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There is a clear trend in personal com-
puting toward multimedia-rich applications.
These applications will incorporate a wide vari-
ety of multimedia technologies, including audio
and video compression, 2D image processing,
3D graphics, speech and handwriting recogni-
tion, media mining, and narrow-/broadband
signal processing for communication.

In response to this demand, major micro-
processor vendors have announced architec-
tural extensions to their general-purpose
processors in an effort to improve their multi-
media performance. Intel extended IA-32 with
MMX1 and SSE (alias KNI),2 Sun enhanced
Sparc with VIS,3 Hewlett-Packard added
MAX4 to its PA-RISC architecture, Silicon
Graphics extended the MIPS architecture with
MDMX,5 and Digital (now Compaq) added
MVI to Alpha. This article describes the most
recent, and what we believe to be the most
comprehensive, addition to this list: Power-
PC’s AltiVec.6,7 AltiVec speeds not only media
processing but also nearly any application in
which data parallelism exists, as demonstrat-
ed by a cycle-accurate simulation of Motoro-
la’s MPC 7400, the heart of Apple G4 systems.

Highlights and performance summary
Like all the other extensions, AltiVec is a

SIMD (single-instruction, multiple-data)

extension to a general-purpose architecture.
But the similarity ends there. Whereas the
other extensions were obviously constrained
by backward compatibility and a desire to
limit silicon investment to a small fraction of
the processor die area, the primary goal for
AltiVec was high functionality. It was designed
from scratch around the premise that multi-
media will become the primary consumer of
processing cycles8 in future PCs and therefore
deserves first-class treatment in the CPU.

Unlike most other extensions, which over-
load their floating-point (FP) registers to
accommodate multimedia data, AltiVec ded-
icates a large new register file exclusively to it.
Although overloading the FP registers avoids
new architectural state, eliminating the need
to modify the operating system, it also signif-
icantly compromises performance, which was
not acceptable for AltiVec.

AltiVec treats multimedia data as first-class
data in the form of vectors. Vector elements
include all of the major data types found in
3D graphics, image processing, digital audio
and video, speech recognition, data mining,
and other multimedia applications.

AltiVec’s powerful data reorganization capa-
bility goes far beyond that of any previous
SIMD engine, making AltiVec uniquely well
suited to the bit-parallel algorithms found in
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digital signal processing (DSP) domains.
These include error correction, bit-packing
kernels, and many others.

AltiVec extends the scalar PowerPC archi-
tecture with a powerful new set of SIMD
instructions. These instructions execute from
the same instruction stream as the PowerPC’s
scalar integer, floating-point, and branch
instructions.

AltiVec’s major architectural characteristics
include

• fixed-length 128-bit vectors, each com-
prising four, eight, or 16 data elements;

• a separate vector register file with a 32-
register namespace, each register holding
one 128-bit vector;

• vector-element data types of 8-, 16-, and
32-bit signed or unsigned integers, as
well as IEEE single-precision floats;

• 162 new SIMD-style instructions opti-
mized for digital signal processing;

• saturation or modulo arithmetic;
• a four-operand, nondestructive instruc-

tion format (three sources, one destina-
tion); and

• modeless operation for zero overhead use
of AltiVec instructions.

SIMD parallelism is well matched to the
parallelism found in the packed-data streams
of media applications. To use SIMD process-
ing, algorithms typically break long data
streams into sequences of short fixed-length
vector operands. SIMD instructions then
process these vectors iteratively in loops, each
instruction performing the same operation on
all corresponding elements in the source-
operand vectors in parallel. With AltiVec’s long

128-bit vector, loop overheads
tend to be small, giving
AltiVec processors perfor-
mance approaching that of
true vector machines.

On the basis of cycle-
accurate simulations of more
than 40 media processing ker-
nels, we found that AltiVec
delivered an average speedup
of 6.5 on integer kernels and
5.1 on floating-point kernels,
over the same PowerPC
processor without AltiVec.

