Dynamic History-Length Fitting:
A third level of adaptivity for branch prediction

Toni Juan Sanji Sanjeevan Juan J. Navarro

Depart. of Computer Architecture
Univ. Politecnica de Catalunya
08034 Barcelona (Spain)

antonioj@ac.upc.es

Abstract first level of adaptivity has been the use of 2-bit saturating
counters [12]. An additional level of adaptivity has been in-
Accurate branch prediction is essential for obtaining troduced using other sources of branch information such as
high performance in pipelined superscalar processors that the history of branch outcomes and the correlation between
execute instructions speculatively. Some of the best currenbranches[16], [10], [17], [19], or even choosing among sev-
predictors combine a part of the branch address with a fixed eral predictors designed for different kinds of branch behav-
amount of global history of branch outcomes in order to ior [7], [3].
make a prediction. These predictors cannot perform uni- Some of the best current predictors are based on the two-
formly well across all workloads because the best amountlevel adaptive or correlated schemes proposed in [16] and
of history to be used depends on the code, the input data and10]. They combine fixed amounts of global history and
the frequency of context switches. Consequently, all predic-program counter (PC) bits to generate an index to one or
tors that use a fixed history length are therefore unable to several pattern history tables (PHT) of 2-bit saturating coun-
perform up to their maximum potential. ters. Several parameters influence the performance of these
We introduce a method —called DHLF— that dynami- predictors such as the size of the predictor tables, the way
cally determines the optimum history length during execu- the branch history and PC bits are combined, the way the
tion, adapting to the specific requirements of any code, in- PHT is updated as well as the amount of history and PC
put data and system workload. Our proposal adds an extrainformation used.
level of adaptivity to two-level adaptive branch predictors.
The DHLF method can be applied to any one of the predic- Motivation
tors that combine global branch history with the branch ad-
dress. We apply the DHLF method to gshathlf-gshare To illustrate the effect of history length on branch pre-
and obtain near-optimal results for ZHPECint95 bench- dictor performance, Figure 1a plots the misprediction rates
marks, with and without context switches. Some results arefor three two-level adaptive branch predictogshare[7]
also presented for gskewedh(f-gskewedl, confirming that ~ and the recently proposedree[13] andgskewed8]. The
other predictors can benefit from our proposal. benchmarks used ago andli from SPECint95 . The
area occupied by each predictor is 8Kbits fmhare and
12Kbits' for agreeand gskewed All three perform very
much alike forli and even though their performance for
go is different, all display the same kind of dependence
on the history length. In Figure 1b we plot the same re-
Branch prediction is a key performance component for suits as in Figure 1a, showing with shaded bars the range
wide-issue superscalar and deeply pipelined processorsef misprediction rates when varying the history length for
where several wrong-path instructions can be in-flight be- the three predictors. For all predictors, there is a signifi-
fore a branch is resolved. To reduce the number of lost cant range of variation in misprediction rate depending on
C-yCIeS due to Spec-u@tive execution of Wrong_p?‘th instruc- lagreehas the same PHT ashare(8Kbits) but has 4Kbits extra for
tions, branch predlctlon has evolved from static to more the bigs bit andyskewedas thrgbanks of 2-bit saturating counters, each

flexible predicto_rs._These pre_dictors try to_ adapt to dynamic jngexed with 11 bits. 12Kbits was the closest value greater or equal to
program behavior in order to improve their performance. A 8Kbits that could be used.

1. Introduction

0.30

(2)

0.30

(b)

0.30

(2)

(b)

A gshare (8K bits) go range - go 030 == Optimized for go
X agree (12K bits) FT = |i range e i o == Optimized for li

0.25 + gskewed (12K bits) 025 ¢ _ — 0.25 0.25 S ra DHLF
2 @ & &
S 0.20 020 T S 0.20 0204 o 5
- go & T c
S S
S 015 0.15 S 015 0.15
o o
o 3 & o
o < o
2 0.10 0.10 2 0.10 0.10
s s

li
0.05 0.05 0.05 v 0.05
&
N
0.00 ! 0.00 - - 0.00 ! 0.00
0 2 4 6 8 10 12 gshare agree gskewed 0O 2 4 6 8 10 12 go li
History length (8K bits) (12K bits) (12K bits) History length
Figure 1. Misprediction rates of three different Figure 2. Misprediction rates of two

two-level predictors that use global history,
using a 12-bit index (11-bit for gskewed), for
go and li. a: Effect of the history length. b:
Misprediction range for each benchmark and
predictor.

SPECIint95 benchmarks (go and li) using
a gshare predictor with a 12-bit index. a:
Effect of the history length. b: History length

optimized for go, li and using our DHLF
method (striped bar).

the history length (e.g@shareon go varies from 20% to
27% and from 4% to 13% fdi). Two interesting obser-
vations can be made from the misprediction rangegoof ~ marks. Our proposal adds another level of adaptivity, try-
First, even though thagreepredictor has lower variation ing to better fit the number of history bits needed by each
as a function of the history length, when optimal history benchmark and input data at execution time. This method
lengths are comparedshareandgskewederform better. can be applied to any member of the family of predictors
Secondgskewedichieves the best misprediction rate with that combine global branch history with PC bits to form
a history length of four bits. However, its performance for an index to one or several PHTs suchgshare[7], gse-
more than half of all possible history lengths is inferior to |ect[10], gskewed8], agree[13] andbi-mode[6]. We call

that of the besgshareconfiguration, despite the fact that it this method Dynamic History-length Fitting or DHLF.
occupies 50% more area.

