
40 0272-1732/00/$10.00 2000 IEEE

Processors designed for computer
entertainment must perform 3D graphics cal-
culations, especially geometry and perspective
transformations. In the PlayStation2, we intro-
duced the idea of synthesizing emotion called
Emotion Synthesis and devised a new proces-
sor architecture to support its graphics
demands.1 The architecture is embodied in the
PlayStation2’s Emotion Engine CPU,2 which
uses vector units (VUs)3 as the key units for
floating-point calculations.

Emotion synthesis means the real-time syn-
thesis of a computer graphics animation scene
that projects a great deal of atmosphere. For
example, when a female character walks into a
video game scene, her motion must be deter-
mined by solving physical equations in
response to interactive events instead of replay-
ing prerecorded data. Moreover, differential
equations with a large number of variables
must be used to describe, for example, the wav-
ing motions of her hair in a breeze. For authen-
ticity in emotion synthesis, the CPU must
execute these calculations in real time.

The Emotion Engine has achieved a peak
performance of 5.5 Gflops at an operation fre-
quency of 300 MHz. Its vector units operate
in two modes: VLI, for use as a stand-alone
processor and coprocessor for use as a MIPS
COP2. This arrangement allows a vector unit
to simultaneously execute huge amounts of
3D graphics calculations and flexible calcula-

tions in collaboration with the CPU core.2

Both calculation types are indispensable in
producing emotion synthesis. By employing
software pipelining techniques, a vector unit
can execute 3D perspective transformations
with seven-cycle throughput at 300 MHz (85
Mvectors/sec). The vector unit in the 0.25-
micron CMOS Emotion Engine chip contains
5.8 million transistors in 8.76 mm ×7.87 mm.

Architecture design strategy
The 3D graphics calculations in emotion

synthesis require perspective transformation
and lighting calculations, which are achieved
through well-established algorithms. We
designed vector unit VU1 for this purpose,
enabling larger instruction and data memo-
ry comparison with vector unit VU0 and
equipping it with better stand-alone perfor-
mance. There is no direct control path from
the CPU core.

An example of flexible calculation is a motion
calculation of a body or a liquid; their algo-
rithms are rich in variety. To collaborate with
the CPU core, we closely coupled VU0 with
the CPU core via a 128-bit coprocessor bus. An
example of the roles that VU0 and VU1 play
in a fighting game is a scene that consists of main
characters fighting each other and background
objects such as buildings or a cheering audience.
Since the main characters need to move and
change their shapes in real time for a player’s

Atsushi Kunimatsu
Nobuhiro Ide

Toshinori Sato
Yukio Endo

Hiroaki Murakami
Takayuki Kamei
Masashi Hirano

Fujio Ishihara
Haruyuki Tago

Toshiba Corporation

Masaaki Oka
Akio Ohba

Teiji Yutaka
Toyoshi Okada

Masakazu Suzuoki
Sony Computer

Entertainment

TWO VECTOR UNITS EMBEDDED IN THE EMOTION ENGINE CHIP SUPPORT

HIGH-QUALITY 3D GRAPHICS, EMOTION SYNTHESIS, AND 300-MHZ, 5.5-

GFLOPS OPERATION FOR THE RECENTLY INTRODUCED PLAYSTATION2 GAME

ENTERTAINMENT SYSTEM.

VECTOR UNIT ARCHITECTURE FOR
EMOTION SYNTHESIS

input, the flexible calculations in VU0 process
these needs. On the other hand, VU1 process-
es the background objects, which consist of
many polygons.

The vector units feature four parallel
fMACs (floating-point multiply accumula-
tion units),4 a high-speed fDIV (floating-point
division unit), a broadcast mechanism, and a
VLIW architecture. To compute 4 × 4 matrix
operations efficiently, we use the four parallel
fMACs with the broadcast mechanism. We
also employ VLIW instruction formats and
the high-speed fDIV for efficient perspective
transformations and vector normalizations.

