Speculation
HIT

• Mis-speculation
MISS

attempt to correct next time

How?

Bring in new data

ECE 1773 Toronto ECE, A. Moshovos, 2006 9

Cache

put block in “block frame”

• state (e.g., valid)

• address tag

• data

block = multiple bytes, 32 very common today

tag datav
tag datav

tag datav

ECE 1773 Toronto ECE, A. Moshovos, 2006 10

Cache
on memory access

• if requested address== stored tag then

• HIT
• return appropriate word within block

• else

• MISS
• << replace old block >>
• get block from memory
• put block in cache
• return appropriate word within blockW

ECE 1773 Toronto ECE, A. Moshovos, 2006 11

Terminology
block (line, page) — minimum unit that may be present

hit — block is found in upper level

miss — not found in upper level

miss ratio — fraction of references that miss

hit time — time to access upper level

miss penalty

• time to replace block in upper level + deliver block to
CPU
• access time — time to get 1st word
• transfer time — time for remaining words

ECE 1773 Toronto ECE, A. Moshovos, 2006 12

What Should The TAG be?
• Full address: Let’s say 236 addresses

some bits are redudant

• Assume 64k cache with 32 byte blocks (16 bits, 5 bits)

• 5 bits are the index within the block (OFFSET)

• How to select the OFFSET bits?

• Common to select the LSB for OFFSET. Why?

ECE 1773 Toronto ECE, A. Moshovos, 2006 13

 Memory Hierarchy Performance
time is always the ultimate measure

indirect measures can be misleading

• miss ratio: % of accesses that miss

• like MIPS, miss ratio can be misleading

average access time is better

• tavg = thit + miss ratio x tmiss

• e.g., thit = 1, miss ratio = 5% tmiss = 20

• tavg = 2

Ultimately, Execution time is what matters

ECE 1773 Toronto ECE, A. Moshovos, 2006 14

Fundamental Questions about Caches
where can a block be placed? block placement

how is a block found? block identification

which block is replaced on a miss? block replacement

what happens on a write? write strategy (skip for now)

what is kept? cache type

ECE 1773 Toronto ECE, A. Moshovos, 2006 15

Block Placement
fully-associative - block goes in any frame

direct-mapped - block goes in exactly one frame

set-associative - block goes in exactly one set

Frame is a block within the cache

Let’s look at Set-Associative Caches

Direct Mapped = Set-Associative 1

Fully-Associative = Sets == # of frames

ECE 1773 Toronto ECE, A. Moshovos, 2006 16

Set Associative Caches
• Locate Set

• Access all elements in
the set

• Check all tags in
parallel

• Select Appropriate one

tag datav
tag datav
tag datav
tag datav

tag datav
tag datav
tag datav
tag datav

tag datav
tag datav
tag datav
tag datav

tag datav
tag datav
tag datav
tag datav

associativity

sets

frames = associativity X sets (frames == blocks)

Size = frames X block Size

tag datav
tag datav

tag datav

offsetsettag

ECE 1773 Toronto ECE, A. Moshovos, 2006 17

Finding and Placing a Block
tag datav
tag datav
tag datav
tag datav

tag datav
tag datav
tag datav
tag datav

tag datav
tag datav
tag datav
tag datav

tag datav
tag datav
tag datav
tag datav

associativity

sets

tag datav
tag datav

tag datav

tag
tag
tag

tag datav
tag datav
tag datav
tag datav

tag
tag
tag

tag datav
tag datav
tag datav
tag datav

tag
tag
tag

tag datav
tag datav
tag datav
tag datav

tag
tag
tag

tag datav
tag datav
tag datav
tag datav

tag tag datav

ECE 1773 Toronto ECE, A. Moshovos, 2006 18

Block Replacement - On a Miss
least recently used - LRU

• optimized for temporal locality, complicated LRU
state
• Given N blocks, how many combinations exist?

random
• pseudo-random for testing, nearly as good as LRU,
simpler

not most recently used - NMRU
• track MRU, random select from others, good
compromise

optimal - Belady’s algorithm -

• replace block used furthest in time

ECE 1773 Toronto ECE, A. Moshovos, 2006 19

Cache Handling of Data and Instructions
unified

• less costly, dynamic response, handles writes to I-
stream

split I and D
• 2x bandwidth, place close to I/D ports
• can customize, poor-man’s assoc, no conflicts
between I/D
• self-modifying code can cause problems

caches should be split if simultaneous I and D accesses
frequent

Can’t just add miss rates from Split to get Unified

Interference causes different behavior

ECE 1773 Toronto ECE, A. Moshovos, 2006 20

Mark Hill’s Miss Classification - 3C’s
compulsory — (miss in infinite cache)