The speedups often approach—and sometimes
even exceed—the theoretical SIMD paral-
lelism, which is 16 on 8-bit data (for example,
video), eight on 16-bit data (for example,
modem filters), and four on 32-bit integers and
floats (for example, 3D graphics and high-
fidelity audio). Speedups greater than the theo-
retical parallelism arise from the ability to use
new algorithms that are inappropriate for scalar
processors or for less capable SIMD processors.

AltiVec architecture
One of the attributes that enable large

speedups across such a broad spectrum of
media processing applications is AltiVec’s sup-
port for all of the important media data types.
Table 1 shows the various data types that a
processor must support if it is to perform well
on media processing tasks. To date, AltiVec is
the only SIMD architectural extension to sup-
port all these types.

AltiVec’s large vector register file provides
quick access to a large number of values, such
as the transform or filter coefficients that are
accessed frequently in signal processing loops.
The large register namespace facilitates soft-
ware pipelining and loop unrolling necessary
to cover the long latencies associated with
media streams. With a separate register file,
the general-purpose and floating-point regis-
ters are not encumbered with multimedia
data, so media processing doesn’t interfere
with scalar processing. The separate file also
permits the vector registers to be physically
optimized for the wide SIMD execution units.

Another important AltiVec feature is its
four-operand instruction format (three source
operands, one destination). This feature gives
each instruction extraordinarily high operand
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Table 1. Data types for various media tasks.

                                                            Data type                                                        

           8-bit integer              16-bit integer      Single-precision float

Task Unsigned Signed Unsigned Signed Signed

Video Low quality High quality
Audio Low quality High quality
Image processing Low quality High quality
3D graphics Low quality High quality
Speech recognition Low quality High quality
Communication Crypto Crypto
Media mining High quality



bandwidth and supports the encoding of pow-
erful instructions such as multiply-add, per-
mute, and select (described later). Since the
four-operand format is nondestructive, it also
eliminates the excess register shuffling and
copying that comes with destructive two-
operand formats like that of the x86 architec-
ture. Thus, AltiVec’s instruction format allows
programs to use registers efficiently, minimiz-
ing spill/fill traffic to memory and producing
a short instruction path, which are both
important for efficient signal processing loops.

AltiVec is based on a simple RISC-style
load/store architecture, but instructions oper-
ate on vector operands rather than on the sim-
ple scalar operands of classical RISC engines.
The AltiVec instruction set was distilled from

many digital-media-processing algorithms
into a set of generalized primitives that sup-
port common operations such as saturation
arithmetic. Using this approach, the design
can support a wide spectrum of media appli-
cations while avoiding the highly specialized
instructions commonly found in traditional
DSPs. Counting all variations of data types
and arithmetic (modulo, saturation, signed,
and unsigned), AltiVec adds 162 new instruc-
tions to the PowerPC architecture, as sum-
marized in Table 2.

The AltiVec design criteria called for all
instructions to be easily pipelined and suitable
for superscalar, out-of-order dispatch. All
AltiVec processors are expected to implement
the full architectural vector width and to fully
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Table 2. AltiVec instruction-set summary.*

          Arithmetic                        Source elements                        Destination elements      

Instruction class

Load/store X X X X X
Stream prefetch X
Add/sub X X X X 2 X X X X X X X X
Multiply X X X 2 X X X X X X
Multiply-add X X X X 3 X X X X
Multiply-sum X X X X 3 X X X
Sum across X X 2
Partial sum across X X X 2 X X X X X X
Average X X X 2 X X X X X X
Logicals X 2 X X
Rotate/shift X X X 2 X X X X X X
Compare X X 2 X X X X X X X X
Select 2 X X
Pack X X X X 2 X X X X
Unpack/merge X X 2 X X X X
Splat X X X 2 X X X X X X
Permute X X 3 X X
Shift elements 2 X X
Round to integer X 1 X X
Convert w/scale X X 1 X X X X
Max/min X X X 2 X X X X X X X X
1/x estimate X 1 X X
1/sqrt(x) estimate X 1 X X
Log/power estimates X 1 X X