From Figure 1 we can conclude that

case with fixed history lengths on &PECint95 bench-

As an illustration, Figure 2a shows the same results as
Figure 1a but only fogshare The PHT is indexed using
¢ the history length used for a particular code has a sig- 12 bits of the branch address xor-ed with global history bits

nificant impact on predictor performance, varied from 0 to 12. Increasing the history length improves
the performance fdir . Whereas fogo, the misprediction
rate reaches a minimum with a history length of 3 and as the
number of history bits is increased, the performance rapidly
« for a given predictor, achieving the best prediction ac- degrades. The arrows indicate the optimum for each code.

curacy requires the use of different history lengths for Figyre 2b shows what happens whgshareuses history
each code. All predictors that use afixed history length |engthsoptimal for go (3 bits) orli (10 bits). In each
are therefore unable to perform up to their maximum case optimizing for one code results in poor performance
potential, and in the other. Finally, the striped bar of Figure 2b shows
the performance achieved with the DHLF method applied
to gshare that we propose and evaluate in this paper. Note
that nearly optimal results are obtained for both benchmarks
with our method.

e determining the best predictor, for some codes, de-
pends on the history length used,

¢ the performance of two-level branch predictors can
be further optimized by adapting the history length to
each code.

Dynamic selection of the history length We will show that when context switches are considered,

the history length becomes more critical for performance.
We present a new method that, when applied to exist- The DHLF method is able to obtain the best results even in
ing two-level predictors, performs very close to the best this environment.

2-bit Paper organization

‘ n 2 counters

L — <>
\ IProgram Counter, | In section 2, we study the effect of the history length on
‘ misprediction rates fagshareas a function of predictor size
in the absence of context switches. Section 3 describes our
DHLF method and evaluates it's performance. The effect
of context switches on predictor performance is studied and
evaluated in section 4. In section 5 we apply our method
to gskewedand present some results. Section 6 discusses
related work and section 7 provides some concluding re-
marks.

13@

Pattern History Table
2" entries

Global History
|

PHT Index

2. Effect of history length on predictor perfor-

. . . . man
Figure 3. Detail of the gshare implementation ance

luated . -
evaluate To understand the effect of history length on prediction

accuracy, we simulateglshareon all SPECint95 bench-

marks for PHTs indexed with 10, 12, 14 and 16 bits and
Simulation methodology history lengths ranging from 0 to the number of index bits.

The misprediction rate on each benchmark is presented in

. . Figure 4. Each curve represents a particular predictor size.
b;l'he s![mulatl?ns h;;{e belt-:)n conhducfted UWIFE@EM%;O All graphs are plotted within a window ranging from 0%
obtainatrace of conditional branches fro n to 20% of misprediction rate, except fgo that is plotted

penchmarks usi_ng reference inputs. The benchmarks Wer%rom 129% to 32%. Since for all plots the size of the mispre-
instrumented withATOMand then executed on a DEC diction range shown is the same, the differences in mispre-

21164 workstation running Digital UNIX V4.0A. We first dicti ;
. . t tes bet be directl d
looked at the results of simulating 10, 100, 200, 500 a:fr(l)(;r; trr?eek?en?:r\:vn?z?kgny curve can be directly compare

and 1000 million dynamic conditional branches for several From Figure 4 we can identify three different behaviors

benchmarks. Since the_ result_s were stable aftgr_lOO m'"'_on'observing how the code predictability evolves when the his-
we carried out all our simulations up to 200 r_mlhon condi- tory length is increased: the predictability fmpressnd
Flonal brar]ches. Thro‘ughogft the paper we }NI|| use the term; improves as more history is usedipeg, m88ksimand
branches'to refer to .Condltlo.nal branches'.) especiallyperl show some irregular behavior for different

In all branch predictors simulated, the branch history history lengths. Finally, prediction accuracy fgrc, go and
register and the PHTs are immediately updated with the truevorteximproves with more history bits but quickly starts
outcome of_t_he branch instead of using the prgdicted out-¢q degrade. These different behaviors depend on the num-
come or waiting for the outcome to be known —it has been pe of static branches that account for most of the dynamic
shown in [18] that this has little overall effect on prediction branches, the degree of correlation between branches and
accuracy. the predictor size.

The study is carried out witgshareas described in [7]. The range of predictor sizes studied —up to 128K bits—
Figure 3 shows how thm bits of global history are xor-ed covers the predictor sizes for present and near future pro-
with the m higher-order bits of the low-order bits of the cessors: from the MIPS R10000 that has 512 entries of 2-bit
PC (after discarding the 2 lowest bits) to generate the indexcounters (1Kbit) indexed only with the PC [15] up to the re-
into the PHT. The PHT consists @f* two-bit saturating cently announced DEC AXP 21264 that will have a hybrid
counters initialized to saturated taken. predictor with an estimated area of 35Kbits [4]. To the best

Due to lack of space, we exhaustively study the effect of of our knowledge, except for the 21264, all processors use
different parameters on predictor performance using only the equivalent of 16Kbits or less area for their predictors.
two of theSPECIint95 benchmarks -go andli . These When the index size of the predictor reaches 16 bits
two benchmarks were chosen since they represent two dis{PHT of 128Kbits), the optimal results for all benchmarks
tinct types of variation in performance with changing his- are achieved with history lengths close to the maximum.
tory lengths. After analizing these results, we fix some of However, this requires having very big predictors, four
the parameters and present the results for the rest of théimes larger than the biggest one announced at present
benchmarks. More detailed results for SPECint95 (DEC AXP 21264). In section 4 we show that in a more
codes are available as a technical report [5]. realistic environment, where context switches happen quite