• first access to a block

capacity — (miss in fullly associative cache)

• misses occur because cache not large enough

conflict
• misses occur because of mapping strategy

coherence — shared-memory multiprocessors

• misses due to invalidations from other processor (D53)

ECE 1773 Toronto ECE, A. Moshovos, 2006 21

Fundamental Cache Parameters
cache size

block size

associativity

ECE 1773 Toronto ECE, A. Moshovos, 2006 22

Cache Size
cache size is the total data (not including tag) capacity

• bigger can exploit temporal locality better

• not ALWAYS better

Too large a cache

• smaller is faster => bigger is slower

• access time may degrade critical path

Too small a cache

• don’t exploit temporal locality well

• useful data prematurely replaced

ECE 1773 Toronto ECE, A. Moshovos, 2006 23

Block Size
Block size is the data size that is both

• associated with an address tag + transfered from memory

• (advanced caches allow different)

Too small blocks

• don’t exploit spatial locality well

• have inordinate tag overhead

Too large blocks

• useless data transfered

• useful data prematurely replaced - too few total # blocks

ECE 1773 Toronto ECE, A. Moshovos, 2006 24

Associativity
Partition cache frames into

• equivalence classes (#sets) of frames each (associativity)

typical values for associativity

• 1-direct mapped, 2, 4 . . 16 - n-way associative

• Does it have to be a power of two?

larger associativity

• lower miss rate (always?), less variation among programs

smaller associativity

• lower cost, faster hit time (perhaps)

ECE 1773 Toronto ECE, A. Moshovos, 2006 25

Mark Hill’s “Bigger and Dumber is Better”
associativity that minimizes tavg is often smaller than
associativity that minimizes miss ratio

Direct-mapped vs Set associative caches with same tmiss

 diff-tcache = tcache(SA) - tcache(DM) >= 0

DM is faster than SA

 diff-miss = miss(SA) - miss(DM) < 0

SA has lower MR than SA

(Actually last statement is not true in all cases, but true for
most applications)

ECE 1773 Toronto ECE, A. Moshovos, 2006 26

Mark Hill’s “Bigger and Dumber is Better”
tavg(SA) < tavg(DM) only if

tcache(SA) + miss(SA) x tmiss < tcache(DM) + miss(DM) x tmiss

diff-tcache + diff-miss x tmiss < 0

e.g.,

assuming diff-tcache = 0 => SA better

diff-miss = -1%, tmiss = 20

=> diff-tcache < 0.2 cycle

ECE 1773 Toronto ECE, A. Moshovos, 2006 27

Write Policies
Writes are harder

• reads done in parallel with tag compare; writes are
not

• so, writes are slower - but does it matter?

On hits, update memory?

• yes - write-through (store-through)

• no - write-back (store-in, copy-back)

On misses, allocate cache block?

• yes - write-allocate (usually with write-back)

• no - no-write-allocate (usually with write-through)

ECE 1773 Toronto ECE, A. Moshovos, 2006 28

Write-Back
• update memory only on block replacement

• dirty bits used, so clean blocks replaced w/o mem
update

• traffic/reference = fdirty x miss x B

• less traffic for larger caches

ECE 1773 Toronto ECE, A. Moshovos, 2006 29

Write-Through
• update memory on each write

• keeps memory up-to-date

• traffic/reference = fwrites

• independent of cache performance

ECE 1773 Toronto ECE, A. Moshovos, 2006 30

Write Buffers
buffer CPU writes

• allows reads to proceed

• stall only when full

• data dependences?

• detect, then stall or bypass

ECE 1773 Toronto ECE, A. Moshovos, 2006 31

Write Buffers

write policy write alloc hit/miss write buffer
writes to

back yes both cache

back no hit cache

back no miss memory

thru yes both both

thru no hit both

thru no miss memory

ECE 1773 Toronto ECE, A. Moshovos, 2006 32

More on Write-Buffers
• design for bursts

• coalesce adjacent writes?