VU architecture
Figure 1 shows the Emotion Engine block

diagram. The chip contains three processors:
the CPU core, VU0, and VU1. The CPU
core2,5 contains 128-bit registers, 128-bit
ALUs for multimedia processing, and a
coprocessor interface for VU0 and VU1.

A vector processing unit (VPU) block
includes vector units VPU0 and VPU1,
instruction and data memories, and some inter-
face units. The interfaces are VU interface 0
(VIF0), VU interface 1 (VIF1), and graphics

synthesizer interface (GIF). These interfaces
are responsible for DMA access from and to
the vector unit memories together with data
expansion and compression. By using these
interfaces, the vector unit, and its memory
double-buffering techniques simultaneously,
we achieve nonstop, continuous processes.

As mentioned earlier, while the VLIW
mode is available in both VU0 and VU1, the
coprocessor mode is available only in VU0.
For the interfaces, VU0 also includes the
coprocessor interface and VIF0, while VU1
includes VIF1 and the graphics synthesizer
interface. VU0 includes a 4-Kbyte instruction
RAM and a 4-Kbyte data RAM. VU1
includes a 16-Kbyte instruction RAM and a
16-Kbyte data RAM. VU1 also has an ele-
mentary function unit (EFU). By using the
fMAC’s 0.6 Gflops and the fDIV’s 0.04
Gflops for performance calculation, the VU0
reaches a peak performance of 2.44 Gflops,
and VU1 achieves 3.08 Gflops for a total per-
formance of 5.52 Gflops.

VU1 is a stand-alone processor mainly
responsible for conventional 3D graphics cal-
culations. Therefore VU1 must process larg-
er amounts of data and calculations than the

41MARCH–APRIL 2000

128-bit
processor core

CPU

Memory
interface

VPU1VPU0

COP2

System bus
(128 bits)

128

External memory Peripherals

10-channel
DMAC

Image
processing

unit

VU0

VU1

VIF0 VIF1

COP1
FPU

GIF

Instruction
cache

Data
cache

Scratch-
pad
RAM

I/O
interface

Instruction
memory

(4 Kbytes)

Data
memory

(4 Kbytes)

Instruction
memory

(16 Kbytes)

Data
memory

(16 Kbytes)

T
o

re
nd

er
in

g
en

gi
ne

 (
G

S
 L

S
I)EFU

Figure 1. Emotion Engine block diagram.

VU0. VU1 has four times more memory than
VU0 and the additional elementary function
unit. This unit includes an fMAC and an
fDIV to calculate elementary functions such
as exp, sin, and so on.

However, this job assignment for the vec-

tor units is just one of the examples of emo-
tion synthesis. Individual user programmers
can alter it, depending on interpretation of
the chip. For example, they can execute con-
ventional 3D graphics calculations on both of
the vector units.

42

VECTOR UNIT ARCHITECTURE

IEEE MICRO

32

Upper instruction Lower instruction
64

32

fM
A

C
w

fM
A

C
z

fM
A

C
y

fM
A

C
x

fD
IV

R
A

N
D

U
/e

tc

LS
U

iA
LU

fD
IV

E
F

U
fM

A
C

Upper execution unit Lower execution unit

Floating
registers

(128 bits × 32)

Instruction memory
(16 Kbytes)

Integer
registers
(16 bits

× 16)

VIF

Instruction memory
(16 Kbytes)

System bus

64

Path 1

Path 2

Path 3

128

128 128

128

128

64

Vector unit (VU)

16

16

16

GIF

T
o

re
nd

er
in

g
en

gi
ne

 (
G

S
 L

S
I)

128 128

128

Figure 2. VPU1 block diagram.

Table 1. VU0 and VU 1 features.