0.20 0.20 —
1 compress 1 ijpeg
1 £ 1
0.16 | > —o-10 0.16
i o —o- 12 i
o L x —o— 14 1
[1 S s 16 L
c 0.12 £ 0.12
2 g i
° i
8 q 4
S 0.08 0.08 |
2 1 1
=
0.04 0.04 —
0.00 111117171 00 +—TT"T"T""T"T"7 OoR+T T 1T T 1T 000 AT T
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
History length History length History length History length
0.20 - 0.20 - 0.20 0.20
1 li m88ksim perl 1 vortex
0.16
.]
© g
c 0.12
2 g
S
3]
S 0.08
2 1
=
0.04
0.00 0.00

T T T T TTTT | T T T T TTTT TTTTTTTT T T
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 4 6 8 10 12 14 16
History length History length History length History length

Figure 4. Effect of history length on the misprediction rate for all SPECint95 benchmarks using a
gshare predictor indexed with 10, 12, 14 and 16 bits.

often and most of the PHT information is lost frequently, be used by the predictolog,[PHT entries]). All bits of
even the big predictors behave similar to the small andthe BHR are xor-ed with the PC but a decoder and a set of

medium sized predictors presented in this section. two bit multiplexers select the desired number of bits of the
BHR that hold the past history information. Figure 5a de-
3. Dynamic history-length fitting picts a normal BHR at the bit level and Figure 5b shows the

modifications required to select any number of consecutive

BHR bits (from 0 to all of them). This additional logic is

In_the previous section it ha§ been sh_own that each COdE{Jsed in parallel with the xor and therefore does not intro-
requires a specific amount of history to give the best results.duce any extra delay in the index generation

f‘” k?hov;/n m%_emer;ts;)tu:nhs_ (t)f MO'ISVSLdg_TaTC pret?c_u:-d DHLF works on the basis of monitoring the mispredic-
ors atl (f:(;]r_nt melg 0 tﬁ CIS ory an { 'S "fi\tlﬁ a X ions during program execution and changing the history
amount ot hustory fength. L.onsequently, none ot these pre'Iength accordingly. We define an ‘interval’ to consist of

dictors can give the best results across "’_1” benchmar_ks. a fixed number of consecutive dynamic branches. We call
We propose and evaluatg a new |mplementa_t|0n of this numberstep During the execution of the program the
gsharecalleddhlf-gsharethat, _mstead of always xor-ing a misprediction for each interval is computed using a fixed
f|>_<ed nur_nber_ of history b_|ts, is able to xorany nL_meer c_)f history length. At the end of each interval the history length
history bits with the PC bits of the branch instruction. This to be used for the next interval is determined based on the

predictor will try to dynamically find the amount of history current number of mispredictions and the minimum value
that performs best for each code and input data at executior]encountered so far

time. It will do this by using the best history length required
for different phases of the code execution.

The extra hardware required to select the number of his-
tory bits to be xor-ed with the PC is very small. The Branch
History Register (BHR) size has to be equal to the maxi-
mum history length envisaged. The number of entries of the e A misprediction table with as many entries as the num-
PHT desired determines the number of PC bits that have to ber of bits of index to the PHT. Entrp holds the

3.1. Structure and operation

The components of the DHLF control consist of:

Number of

[rsonos to the one corresponding to the minimum in the mispredic-
S tion table. Another possibility would be to move towards it,

o increasing or decreasing by one the current history length.
The latter option has been chosen because it enables the
testing of history lengths in-between that may not have been

Prediction

pc pc tried for some time and might even yield lower mispredic-
tions.
fndex index Updating the pointer to the entry of the misprediction
(@)

table that contains the minimum number of mispredictions
can be done easily. During each interval all entries of the
misprediction table remain unchanged. At smaller periods

Figure 5. Hardware at the bit level to gener- (eachstep/index-bitdor instance) the control can test one
ate a 6-bit index to a PHT. a: for gshare with of the entries so that whestepbranches have completed,
a fixed history length of 4 bits. b: for dhlf- the entry of the misprediction table that has the minimum is
gshare, 6 bits of PC can be xor-ed with any already known.

number of history bits between 0 and 6. Note that all possible history lengths will be tested at

least once because all table entries are initialized to zero.
Each time the history length is changed, the index value
generated for a given branch PC xor-ed with the same pat-
tern of history bits changes. This means that a different
entry of the PHT will be used to make the prediction, intro-
e A pointer to the table entry that corresponds to the ducing aliases in the PHT. For this reason, when the history
number of history bits currently in use. length is changed, most of the state in the PHT is lost and
must be regenerated before reaching a stable state.
¢ A pointer to the table entry that contains the minimum The increased amount of aliasing in the PHT immedi-
misprediction count. ately after a history length change introduces extra mispre-
dictions that would corrupt the true performance of the cur-
e A misprediction counter that counts the mispredictions (ent history length. The solution would be to allow some
for the current interval. adequate warm-up time before starting to count the mispre-
dictions for the current history length. After testing various
values we chose this warm-up time to be equal to that of
an interval,step Consequently, the control treats the inter-
val immediately after a change in history length in a special
way. During this interval, the misprediction counter and

When the program starts execution, all entries of the mis- .table. are not updated. At the end of this intervall no compar-
prediction table, the misprediction counter and the branchiSON IS made between the current number of mispredictions

counter are initialized to zero. The number of history bits to and the_mlnlmum Vglue In the mlspred_lctlon table. Then, a
be used is also set to zero. normal interval begins with the same history length.