*This table summarizes AltiVec capabilities in a concise form. Not all combinations shown are available for every instruction in a given class.
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pipeline all instructions; that is, all instructions
will issue back-to-back with a throughput of
at least one instruction per cycle. Most imple-
mentations will support simultaneous dispatch
of one ALU-class vector instruction along with
one permute-class vector instruction, or either
of these paired with a vector load 
or store. Thus, the peak throughput of AltiVec
instructions will typically be two per cycle, as
it is in Motorola’s MPC 7400 processor. No
AltiVec implementations will ever impose any
restriction on, or suffer any penalty for, mixing

vector instructions with Pow-
erPC scalar instructions.

Permute power
Much of AltiVec’s perfor-

mance and flexibility derives
from the permute instruction
(vperm), illustrated in Figure
1a. This instruction performs
two essential functions: data
reorganization and table
lookup. One of the historical
problems with SIMD archi-
tectures is that if the data
structures do not precisely
match the hardware organiza-
tion, the program must pre-
process the data to conform to
the hardware. This prepro-
cessing overhead severely
reduces the potential SIMD
speedup. Permute eliminates
this problem by providing a
method for arbitrarily re-
arranging vector elements
with a single instruction. Per-
mute’s dual source-vector
operands (VA and VB)
enhance this capability by
allowing rearrangement of
data across vector boundaries.

The other important use
for permute (table lookup) is
discussed later. Although per-
mute requires a full 32 × 16
bytewise hardware crossbar,
the enormous value of per-
mute’s table lookup function
alone makes it worth the
incremental hardware cost
over that of the more restric-

tive data shuffling operations found in other
SIMD machines.

In addition to the full generality of the per-
mute instruction, AltiVec provides specific
variants for unpacking (expanding) small ele-
ments into larger fields, packing (truncating)
large elements into smaller, tightly packed
fields, merging (shuffling) elements from two
vectors into one vector, replicating an element
across a vector (splat), and double-vector shift-
ing and rotating. These variations specify the
permute-control vector implicitly or as an
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Figure 1. Vector permute (a) and vector dot-product (b) primitives in AltiVec.



explicit literal within the instruction opcode,
thus avoiding the overhead of creating and
storing the permute-control vector in these
common cases. Special forms of pack and
unpack are provided for 16-bit pixels in a
1/5/5/5 format.

Vector dot product (multiply-sum)
One of the most common DSP operations

is the vector dot product. AltiVec accomplish-
es this operation with two instructions: multi-
ply-sum and sum-across. Multiply-sum,
illustrated in Figure 1b, multiplies corre-
sponding elements in two vector registers (VA
and VB), sums those products with four values
from a third vector register (VC), and deposits
the four 32-bit partial sums into the destina-
tion vector register (VT). VC serves to accu-
mulate partial sums for taking the dot product
of long vectors. AltiVec processors carry out the
multiplications to full precision and then sub-
ject the individual partial sums to saturation
(clamp to max on overflow, min on underflow).
As a final step, the sum-across instruction can
be used to sum the four accumulated partial
sums into a single 32-bit scalar result.

AltiVec provides multiply-sum in byte- and
halfword-element forms. The byte-element
forms support motion estimation in video
compression. During motion search, the mul-
tiply-sum instruction is used to locate the
closest matching macroblock using the sum-
of-differences-squared (ai – bj)2 measure. This
approach produces a higher quality compari-
son than one based on the sum-of-absolute-
difference (|ai – bj|) instruction used by
architectures such as VIS and SSE, while still
achieving a throughput of 16 pixels per cycle.

Multiply accumulate
Another common DSP operation is multi-

ply-accumulate. This operation underlies
many digital filters, mathematical transforms,
matrix-arithmetic operations, and so on.
AltiVec provides multiply-add, a more pow-
erful version of multiply-accumulate, with
three source operands and one destination.
With multiply-add, the respective elements
in two source vectors are multiplied and the
products added to corresponding elements of
a third source vector. The intermediate cal-
culations are carried out to infinite precision,
and the final product sums are truncated to

fit into destination-register fields the same size
as the source elements.