Feature VU0 VU1

Main task Flexible calculation with CPU control Well-defined 3D calculations
VLIW mode Available Available
Coprocessor mode Available Not available
VPU Instruction memory (4 Kbytes) Instruction memory (16 Kbytes)

Data memory (4 Kbytes) Data memory (16 Kbytes)
VIF (system bus interface) VIF (system bus interface)

GIF (graphics interface)
EFU (vector unit option)

Total performance fMAC × 4 (2.40 Gflops) fMAC × 4 (2.40 Gflops)
(5.5 Gflops) fDIV (0.04 Gflops) fDIV (0.04 Gflops)

EFU (0.64 Gflops)

Figure 2 shows the block diagram of the
VPU1.5 The major internal blocks of the vec-
tor unit are

1. an upper execution unit with four paral-
lel fMACs,

2. a lower execution unit with fDIV,
load/store, iALU, and branch,

3. 128-bit × 32 floating registers, and
4. 16-bit × 16 integer registers.

Table 1 lists the VU0 and VU1 features.
In the VLIW mode, each 64-bit VLIW

instruction format is split into upper instruc-
tion and lower instruction parts. In the
coprocessor mode, each 32-bit COP2 instruc-
tion consists of a COP2 header and an
“opcode body” of the upper or lower instruc-
tion parts. Only an upper or a lower instruc-
tion can be selected in a COP2 instruction.

Figure 3 provides operation examples of the
four parallel fMACs. The upper half of this
figure shows a normal four-parallel SIMD
multiply-accumulation operation. The lower
half shows a four-parallel SIMD multiply-
accumulation operation with broadcasting.

Figure 4 shows the VLIW mode pipeline
stages and the coprocessor mode pipeline
stages. The fMAC executes sequential single-
precision floating-point multiply-accumulate
operations with a throughput of one cycle.

The fDIV executes a single-precision floating-
point divide/square-root operation with a
throughput/latency of seven cycles. Floating-
point numbers calculated by the VU are com-
patible with the IEEE-754 format, while its
rounding technique is not.

The coprocessor mode has two kinds of
instructions. One corresponds to an upper
instruction, a lower instruction, and a COP2
instruction. The other is a “call VLIW mode”
instruction. Prior to using this instruction, the
program stores VLIW mode instructions and
large data to the VU0 memory first using DMA
via VIF0. Then the program executes a call
VLIW mode instruction as a subroutine call
instruction. For example, in the case of calcu-
lating a physical dynamics simulation, an inner
loop may be coded as a VLIW mode program,
while the CPU core controls complicated flows.

Instruction sets
The vector units have various instruction

sets. The VLIW mode has 164 instructions:
95 upper instructions (which include 68
instructions with broadcasts) and 69 lower
instructions. The coprocessor mode has 130
instructions, including most of the upper
instructions and the lower instructions, and
all of the COP2 instructions.

Table 2 (next page) summarizes the upper
instruction varieties.

43MARCH–APRIL 2000

1 1 1 1 1 1 1 4 bits 5 bits 5 bits 5 bits 4 bits 2 bits

I E M D T - - dest ft reg fs reg fd reg MADD bc

- - - - - 0 0 ---- ----- ----- ----- 0010 --

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

is regft reg

0

Lower 32 bitsUpper 32 bits

FMAC x 4

4 bits 5 bits 5 bits 11 bits

Lower OP. dest LQI
1,000,000 ---- ----- ----- 01101 1111 0

FDIV, load/store, iALU

7 bits

Figure 3. VLIW-mode, 64-bit VLIW instruction format.

1 1 1 1 1 1 1 4 bits 5 bits 5 bits 5 bits 4 bits 2 bits

I E M D T - - dest ft reg fs reg fd reg MADD bc

- - - - - 0 0 ---- ----- ----- ----- 0010 --

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

is regft reg

0

Lower 32 bitsUpper 32 bits

Opcode body

4 bits 5 bits 5 bits 11 bits

Lower OP. dest LQI
1,000,000 ---- ----- ----- 01101 1111 0

Opcode body

7 bits

4 bits 5 bits 5 bits 5 bits 4 bits 2 bits

dest ft reg fs reg fd reg VMADD bc
---- ----- ----- ----- 0010 --

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

co

1

010010 1

COP2
6 bits

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

4 bits 5 bits 5 bits 11 bits

is regft regdest VLQI
---- ----- ----- 01101 1111 00

co

1

010010 1

COP2
6 bits

Opcode bodyOpcode body

(a)

(b)

Figure 4. Instruction format to support two modes: 64-bit VLIW (a) and 32-bit COP2 (b).