can also “pipeline” writes

• reads: read tag and data

• writes: read tag, save current data, write previous
data

ECE 1773 Toronto ECE, A. Moshovos, 2006 33

Writeback Buffers

between write-back cache and memory

• 1. move replaced, dirty blocks to buffer

• 2. read new line

• 3. move replaced data to memory

usually only need 1 or 2 writeback buffers

Memory

writeback
buffer

Cache

1

2

3

ECE 1773 Toronto ECE, A. Moshovos, 2006 34

Advanced Caches
Caches and out-of-order scheduling/pipelines

evaluation methods

better miss rate: skewed associative caches, victim caches

reducing miss costs: column associative caches

higher bandwidth: lock-up free caches, superscalar
caches

beyond simple blocks

two level caches

software restructuring

prefetching, software prefetching

ECE 1773 Toronto ECE, A. Moshovos, 2006 35

Improving Latency
• Tag compare usually comes “long” after data

• Speculatively use data from cache

• Execute dependent instructions

• When tag compare completes verify speculation

• If correct good for us

• If not, need to repair

• Specialized mechanism: Replay Buffer (Alpha)

store dependent instructions and re-execute

• Selectively invalidation-re-execution P4

more on this when we talk about val pred.

ECE 1773 Toronto ECE, A. Moshovos, 2006 36

Caches and Scheduling
• Think about it:

+ scheduler wakes up instructions during the cycle the
results are produced

+ so that they start executing when the results are
available

+ HOW? Well, if we know latencies, then simply track
when each instruction will finish

• Caches are “evil”:

+ Non-determinist latency

• Optimize common case:

+ Assume hit and schedule

+ replay if miss

ECE 1773 Toronto ECE, A. Moshovos, 2006 37

Caches and Scheduling 2
• Early systems:

Implicit hit/miss predictor: always hit:)

• Modern systems:

Hit/Miss predictor (explicit)

PC-indexed table (more a property of instruction rather
than the data)

Entry: 4-bit counter

Increment by 4 on hit, decrement by 1 on miss (why?)

Predict Hit if value > 8 (Or something like this)

ECE 1773 Toronto ECE, A. Moshovos, 2006 38

Evaluation Methods: Hardware Counters
counts hits and misses in hardware

see Clark, TOCS 1983

+ accurate

+ realistic workloads - system, user, everything

– hard to do

– requires machine to exist

– hard to vary cache parameters

– experiments not deterministic

ECE 1773 Toronto ECE, A. Moshovos, 2006 39

Evaluation Methods: Analytic Models
Mathematical expressions

+ insight - can vary parameters

+ fast

– absolute accuracy suspect for models with few
parameters

– hard to determine many parameter values

Questions

• cache as a black box?

• simple and accurate?

• comprehensive or single-aspect?

ECE 1773 Toronto ECE, A. Moshovos, 2006 40

Eval Methods:Trace-Driven Simulation

program input data

execute and trace

discard output
trace file

run cache simulator

 input
cache parameters

compute effective access from miss ratio
repeat
as needed

input tcache, tmiss

ECE 1773 Toronto ECE, A. Moshovos, 2006 41

Eval Methods:Trace-Driven Simulation
+ experiments repeatable

+ can be accurate

+ much recent progress

– reasonable traces are very large ~ gigabytes

– simulation time consuming

– hard to say if traces representative

– don’t model speculative execution

ECE 1773 Toronto ECE, A. Moshovos, 2006 42

Execution-Driven Simulation
do full processor simulation each time

+ actual performance; with ILP miss rate means
nothing

• non-blocking caches
• prefetches (back in time?)
• pollution effects due to speculation

+ no need to store trace

– much more complicated simulation model

– time-consuming - but good programming can help

very common today

ECE 1773 Toronto ECE, A. Moshovos, 2006 43

Andre Seznec’s Skewed Associative Cache
conflict misses in a conventional set assoc cache

if two addresses conflict in 1 bank, they conflict in the others
too

e.g., 3 addresses with same index bits will thrash in 2-way cache

Tags Data Tags Data

tag set off.

n bits

f0 f1

f0 = f1 = set

addr1, addr2, addr3

ECE 1773 Toronto ECE, A. Moshovos, 2006 44

Skewed Assoc. Caches
• Assume 8k 2-way set assoc with 16 byte blocks

• Conventional cache:

blocks = 213 - 4= 29, sets = 29 - 1 = 28 or 256

set index = addr10..4 (should be 8 bits)

addresses that conflict are: 0xXXXXXaaX

0x1010, 0x2010, 0x3010, repeat for ever -> always miss

• Why do they conflict?