During each interval oftepbranches, the history length Figure 6 shows how the history length evolves over time
remains fixed in order to determine the number of mispre- 4Uring the execution ojo andli , usingdhif-gshare The

dictions for the current phase of execution with the current PHT is indexed with 12 bits and tfﬂepyalue is 16K. For

history length. bot_h benchrr_\{;\rks, there are se\{eral hls_tory Iepgth changes
At the end of the interval the current number of mispre- during t_he |n|t|al_pha_1$e of executlon._Thls stabilizes around

dictions is stored in its associated entry in the misprediction the opt_lmal static hls_tory Ieng_th ‘?'““”9_ the Ia_ltter phase of

table and compared with the minimum number recorded in execution. On the right of this figure IS a histogram t_hat

there. If the current number of mispredictions is less than or SNOWS the percentage of branches predicted at each history

equal to the minimum in the misprediction table, the history length.

length is not changed for the next interval. If it is greater,

then the history length is changed. Finally, the mispredic- 3-2. Tradeoffs

tion and branch counters are reset before starting a new in-

terval. The stepparameter controls the number of branches be-
Changing the history length could be done in different tween possible history length changes. Using a ssiafp

ways. One way would be to directly set the history length value allows the DHLF to react to small changes in the pre-

number of mispredictions that occured the last inter-
val when a history length of was used.

e A branch counter that counts the number of predicted
branches in the current interval. When this counter
reaches a value dftepit indicates the end of an in-
terval.

12 12 —

10 go 10 —

% | £

R e o I e e e T e T T o T e e B

0O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 0.0 0.2 04 0.6 08 1.0

History length
(2]

o

12 12 —
10 li 10 ‘ ‘
< _
2 3 8
Q
> 6 6 -
8
3] -
2 4 4
2 2 -
ot+r—TrrrTrTTr T T T T T 1
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 0.0 0.2 0.4 0.6 0.8 1.0
Branch number (in millions) Percentage of branches

Figure 6. Evolution of the history length during the execution of go and li when DHLF is applied to
gshare with an index of 12 bits and a step value of 16K. Also shown is the percentage of total time
spent at each possible history length.

dictability of the code. In case the program has several 3.3. DHLF area requirements
phases that require the predictor to adapt to differing re-
guirements, it could even behave better thymharewith

the best fixed history length. Moreover, with a sretkp
value the optimum history length can be determined faster. . :
However, thestepvalue has to be big enough to be able _The Dl_—”‘F control mechanism Increases the_ area re-
to count the mispredictions within a representative part of quired to implemengshare For an index of 10 bits and

the code. Large PHTs require a large number of updates td stepv_alue of 16K, it requir_es a_mispredicti_on table With.
reach a stable state. This implies that for larger predictor11 er_ltr_les that are each 13 bits wide (assurr_ung that the mis-
tables, largestepvalues will perform better. prediction rate will be lower than 50%). This works out to

11%13 = 143 bits extra, which is less than a 7% increase in
The extra mispredictions due to a history-length changearea. For the case of an index of 16 bits, the extra area will
can reduce the benefits of DHLF. Therefore, the DHLF con- be 17 % 13 = 221 bits, an increase in predictor area of less
trol has to test all history lengths as many times as possiblethan 0.02%.
to find the best one, but at the same time, as few times as
possible so that the extra mispredictions are minimized. For small PHTs (e.g 10 bits of index) the area required
for the control can be minimized by storing the number of
Itis possible that the control algorithm described in sub- mispredictions divided by a power of two. We tested this by

section 3.1 could lead to stagnation at a local optimum. storing values divided by 2, 4, 8 up to 64, and there were no
In order to avoid this, we have added to the control the significant differences in the results.

ability to move randomly to any history-length value when

the history length hasn't changed for a large number of Another way to reduce the area required to implement
steps However, in case it was at the global optimum, the DHLF would be to reduce the number of history lengths
end-result would be extra mispredictions due to the history allowed. For example, by using only even history lengths
length changes. For the simulated benchmarks this did nothe number of entries in the misprediction table is halved
alter the results. with little effect on DHLF performance.

0.32

0207 i In almost all benchmarkslhlf-gshareobtains near-optimal

results in comparison to usimggharewith the best fixed his-
tory length for each benchmark (labeled min). The heuris-
tic search for the best history length and the extra mispre-
dictions due to history-length changes prevents achieving
the optimal performance in some cases$n two particu-

lar casesdompress with a 16-bit index andn88ksim

with a 12-bit index) the performance is even better than for
any fixed lengthgshare This confirms our intuition that

in some cases, the DHLF method can respond better to the
history length requirements of different phases of the execu-
tion of the same benchmark. Onberl exhibits irregular
behavior and optimal results are obtained for just one pre-
dictor size (14-bit index). The reason for this could be the
non-uniform variance of history length requirements of this
benchmark as shown by the spikes in Figure 4.

go + 4K

o
@
~

0 16K
4 32K
X 64K
o 128K

0.28 0.16

Step value

o

N

EN
|

0.12

Q

i

o
|

0.08]

Misprediction rate

o

0.16 0.04 4

0.00 T T T T
10 16

0121 — T T
10 12 14

Index length

EN -

Index length

Figure 7. Misprediction rate of dhlf-gshare
for several step values compared to the mis-
prediction range of gshare with fixed history
lengths. The results are presented for go and

li with 10, 12, 14 and 16 index bits. o]
4. Considering context switches

In real-world computing environments, context switches
occur due to end of quantum, 1/O, etc. It has been shown
that the performance of even very accurate branch predic-