The operations in the lower instruction are

• Division/square root/reciprocal square
root;

• Integer addition/integer subtract/integer
AND/integer OR;

• Integer addition with immediate
operand;

• Move floating register to floating register;
• Move from the integer register to the

floating register;
• Move from the floating register unit to

the integer register unit;
• Rotate the 32-bit floating register;
• Load 128 bits with post increment/pre-

decrement;
• Store 128 bits with post increment/pre-

decrement;
• Integer load/store;
• Random unit instructions;
• Wait instruction for division operation;
• Flag operation instructions;
• Branch instructions; and
• EFU instructions.

Examples
By employing a broadcast mechanism and

the four parallel fMACs with a throughput of
one cycle, the vector unit can execute a 4 × 4-
matrix geometry transformation with only
four instructions (see Figure 5a,b). By using
two operation issues in the VLIW mode, the
fDIV with seven-cycle latency, a 128-bit
load/store unit, and software pipelining tech-
niques, the vector unit can execute a perspec-
tive transformation with a throughput of
seven cycles.

The flow of software pipelining for per-
spective transformation follows:

1. Read four single-precision floating num-
bers (x, y, z, w) by a 128-bit load instruc-
tion with address post increment.

2. Execute geometry transformation.
3. Calculate 1/w using the results of the

geometry transformation, which move to
a temporary register to keep the current
x, y, z.

4. Multiply x, y, z in the temporary register
by 1/w.

5. Write final results to memory by a 128-
bit store instruction with address post
increment.

With this flow, vector unit performance
reaches as high as 85 Mvectors/sec at 300
MHz. This seven-cycle loop of perspective

44

VECTOR UNIT ARCHITECTURE

IEEE MICRO

Table 2. Upper instruction. (GPR: general-purpose register; ACC:

accumulation register; w/w.o.: with/without; 1/2/3/4: selectable

one to 4 parallel)

Variation

Parallel Output

Operation Broadcast degree register

Addition w/w.o. 1/2/3/4 GPR/ACC
Subtraction w/w.o. 1/2/3/4 GPR/ACC
Multiply w/w.o. 1/2/3/4 GPR/ACC
Multiply-add w/w.o. 1/2/3/4 GPR/ACC
Multiply-subtract w/w.o. 1/2/3/4 GPR/ACC
Maximum w/w.o. 1/2/3/4 GPR/ACC
Minimum w/w.o. 1/2/3/4 GPR/ACC
Outer product (pre) w/w.o. — ACC
Outer product (post) w/w.o. — GPR
Absolute — 1/2/3/4 GPR
Convert F to I — 1/2/3/4 GPR
Convert I to F — 1/2/3/4 GPR
Clipping check — — Status flag

w z y x

w z y x

ACCw ACCz ACCy ACCx

fMACw fMACz fMACy fMACx ++++

Source register 1

Source
register 2

w z y x

w z y x

ACCw ACCz ACCy ACCx

fMACw fMACz fMACy fMACx ++++

Source register 1

Source
register 2

(a)

(b)

Figure 5. Geometry transformation pipeline: four parallel FMADDs without
broadcast (a) and with broadcast (b).

transformation includes load/store operations
of vertex data and loop controls.

Performance
Figure 6 compares our chip’s performance

with that of the Intel Pentium III SSE. The
right bar indicates the performance of the
Emotion Engine at 300 MHz, and the left bar
shows that of the Pentium III SSE at 600
MHz. Table 3 lists the conditions and
assumptions for this comparison.