Because they map to the same set on every column

Column? Physical property of cache
• What if we use different hash functions per column?

column 1 = 0xX..XXaaX column 2 = 0xX..aaXX

ECE 1773 Toronto ECE, A. Moshovos, 2006 45

Skewed Associativity

• Use different hash functions per column

• Result: Conflict in column 1 does not translate to conflict in
column 2

(actualy may not...)

tag datav
tag datav
tag datav
tagv

tag datav
tag datav

v
v

tag datav

Conventional
map onto same
set in all columns

tag datav
tag datav
tag datav
tagv

tag datav
tag datav

v
v

tag datav

Conventional
map onto same
set in all columns

f
f f

g

addr addr

ECE 1773 Toronto ECE, A. Moshovos, 2006 46

Andre Seznec’s Skewed Associative Cache
for 4-way skewed cache consider following bank functions

bank0 - a1 xor e2

bank1 - shuffle(a1) xor a2

bank2 - shuffle(shuffle(a1)) xor a2

bank3 - shuffle(shuffle(shuffle(a1))) xor a2

ECE 1773 Toronto ECE, A. Moshovos, 2006 47

Andre Seznec’s Skewed Associative Cache
shuffle fucntions

implementation only adds bitwise XORs in cache access
path

b7

b6

b5

b4

b3

b2

b1

b0

b7

b3

b6

b2

b5

b1

b4

b0

b7

b5

b3

b1

b6

b4

b0

b2

shuffle shuffle

ECE 1773 Toronto ECE, A. Moshovos, 2006 48

Column Associative Caches
• Poor man’s associativity

• High-Associativity = slow but lower miss rate (maybe)

• Direct mapped = fast but higher miss rate

• Middle-ground

• Organize as associative but access one column

• if Hit = access time same as direct mapped

• on miss, access alternate column(s)

• slower than set associative same miss rate

• faster than going directly to main memory

• Way Prediction (in P4)

• Guess which column to access first

ECE 1773 Toronto ECE, A. Moshovos, 2006 49

The Victim Cache
• Observation: High associativity low miss rate/high latency

• Most misses in lower associativity due to few blocks

• Exploit: Victim Cache
Small cache placed in parallel with main cache

Keeps recently evicted blocks

Do not allocate blocks any other time

• Norm Jouppi

ECE 1773 Toronto ECE, A. Moshovos, 2006 50

Victim Cache Performance
Removing conflict misses

• even one entry hepls some benchmarks

• I-cache helped more than D-cache

Versus cache size
• generally, victim cache helps more for smaller caches

Versus line size
• helps more with larger line size (why?)

ECE 1773 Toronto ECE, A. Moshovos, 2006 51

if column-major

• x[i+1, j] follows x [i,j]

• x[i,j+1] long after x[i,j]

poor code

• for i = 1, rows

• for j = 1, columns

• sum = sum + x[i,j]

Software Restructuring

c
o

lu
m

n
 m

a
jo

r

row major

ECE 1773 Toronto ECE, A. Moshovos, 2006 52

Software Restructuring
better code

• for j = 1, columns

• for i = 1, rows

• sum = sum + x[i,j]

optimizations - need to check if it is valid

• loop interchange (used above)

• merging arrays: physically interleave arrays

• loop fusion: two or more loops together

• blocking: operate on smaller regions at a time

ECE 1773 Toronto ECE, A. Moshovos, 2006 53

Superscalar Caches
increasing issue width => wider caches

parallel cache accesses are harder than parallel functional
units

• fundamental difference: caches have state, FUs
don’t
• operation thru one port affects future operations thru
others

several approaches used

• true multi-porting
• multiple cache copies
• multi-banking (interleaving)

ECE 1773 Toronto ECE, A. Moshovos, 2006 54

True Multi-porting

would be ideal

increases cache area

• more chip area

• slower access

• diificult to pipeline access

RAM

Cache

pipe 2 address

pipe 1 data

pipe 2 data

pipe 1 address

ECE 1773 Toronto ECE, A. Moshovos, 2006 55

Multiple Cache Copies

used in DEC 21164

independent load paths

single shared store path

• bottleneck, not scalable beyong 2 paths

RAM

Cache

store address

pipe 1 load address

pipe 2 load address

pipe 1 data

pipe 2 dataCache

RAM

ECE 1773 Toronto ECE, A. Moshovos, 2006 56

Virtual Multi-porting

used in IBM Power2 and DEC 21264

• 21264 wave pipelining - pipeline wires WITHOUT
latches

time-share a single port

• may require cache access to be faster than a clock
• probably not scalable beyond 2 ports

RAM

Cache

pipe 2 address

pipe 1 data

pipe 2 data

pipe 1 address

ECE 1773 Toronto ECE, A. Moshovos, 2006 57

Multi-banking (Interleaving)

used in Intel P6(8 banks?)