The parameter that has to be determined for the DHLF tors degrades considerably when context switches are con-
control is thestepvalue. In Figure 7 we have plotted the sidered [3], [9]. The main reason for this is that the in-
results ofdhlf-gsharefor stepvalues starting at 4K up to formation maintained by the PHT is lost periodically with
128K applied tago andli . The shaded bars represent the every context switch. Large PHTs and long history lengths
range of misprediction values obtained using ogshare require longer warm-up times because more PHT entries
with fixed history lengths. The maximum and minimum are indexed by each static branch. Predictors with shorter
misprediction rates are obtained by running the simulation warm-up times will have a higher prediction accuracy im-
each time with a different history length, up to the number mediately after a context switch.
of index bits (see Figure 4). Also marked are the arithmetic = Context switches introduce an additional restriction to
mean values for the range of misprediction rates. On thethese predictors that use fixed amounts of history. The best
shaded bars we have superimposed the misprediction ratekistory length for a given code can also change depending

3.4. DHLF evaluation

obtained using DHLF for differerdtepvalues. From Fig-
ure 7 it can be seen that teepvalue has no impact for all
predictor sizes foli . In the case ofjo, as the predictor
size increases, the effect of thepvalue on performance
is more noticeable. In general, large predictors will need

on the frequency of context switches. Since the frequency
of context switches depends on many unknown factors, such
as the load of the system at a given time, it would be impos-
sible to design a single predictor that uses a fixed history
length and that always achieves optimum performance for

a longer warm-up time after a history length change and even one benchmark. This highlights the importance of hav-

hence will benefit from largestepvalues. In order to sim-
plify the presentation we selected thiepvalue to be 16K

ing the flexibility to dynamically change the history length
of predictors. The results presented in the next section show

for the rest of the simulations even though this is not the that the DHLF method is able to find the best history length

best choice for large predictors.
The DHLF method can effectively overcome the signifi-

independent of the code, input data and context switch fre-
guency for all predictor sizes.

cant dependence on history length that prevents current pre-

dictors from achieving the best performance. DHLF intro-
duces a new parametatep As shown, the chosen value
for step—above a certain threshold— does not affect the
overall performance.

In Figure 8, we plot thedhlf-gshare results for all
SPECIint95 benchmarks, using stepvalue of 16K. As
in Figure 7, we have superimposed ttdf-gsharemispre-
diction rate over the range computed faysharepredictor.

4.1. Simulation methodology

To simulate the effect of context switches we flush the
contents of the PHT each time a context switch occurs as
in [3], reinitializing the PHT entries to saturated taken. We

2|n [5] we present one way to reduce the mispredictions due to history
length changes that we ca#lverse-gsharelt is also possible to improve
the performance by utilizing better search algorithms.

0.20 0.20 0.32 0.20 —
g compress { — gcc { = go g ijpeg
o 0.16 0164 - 0.28 _ 0.16
N] =] - 1z
] i i 1l — - =
_5 01244 0.12 1 - 0.24 1 1 0.12 1 X | |
=1 - o pa— | | X
o X B | | 1 X 1 _ 1
el 1. q 4 p— 4
2 0.08-K" * % L | o084 x 0.20 -] 1 0.08 -]
[=% E E T * E | | E
= E E T E X E
0.04- Stepvalue 16K 0.04 | 0.16 | = _ | o004
]]] "]
0.00 T T T T 0.00 T T T T 0.12 T T T T 0.00 T T T T
10 12 14 16 10 12 14 16 10 12 14 16 10 12 14 16
Index length Index length Index length Index length
0.20 - 0.20 - 0.20 0.20
1 li 1 ma88ksim 1 perl 1 vortex
0.16 0.16 -} 0.16 0.16
®]]]]
© 11— - - _—]]]
5 0.12 0.12 0.12 0124 T
B]]]]
9 b b b b -
£ 0089 — 0084 T | o008+ — 0.08
a] | |] - —] _]
s 1 | B | 1* =] * T 1 17 1
0.04 X % x| 004 T X 3| 0044 | 0.04 1 - _
]] 11— x - _] x
i] i X] x
0.00 T T T T 0.00 T T T T 0.00 T T T ¥ 0.00 T T T T
10 12 14 16 10 12 14 16 10 12 14 16 10 12 14 16
Index length Index length Index length Index length

Figure 8. Misprediction rate of all SPECint95 codes using dhlf-gshare with a step value of 16K
compared to the misprediction range of gshare with fixed history lengths (no context switches).

also tested reinitializing the PHT entries with random val- mance for the same predictor when context switches are not
ues and the results were very similar. considered. The curves show the same dependence on the
We define context-switch distancas the number of context-switch distance for all history lengths. As expected,
branches executed between context switches. The contextthe worst performance is obtained when the context-switch
switch distance depends on the percentage of branches idistance is the lowest.
the code, the system configuration and its load at execution We have plotted Figure 9 for the case of a PHT indexed
time. It could even change during the execution of a code with 16 bits to highlight the effect of context switches for
under real conditions. However, to simplify the evaluation big predictors. The arrows indicate the best history length
we study the effect of fixed context-switch distances, from for each context-switch distance. The best history length
8K up to 256K. FOrSPECInt95 codes this translates to for go with the same input data varies from 2 up to 12
between 40K and more than 3000K instructions betweenbits depending on the context-switch distance. Moreover,
context switches (we have found that from 5% up to 12% of there is a large variation in performance depending on the
the instructions in the dynamic instruction stream are condi- context-switch distance and the history length (14% mispre-
tional branches). The context-switch distances selected argliction rate forgo with no context switches compared to