For the vector unit performance values, we
developed an actual program and counted the
number of execution clocks. Figure 6 reflects
the combined performance of VU0 and VU1.
For Pentium III SSE, we assume the maxi-
mum software pipelining efficiency where the
latencies of the instructions limit the perfor-
mance. We employ the latency values from
Intel reference manuals.6 In the Pentium III
SSE, we do not use approximate functions in
order to keep the same condition on compu-
tational precisions. With respect to physical
dynamics simulations frequently processed in
emotion synthesis, we believe approximate
functions are not usable.

This performance chart reveals that the
Emotion Engine at 300 MHz performs at
twice that of the 600-MHz Pentium III SSE.
In practical applications, the performance gap
may be wider. This is because by using DMA
transfer and the VIF/GIF, the vector units can
operate without stopping as long as the 128-
bit system bus at 150 MHz and the two-chan-
nel Direct RDRAM interface are not jammed.

Implementation
We implemented the Emotion Engine in

0.25-micron CMOS process technology with
a 0.18-micron gate length. Figure 7 shows a
micrograph of this chip. The 15.02-mm ×
15.04-mm die contains 13.5 million transis-
tors; it operates at 300 MHz and typically
consumes 18 watts of power. The literature
describes the detail of design methodology.7-

10 The vector unit portion of the die, shown in
the micrograph in Figure 8 (next page), con-
tains 5.8 thousand transistors and measures
8.76 mm × 7.87 mm.

Our goal of achieving high-quality 3D
graphics performance and emotion syn-

thesis in the vector unit architecture has been

45MARCH–APRIL 2000

Table 3. Conditions and assumptions for

performance comparison in Figure 6.

Task Critical operation

Geometry transformation 4 × 4 parallel multiply-adds
Perspective transformation Division
Distance calculation Square root
Reciprocal distance calculation Reciprocal square root

75

33
21

13

85 85

46

150

0

20

40

60

80

100

120

140

160

180

M
ve

ct
or

s/
se

c

Geometry
transformation

Perspective
transformation

Distance 1/distance

Pentium III (600 MHz)
Emotion Engine (300 MHz)

Figure 6. Performance comparison: Emotion Engine (right bars) and Pen-
tium III SSE (left bars).

fM
A

C

fM
A

C

fM
A

C

fM
A

C

fM
A

C

fM
A

C

fM
A

C

fM
A

C
fM

A
C

fM
A

C

VI1data
RAM

16 Kbytes

VGPR1

VGPR0

ALU/shifter/LSU/fMAC

EFU

Vector unit 1

Vector unit 0

Superscalar RISC_Core

fDIV
VIF1

GIF IPU

RMC

SIF
PGIF

RAC

RAC

PLL

DMAC
SYSBUS

etc.
VIF0

fDIV

fDIV

fDIV

VI1data
RAM

16 Kbytes

VI1data
RAM

4 Kbytes

VI1data
RAM

4 Kbytes

D cache
4 Kbytes

1 cache
16 Kbytes SPRAM

16 Kbytes

TLB

Figure 7. Emotion Engine micrograph.

successful. The architecture—including the
two different vector units equipped with both
VLIW and coprocessor modes—can simulta-
neously process flexible calculations as well as
conventional 3D graphics calculations. By
using a broadcast mechanism, the fMACs
with a throughput of one cycle, and the fDIVs
with a latency of seven cycles, the vector units
achieve 85-Mvectors/sec perspective trans-
formation performance.

We are now researching processor architec-
ture for the next-generation computer enter-
tainment system. MICRO

References
1. K. Kutaragi et al., “A Microprocessor with

128b CPU, 10 Floating-Point MACs, 4
Floating-Point Dividers, and MPEG2
Decoder,” ISSCC (Int’l Solid-States Circuit
Conf.) Digest Tech. Papers, IEEE Press,
Piscataway, New Jersey, Feb. 1999, pp.
256-257.