need routing network

must deal with bank conflicts

extra delays can be pipelined

pipe 2 address

pipe 1 address Even

Addresses

Odd

Addresses

pipe 1 data

pipe 2 data

ECE 1773 Toronto ECE, A. Moshovos, 2006 58

Beyond Simple Blocks
Break blocks into

• address block associated with tag

• transfer block to/from memory

Large address blocks

• decrease tag overhead

• but allow fewer blocks to reside

• Sector Caches (one tag per multiple blocks)

• Decoupled Sector Caches (back pointer to sector
tags)

ECE 1773 Toronto ECE, A. Moshovos, 2006 59

Beyond Simple Blocks
larger transfer block

• exploit spatial locality

• amortize memory latency

• but take longer to load

• replace more data already cached

• cause unnecessary traffic

ECE 1773 Toronto ECE, A. Moshovos, 2006 60

Beyond Simple Blocks
address block size > transfer block size

• usually implies valid (and dirty) bit per tranfer block

was used in IBM 360/85 to reduce tag comparison logic

• 1Kbyte sectors with 64-byte subblocks

ECE 1773 Toronto ECE, A. Moshovos, 2006 61

Reducing Miss Cost
if main memory takes 8 cycles before delivering 2 words/
cycle

tmemory = taccess + B x ttransfer = 8 + B x 1/2

B is block size in words

implies whole block is loaded before data returned to CPU

if memory returned requested word first

• cache can return it to CPU before loading it in data
array

• tmemory = taccess + MB x ttransfer = 8 + 2 x 1/2

• MB is memory bus width in words

ECE 1773 Toronto ECE, A. Moshovos, 2006 62

Reducing Miss Cost
What if processor references unloaded word in block being
loaded

• need per-word valid bits

• performance penalty significant?

Why not generalize?

• handle other references that hit before all of block is
back

• handle other references to other blocks that miss

called lock-up free caches

ECE 1773 Toronto ECE, A. Moshovos, 2006 63

Latency vs Bandwidth
latency can be handled by

• hiding (or tolerating) it - out of order issue

• reducing it - caches

• parallelism helps to hide latency

• but increases bandwidth demand

It’s fairly “easy” to get bandwidth, latency is more tricky

ECE 1773 Toronto ECE, A. Moshovos, 2006 64

Lock-up Free Caches
Normal cache stalls while a miss is pending

lock-up free caches [kroft ISCA 1981, Sohi ASPLOS 1991]

• Process other requests while miss(es) is(are) pending

potential benefits

• overlap misses with useful work and hits

• overlap misses with each other

ECE 1773 Toronto ECE, A. Moshovos, 2006 65

Lock-up Free Caches
only makes sense if processor

• handles pending references correctly

• often can do useful work under a miss - dynamic
scheduled

• has misses that can be overlapped

ECE 1773 Toronto ECE, A. Moshovos, 2006 66

Lock-up Free Caches
key implementation problems

• handle reads to pending miss

• handle writes to pending miss

• keep multiple requests straight

ECE 1773 Toronto ECE, A. Moshovos, 2006 67

Lock-up Free Caches
MSHRs - miss status holding registers

• 1. is there already a miss?

• 2. route data back to CPU

• valid bit and tag - associatively compared on each
miss

• status and pointer to block frame

ECE 1773 Toronto ECE, A. Moshovos, 2006 68

Lock-up Free Caches
• for every word

• input ID (destination register?)
• send to CPU
• in input buffer
• in block frame
• already-overwritten

transfers from lower level to a lock-up free cache need tags

L1-L2 bus needs to be pipelined/split-transaction

asssociative MSHRs could become bottlenecks

ECE 1773 Toronto ECE, A. Moshovos, 2006 69

Prefetching
even “demand fetching” prefetches other words in block

prefetching is useless

• unless a prefetch costs less than demand miss

prefetches should

• always get data before it is referenced

• never get data not used

• never prematurely replace data

• never interfere with other cache activity

ECE 1773 Toronto ECE, A. Moshovos, 2006 70

Software Prefetching
use compiler to try to

• prefetch early

• prefetch accurately

prefetch into

• register (binding)

• use normal loads? faults?