similar to those used in [3]. 36% for the same history length and a context switch each
8K branches —the latter data point is off the scale).
4.2. Effect of history length on predictor perfor- In Figure 10 we present the effect of context switches on
mance misprediction rates for aBPECint95 benchmarks using

gshare As before, the index lengths studied are 10, 12, 14
Figure 9 shows the effect of context-switch distance on and 16 bits and the history lengths are varied from 0 to the
the misprediction rate fago andli , using thegsharepre- number of index bits for each curve. We fix the context-
dictor. The PHT is indexed with 16 bits while the history switch distance at 64K in order to simplify our presentation
length varies statically from O up to 16 bits. Each curve since itis an intermediate value. Unlike in Figure 4 (the non
corresponds to a different context-switch distance, rangingcontext-switch casejcc , go andvortex now show the
from 8K up to 256K. The gray curve shows the perfor- same behavior for all predictor sizes. As before, all codes

0.32 0.20

9o, 1 li

4 4. Evaluation

0.28 - 0.16 -
]] Figure 11 shows the performancediflf-gsharefor all
SPECIint95 codes using 10, 12, 14 and 16 index bits.
The history length was dynamically adjusted every 16K
branches as in previous figures. Once more, we have su-
perimposed thehlf-gshareresults over the range of values
obtained forgshare The context-switch distance used was
012 F g 0.00 ey 70K because the behavior is almost the same as for 64K but

N LT N R T N B
246810121416 0 246810121416 is not a multiple of 16K, thetepvalue used byhlf-gshare

Context-switch
distance

012 K§
0.08

0.16 -} 0.04

Misprediction rate

I o

N N

o S
(@\

o

Historyfength Historylength This allows us to tesihlf-gshareunder negative conditions
and shows that having a context switch within an interval

Figure 9. Effect of history length on the mis- does not reduce the performance of the method.
prediction rate of go and li using a gshare From Figure 11 we see that near-optimal results are ob-
predictor indexed with 16 bits. The num- tained for all benchmarks except fperl . It should be
ber of conditional branches between context noted thatdhlf-gshareachieves the best performance in
switches varies from 8K up to 256K. Also most codes for all predictor sizes considered with the same
shown is the misprediction rate when there stepvalue.

are no context switches (labeled inf.).
5. Applicability to other predictors

have differing history length requirements but now this as- 1he DHLF method can be applied to any predictor
pect holds for all predictor sizes studied. It can also be seerfhat combines history and PC bits, even to hybrid predic-
that for some codes, increasing the predictor size brings nd©rs [7],[3]. As an example we present some results for

improvementbecause of the overhead introduced by contexpne Of the latest predictorgskewed The skewed branch
switches. predictor uses an odd number of PHTs and indexes each

PHT using a different and independent hash function. All
hash functions are computed from the same vector of PC
and global history information. Predictions are read from
. each PHT and a majority vote decides the final outcome.

The DHLF method applied to the case where there arepetajls about the predictor and the hash functions can be
context switches retains the same predictor control de-foundin [8].
scribed in section 3. There are a few extra items to consider \\e evaluatedjskewedwith three PHTs and a partial up-
in order to aIIowthf-gshareto find the best history length y4te policy ongo andli . Sincegskewedequires three
across context switches tables we have studied the performance for indices of 9, 11,
13 and 15 bits. This represents predictor sizes from 3K bits
up to 192K bits, similar to the sizes used fygharein pre-
vious sections.

The shaded bars in Figure 12 show the range of mispre-
diction rates forgskeweddepending on the history length
used to calculate the indices into the PHTSs in the absence
of context switches. As we saw in previous sections for
gshare gskewedlso exhibits a significant range of mispre-
diction values for a given predictor size due to the effect of
history length. We have superimposed tdf-gskewede-
sults with astepvalue of 16K branches over tlgskewed
range. Fodi dhlf-gskewedhlways achieves the optimal

o Additionally, the firststep branches after a context Performance for all predictor sizes. Applied go, dhif-
switch will not be considered to avoid the effect of 9skewedichieves near-optimal performance with small and

the PHT reconstruction, as is done immediately after Medium sized predictors. For bigger predictors the perfor-
a history length change. mance optglned_wndhlf—gskeweds quite good but not op-
timal. This is mainly because we use the satepvalue for
3assuming that the misprediction rate will always be lower than 50% all predictor sizes. Better accuracy is obtained for big pre-

4.3. DHLF operation under context switching

¢ the current value in the misprediction counter has to be
discarded when a context switch occurs in the middle
of an interval and is not stored in the misprediction
table.

e The misprediction table and the current history length
must be saved each time a context switch occurs. This
means saving from 143 bits for a 10-bit index up to
221 bits for a 16-bit index, assumingstepvalue of
16K that requires 13 bitdor the misprediction counter
(i.e, the equivalent of saving four 64-bit registers).