2. F. Michael Raam et al., “A High-Bandwidth
Superscalar Microprocessor for Multimedia
Applications,” ISSCC Digest Tech. Papers,
IEEE Press, Feb. 1999, pp. 258-259.

3. A. Kunimatsu et al., “5.5 GFLOPS Vector
Units for Emotion Synthesis,” Hot Chips 11
Conf. Record, Aug. 1999, pp. 71-82.

4. N. Ide et al., “2.44 GFLOPS 300MHz
Floating-Point vector Processing Unit for
High-Performance 3D Graphics Computing,”
Proc. European Solid-State Circuits Conf.

(ESSCIRC 99), Editions Frontieres, Gif-sur-
Yvette, France, ISBN 2-86332-246-X, 1999.
pp. 106-109.

5. M. Oka and M. Suzuoki, “Designing and
Programming the Emotion Engine,” IEEE
Micro, Jan.-Feb 2000, pp. 20-28.

6. Intel Corporation, “Streaming SIMD Exten-
sions Throughput and Latency,” Intel(R) Archi-
tecture Optimization Reference Manual,
1999, pp. D-1; http://support.intel.com/design/
pentiumiimanuals/245127.htm.

7. H. Tago et al., “Importance of CAD Tools
and Methodologies in High Speed CPU
Design.” Proc. Asia and South Pacific Design
Automation Conf. (ASP-DAC 2000), ACM,
New York, Jan. 2000, pp. 631-633.

8. T. Kamei et al., “300MHz Design Methodol-
ogy of VU for Emotion Synthesis,” Proc. ASP-
DAC 2000, ACM, Jan. 2000, pp. 635-640.

9. N. Kojima et al., “Repeater Insertion Method
and Its Application to the 300MHz 128-Bit 2-
Way Superscalar Microprocessor,” Proc. ASP-
DAC 2000, ACM, Jan. 2000, pp. 641-646.

10. F. Ishihara et al., “Clock Design of 300MHz
128-Bit 2-Way Superscalar Microprocessor,”
Proc. ASP-DAC 2000, ACM, Jan. 2000, pp.
647-652.

Atsushi Kunimatsu, Nobuhiro Ide, Yukio
Endo, Hiroaki Murakami, Takayuki Kamei,
Masashi Hirano, Fujio Ishihara, and Haruyu-
ki Tago work for the Toshiba Semiconductor
Company in the System ULSI Engineering
Laboratory in Kawasaki, Japan. Kunimatsu
develops logic LSI chips. He received his BSEE
and MS in computer science from Keio Uni-
versity, Kanagawa, and is a member of the
IEEE. Ide holds BSEE and MSEE degrees from
Waseda University, Tokyo, and is a member of
the IEEE. Endo develops logic LSI chips. He
received the BS degree in material engineering
from Tokyo University. Murakami works in
the Microprocessor Design Department. He
holds a BS degree in mathematical engineer-
ing from the University of Osaka Prefecture in
Osaka, Japan. Kamei is a processor develop-
ment engineer. He received a BEEE and MS
in computer Science from Keio University.
Hirano is engaged in the research and devel-
opment of CMOS logic VLSI chips. He grad-
uated from the Ohsawano Technical High
School in Toyama, Japan. Ishihara holds BSEE
and MSEE degrees from Keio University. Tago

46

VECTOR UNIT ARCHITECTURE

IEEE MICRO

fM
A

C

fM
A

C

fM
A

C

fM
A

C

fM
A

C

fM
A

C

fM
A

C

fM
A

C

fM
A

C

VU1 data
RAM

16 Kbytes

VU0 data
RAM

4 Kbytes

VU1 instruction
RAM

16 Kbytes

VU0 inst.
RAM

4 Kbytes

Vector unit 1

Vector unit 0

EFU

VGPR

VGPR

fDIV
VIF1

VIF0

fDIV

fDIV

Figure 8. Vector unit micrograph.

is working on the design of a microprocessor
core and a system LSI chip for entertainment
applications. Earlier, he was a visiting scholar
at the Computer Science Department of the
University of Illinois.