• caches (non-binding) - preferred => needs ISA
support

ECE 1773 Toronto ECE, A. Moshovos, 2006 71

Software Prefetching
e.g.,

do j= 1, cols

 do ii = 1 to rows by BLOCK

 prefetch (&(x[i,j])+BLOCK) # prefetch one block ahead

 do i = ii to ii + BLOCK-1

 sum = sum + x[i,j]

ECE 1773 Toronto ECE, A. Moshovos, 2006 72

Hardware Prefetching
what to prefetch

• one block spatially ahead

when to prefetch

• on every reference

• hard to find if block to be prefetched already
in

• on every miss

• better than doubling block size

• tagged

• prefetch when prefetched item is referenced

ECE 1773 Toronto ECE, A. Moshovos, 2006 73

 Stream Buffers
aimed at compulsory and capacity misses

prefetch into buffers, NOT into cache

• on miss start filling stream buffer with successive lines

• check both cache and stream buffer

• hit in stream buffer => move line into cache
• miss in both => clear and refill stream buffer

performance

• very effective for I-caches, less for D-caches

multiple buffers to capture multiple streams (better for D-
caches)

ECE 1773 Toronto ECE, A. Moshovos, 2006 74

 Prefetching as Prediction
Stride-Based:

Common Idiom: arrays

Markov-based:

Seen a sequence of addresses then saw address’

Dependence-based:

Nice for recursive data structures

ECE 1773 Toronto ECE, A. Moshovos, 2006 75

Markov Prefetchers

Given Address X collect info about possible next adreesses

ECE 1773 Toronto ECE, A. Moshovos, 2006 76

Realistic Markov Prefetcher

Delta Prefetchers

compact representation

ECE 1773 Toronto ECE, A. Moshovos, 2006 77

What should be the handle/Prediction?
• Use combination of PC + address

• E.g., PC xor data address

• Can predict the footprint over larger regions

ECE 1773 Toronto ECE, A. Moshovos, 2006 78

Pre-computation Based Prefetching

Extract slice that leads to deliquent load

Pre-execute slice

Hardware support needed

Slice extraction can be done in software or in hardware

ECE 1773 Toronto ECE, A. Moshovos, 2006 79

Why level two caches
processors getting faster w.r.t main memory

• larger caches to reduce frequency of more costly
misses

• but larger caches are too slow for processor

• => reduce cost of misses with a second level cache

exploit today’s technological boundary

• can’t put large cache on chip (true?)

• board designer can vary cost/performance

can handle synonyms for virtual L1 caches (later)

ECE 1773 Toronto ECE, A. Moshovos, 2006 80

Level Two Cache Design
what is miss ratio?

• global - L2 misses after L1 / references

• local - L2 misses after L1 / L1 misses

• solo - misses as only cache / references

ECE 1773 Toronto ECE, A. Moshovos, 2006 81

NUCA

Non-Uniform Access Latency Cache Architecture

Motivation: Technologies are increasingly wire-dominated

No one will build a monolithic cache

Will have a collection of cache banks

It will take variable latency to reach each of them

Opportunity: Expose latency to architecture

ECE 1773 Toronto ECE, A. Moshovos, 2006 82

Cache Organization

ECE 1773 Toronto ECE, A. Moshovos, 2006 83

Mapping of Sets to Banks

ECE 1773 Toronto ECE, A. Moshovos, 2006 84

Finding a Block

Incremental Search

Multicast Search

Smart Search: requires partial tags

ECE 1773, Toronto, ECE, A. Moshovos, 2006 85Based on slides by Hill,
Wood, Sohi, Smith

Cache As A Prediction Mechanism
• We implicitly guess that upon referencing A

we will reference A again

we will reference A+/- delta

both soon

• Very good guess but not always right. Can we improve?

• Split Spatial/Temporal locality

Arrays vs. Non-Arrays

Access vector per block

• Utility counts per block (block sets really / superblocks)

ECE 1773 Toronto ECE, A. Moshovos, 2006 86

Improving Cache Performance Summary
avg access time = hit time + miss rate x miss penalty

reduce miss rate

• large block size

• higher associativity

• victim caches

• skewed-associative caches

• hardware prefetching

• compiler controlled prefetching

• compiler optimizations

ECE 1773 Toronto ECE, A. Moshovos, 2006 87

Improving Cache Performance Summary
reducing cache miss penalty

• give priority to read misses over writes

• subblock placement

• early restart and critical word first

• non-blocking caches

• 2nd level caches

ECE 1773 Toronto ECE, A. Moshovos, 2006 88

Improving Cache Performance Summary
reducing hit time

• small and simple caches

• avoding translation during L1 indexing (later)

• pipelining writes for fast write hits

• subblock placement for fast write hits in write through
cach