0.20

0.20

compress go o 1 ijpeg
] < 5]
0.16 > —o-10 D oA 0.16 |
g & o 12 7%]
1] L < —o— 14 A 1
8 1 S =16 A k
c 012 £ - £ 0.12 -
S 1 . /]
S 1 0™ & 1
K 1 % 1
5 0.08 0.08 —
2 E 1
=
0.04 | 0.04 —
0.00 T T T T 0.00 1T T T T L e e 0.00 T T
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
History length History length History length History length
0.20 - 0.20 - 0.20 0.20
E li m88ksim perl 1 vortex

0.16 —

Misprediction rate

0.00

T T 0.00 4T~
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

History length History length History length History length

Figure 10. Effect of history length on the misprediction rates of all SPECint95 benchmarks using
a gshare predictor with 10, 12, 14 and 16 bits of index and context switches occurring every 64K
conditional branches.

dictors by using a largestepvalue —such as 32K or even ber. Only two possible values for history length are

64K. In [5] the results for alSPECint95 benchmarks for considered and further, these values are fixed. Their

differentstepvalues are presented. alternate proposal consists of profile-guided static pre-
Figure 13 is similar to Figure 12 with the exception that diction for highly-biased branches and dynamic pre-

we simulate context switches every 70K branches. As we diction for the rest.
pointed out before, context switching has a bigger negative
impact on large predictors. Note that when context switches
are simulateddhlf-gskewegberforms near-optimally for all

e The study in [14] extends the work of [1] and tries
to determine the exact history length for each static

predictor sizes in both benchmarks. branch at compile time.
These proposals are different from our proposal in sig-
6. Related work nificant ways: Since they focus on each specific branch in-

struction both studies require a complex profiling step to

Several studies have looked at the effect of using differ- determine the amount of history to be used for each static
ent history lengths. Our DHLF proposal tries to find the best Pranch. Further, both proposals would require modifica-
history length to be used dynamically at execution time. To tions to the instruction set to be able to use the information

the best of our knowledge, only two proposals [1] and [14] gathered in the profiling phase at execution time. Finally,
have tried to adjust the amount of history used. neither one of these proposals will be able to react to differ-

ent input data or system workloads.

e In [1] the static branches are classified depending on Other articles such as [7], [11], [8], [6], have studied the
the bias of their behavior. The highly biased branches effect of history length to find the best static combination of
require a few bits of history whereas the less biased PC and history or to better understand the behavior of their
branches require a large history length. They proposepredictors.
using a hybrid predictor with two components, one In general, almost all studies based on two-level adap-
with a few history bits and another with a large num- tive branch predictors assume that the final implementation

0.20 0.20 — 0.32 0.20 —
E compress E gcc {1 = go E ijpeg
o 0.16 0164 ~ 0.28 T = 0.16
§ e T T oT 1~ - 17 1z
c i i B i 1* T = =
o 0.12—-\\%_ 0.12—- X | | | | 0.24—- x - | | | | 0.12—- X = X
3] X] | | 1 L ox] X]
S 1 x 1 1 x X 1
2 00s° * = | o008 0.20 * | o084
(%] 4 4
s i Step value 16K i i]
0.04 Contex-switch 0.04 0.16 0.04
] . 70K]]]
1 distance 1 1 1
0.00 T T T T 0.00 T T T T 0.12 T T T T 0.00 T T T T
10 12 14 16 10 12 14 16 10 12 14 16 10 12 14 16
Index length Index length Index length Index length
0.20 - 0.20 - 0.20 0.20
1 li 1 ma88ksim 1 perl 1 vortex
0.16 0.16 -} 0.16 0.16
°]]]]
©]]] 1=
s 0124 — — — — 0.12 + 0.12 + 0.12
£] 1 _] 1.
S 1 1 1 1 —
L 0084 T 0084 — 0084 _ 0.08 u w
o 4 - 4 k8 g g 4 1 %
@ 1 = - | | 1 = x | | .|] x — — — 1 B | |
= 1 x 1 - = = {1 = 1 X X ||
0.04 **] 004 0.04 | 0.04 = X
]] 1= " | | |]
0.00 T T T T 0.00 T T T T 0.00 T T T "," 0.00 T T T T
10 12 14 16 10 12 14 16 10 12 14 16 10 12 14 16
Index length Index length Index length Index length

Figure 11. Misprediction rate of all SPECint95 codes using dhlf-gshare with a step of 16K compared
to the misprediction range of gshare with all possible fixed history lengths. The PHT is flushed every
70K conditional branches to account for the effect of context switches.

will have a fixed number of history bits and usually select time, with and without context switches. The evaluation of
as many history bits as index bits. As we have seen in Fig-DHLF has been carried out by applying it gshare(dhlf-
ures 4 and 10 this can be the worst case for benchmarkgsharg. All SPECint95 codes were run with this new

such agycc, go orvortex . predictor and the results confirm that it is able to achieve
performances very close to optimum, compared to the best
7. Summary fixed historygshareconfiguration, for each code. DHLF

can be applied to any predictor that combines global his-

Almost all recently proposed predictors combine, in a to.ryk/] V&’gn Pi bits&vﬁ\s an examplle Webshow a few rgsul':s
fixed way, information from the branch address with the his- wit -gskewedvhere DHLF also obtains near-optima

tory of the branch outcomes to predict the direction of con- performance for each specific benchmark. i
ditional branches. We have shown that the performance of PHLF has low area cost, dqes not_z_affect th_e predlptor
this type of predictors, for different codes, displays signifi- critical pgth z_ind does not require profiling nor instruction
cant variations depending on the history length used. These*®t mod|f|<_:at|on.)

predictors that combine PC and history in a fixed way are We believe thgt using DHLF on any one (_)f the two-
losing a large part of their potential performance becausele,vel branch pre@ctors will yle!d better prediction accura-
the best history length depends on several factors that an?es across a variety of codes, input data and context switch
only known at execution time. Some of these factors are requencies.

the code to be executed, the input data and the number of

conditional branches that can be executed between contexf\cknowledgements

switches in time-shared environments.