Toshinori Sato is an associate professor
in the Department of Artificial Intelligence at
Kyushu Institute of Technology in Iizuka,
Japan. Sato holds BE, ME, and PhD degrees
in electronic engineering from Kyoto Uni-
versity. He is a member of the IEEE Com-
puter Society; ACM; Institute of Electronics,
Information and Communication Engineers;
and Information Processing Society of Japan.

Masaaki Oka, Akio Ohba, Teiji Yutaka,
Toyoshi Okada, and Masakazu Suzuoki work
for Sony Computer Entertainment in Tokyo.
Oka holds a BS degree in science from Kyoto

University. Ohba works in the Architecture Lab-
oratory and holds an MS degree in biophysical
engineering from Osaka University. Yutaka
received his BSEE from Keio University, Tokyo,
and develops real-time computer graphics sys-
tems such as the PlayStation. Okada received
the BEng degree in electrical engineering from
Keio University and develops video game con-
soles such as the PlayStation. Suzoki works in
the Software Development Department and
holds an MS degree in electronic engineering
from Tokyo University.

Direct comments concerning this article to
Atsushi Kunimatsu, System ULSI Engineer-
ing Laboratory, Toshiba Corporation;
atsushi.kunimatsu@toshiba.co.jp.

47MARCH–APRIL 2000

Call for Papers
IEEE Micro Special Issue on Embedded Fault-Tolerant Systems

The Guest Editors seek original manuscripts for this special issue on embedded fault-tolerant systems. Submissions should discuss fundamental

research as well as experimental design and evaluation. The topics of interest include, but are not limited to:

Submission deadline: December 1, 2000
Acceptance notice: May 1, 2001

Final manuscript deadline: July 1, 2001
Publication Date: September/October issue of 2001

To submit, send six (6) copies of the manuscript, in English, to Dr. Barry Johnson at the address below.

Submitted manuscripts must not have been previously published or currently submitted elsewhere for journal or magazine publication. Each

manuscript must not exceed 35 double-spaced, A4 or 8.5 x 11-inch pages, including figures and tables. Type size must be at least 12 point. One copy

of the manuscript must have a cover page containing author contact information (name, postal address, telephone number, and e-mail address) and a

100-word abstract. Requests for blind review will be honored. Manuscripts must be cleared for publication. A signed IEEE copyright transfer form

should accompany the submission. The copyright form and detailed information for authors is available at the Computer Society Web site at

http://www.computer.org/micro.

Guest Editors

• Fault-tolerant hardware-software codesign of embedded com-

puting systems

• Verification/validation of complex embedded computing systems

• Hardware-software fault-tolerance trade-offs

• Chip-level design of embedded fault-tolerant systems

• Embedded fault-tolerant systems in the aerospace, automotive,

and telecommunications industries

• Applications of embedded fault-tolerant design to medical diag-

nostics equipment and financial-banking transactions systems

• Formal methods and tools for verification and validation of

embedded fault-tolerant systems

• Case studies

Dr. B. Johnson

University of Virginia

Dept. of El. Eng.

Charlottesville, VA 22903

Phone: +1 804 924 7623

Email: bwj@virginia.edu

Dr. D. Avresky

Boston University

Dept. of El. & Comp. Eng.

Boston, MA 02215

Phone: +1 617 353 9850

E-mail: avresky@bu.edu

Dr. F. Lombardi

Northeastern University

Dept. El. & Comp. Eng.

Boston, MA 02115

Phone: +1 617 373 4159

E-mail: lombardi@ece.neu.edu

Dr. K. Grosspietsch

German Nat. Research Center

Center for I.T. (GMD)

D-53754 St. Augustin, Germany

Phone: +49 2241 14 2750

E-mail: grosspietsch@gmd.de