Before choosing one or another predictor it is more im- We would like to thank Jose Gonzalez and Roger Espasa
portant to use the best history length for each code for anywho gave us insightful comments on drafts of this paper. We
given predictor. We have presented DHLF, a method thatwish to also thank the anonymous referees for their valuable
finds the best history length for a given code at execution comments on the paper.

Misprediction rate

of

0.30 0.20

] 1 li
1€ g0]
0.26 . 0.16]
1s0-
02 &% o124 T T T T
. | |]
0.18 - | | 008 _
X | B | |
] — 1 x
0.14 5 0.04 2 8 8
] Stepvalue 16K ¥]
010 —— T T 0.00 —— T T T
9 11 13 15 9 11 13 15
Index length Index length

Figure 12. Misprediction rate of go and i
using dhif-gskewed with a step value of
16K compared to the misprediction range
of gskewed with all possible fixed history
lengths.

This work was supported by the Ministry of Education
Spain under contract CICYT TIC-0429/95 and by the

CEPBA.

References

[1] P.-Y. Chang, E. Hao, T.-Y. Yeh, and Y. Patt. Branch classi-

fication: a new mechanism for improving branch predictor
performance. I”27th Int. Symp. on Microarchitecturpages
22-31, Nov. 1994.

[2] A. Eustace and A. Srivastava. ATOM: A flexible interface

for building high performance program analysis tools. In
Proceedings of the Winter 1995 USENIX Conferepages
303-314, Jan. 1995.

[3] M. Evers, P.-Y. Chang, and Y. N. Patt. Using hybrid branch

predictors to improve branch prediction accuracy in the pres-
ence of context switches. BBd Annual Int. Symp. on Com-
puter Architecturepages 3—-11, May 1996.

[4] L. Gwennap. Digital 21264 sets new standaidicropro-

cessor Reportl0(14), Oct. 1996.

[5] T. Juan, S. Sanjeevan, and J. J. Navarro. A third level of

adaptivity for branch prediction. Technical Report UPC-
DAC-1998-4, Computer Architecture Department, UPC,
Barcelona, March 1998.

[6] C.-C. Lee, I.-C. K. Chen, and T. N. Mudge. The Bi-Mode

branch predictor. 1180th Annual Int. Symp. on Microarchi-
tecture Dec. 1997.

[7] S. McFarling. Combining branch predictors. Technical Note

TN-36, Western Research Laboratory, DEC, June 1993.

[8] P. Michaud, A. Seznec, and R. Uhlig. Trading conflict and

capacity aliasing in conditional branch predictors. 24th
Annual Int. Symp. on Computer Architectumages 292—
303, June 1997.

[9] R. Nair. Dynamic path-based branch correlation. 28th

Int. Symp. on Microarchitecturgages 15-23, Nov. 1995.

0.30 0.20
{&— go 1 li
0.26 - ¥ = 0.16 -
i ,Z’@_ 1
@]
s X | | 5 1
c 022 —\(\\“ B 0124 — — — —
£ 1 X X X 1
S
g 4
5 0.18- 008 _
2] B | |
£] | |
014] Step value 16K 000] * 8 B B
] Contex-switch]
. 70K
distance
010 —— T T T 0.00 —— T T T
9 11 13 15 9 11 13 15
Index length Index length

Figure 13. Misprediction rate of go and i
using dhif-gskewed with a step value of
16K compared to the misprediction range
of gskewed with all possible fixed history
lengths. The PHT is flushed each 70K con-
ditional branches to account for the effect of
context switches.

[10] S.-T. Pan, K. So, and J. T. Rahmeh. Improving the accu-
racy of dynamic branch prediction using branch correlation.
In 5th Int. Conf. on Architectural Support for Programming
Languages and Operating Systempages 76—84, Oct. 1992.

[11] S. Sechrest, C.-C. Lee, and T. Mudge. Correlation and alias-
ing in dynamic branch predictors. B8d Annual Int. Symp.
on Computer Architecturgpages 22-32, May 1996.

[12] J. E. Smith. A study of branch prediction strategies. In
8th Annual Int. Symp. on Computer Architecturages 135—
148, May 1981.

[13] E. Sprangle, R. S. Chappell, M. Alsup, and Y. N. Patt. The
agree predictor: A mechanism for reducing negative branch
history interference. 124th Annual Int. Symp. on Computer
Architecture June 1997.

[14] M.-D. Tarlescu, K. B. Theobald, and G. R. Gao. Elastic his-
tory buffer: A low cost method to improve branch prediction
accuracy. InProceedings of the 1997 IEEE International
Conference on Computer Desigrages 82—87, Oct. 1997.

[15] K. C. Yeager. The MIPS R10000 superscalar microproces-
sor. [EEE Micro, 16(2):28—-40, Apr. 1996.

[16] T.-Y.Yehand Y. N. Patt. Two-level adaptive training branch
prediction. In24th Annual Int. Symp. on Microarchitecture
pages 51-61, Nov. 1991.

[17] T.-Y. Yeh and Y. N. Patt. Alternative implementations
of two-level adaptive branch prediction. IBth Annual
Int. Symp. on Computer Architecturgages 124-134, May
1992.

[18] T.-Y.Yeh and Y. N. Patt. A comprehensive instruction fetch
mechanism for a processor supporting speculative execu-
tion. In 25th Annual Int. Symp. on Microarchitectuages
129-139, Nov. 1992.

[19] T.-Y. Yeh and Y. N. Patt. A comparison of dynamic branch
predictors that use two levels of branch history20th An-
nual Int. Symp. on Computer Architectuages 257—-266,
May 1993.