For halfword elements, AltiVec’s multiply-
add has two forms: multiply-add-low and
multiply-add-high. In the low form, the
unsigned accumulator elements are added to
the full product, and the intermediate prod-
uct-sums are truncated modulo 216. In the
high form, the signed accumulator elements
are left justified (7-bit left shift), added to the
32-bit intermediate products, and then satu-
rated to fit into the 16-bit destination element
fields. The 7-bit left shift (as opposed to 8-
bit) results in one extra bit of precision by tak-
ing advantage of the fact that the most
significant bit of each signed 32-bit interme-
diate product is redundant. A variant of this
form rounds the intermediate product-sums
to squeeze out an additional half bit of preci-
sion. These tricks provide additional precision
that is important to several algorithms, espe-
cially audio processing.

Multiply-add is not provided for byte ele-
ments because 8 bits of precision is not suffi-
cient for most DSP algorithms. In most
algorithms involving 8-bit data, the elements
are first expanded to 16 bits, where most com-
putations are carried out, and the final results
are truncated back to 8 bits. Video compres-
sion and decompression, which use 8-bit val-
ues throughout, are exceptions, but the
operations involved in those algorithms are
more suited to multiply-sum, which does have
8-bit forms. In the few cases that require mul-
tiply-add of byte elements, vector-multiply
and vector-add instructions are provided.

As a concession to silicon area, AltiVec does
not provide a vector-multiply or multiply-add
for 32-bit integers. For applications requiring
more than 16 bits of precision, such as high-
fidelity digital audio, 24-bit precision is usu-
ally sufficient. AltiVec provides this level of
precision with its floating-point instructions,
which do include a multiply-add. Floating
point also provides the wide dynamic range
that is often the real motivation to use inte-
gers larger than 24 bits.

Conversion between integer and floating-
point formats is very fast in AltiVec. A single
instruction converts and scales a vector of four
signed or unsigned 32-bit fixed-point words to
a vector of four single-precision floating-point
values, or vice versa. An instruction for round-
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ing floating-point values to integral values via
any of the four IEEE-754 rounding modes9 is
also provided. Since all AltiVec instructions are
fully pipelined, SIMD floating-point arith-
metic throughput is similar to that of SIMD
integer arithmetic as long as the floating-point
unit’s pipeline latency can be covered, which it
usually can. With these floating-point features,
AltiVec sacrifices little by not directly support-
ing 32-bit-integer multiply.

For division and square root, AltiVec uses
Newton-Raphson refinement of a reciprocal
seed. The high accuracy achieved with
AltiVec’s fused multiply-add instruction (sin-
gle rounding after the add operation) allows
rapid convergence to an IEEE-754–accurate
reciprocal value. This approach provides
divide performance equaling or exceeding that
of processors with expensive division hard-
ware. Unlike with hardware dividers, AltiVec’s
approach carries no hidden-state information
from cycle to cycle; thus, division can be fully
pipelined and intermediate instructions can
be easily rescheduled.

Conditionals
Changes in control flow present a serious

performance problem for any processor, espe-
cially those running DSP applications where
loops tend to be tight and the data-dependent
decisions difficult to predict. The latter are
nearly intractable in SIMD architectures,
which process multiple data elements in a sin-
gle instruction.

Although AltiVec provides a means for con-
ditional branching, it places more emphasis on
avoiding branches. To this end, AltiVec offers
a type of conditional-move instruction, called
select (vsel), which, in concert with vector-
compare instructions, operates efficiently on
SIMD vectors. The vector-compare instruc-
tions generate a predicate vector that can be
stored in any vector register and used by sub-
sequent vsel instructions to choose elements
from one of two registers, depending on the
value of the corresponding predicate elements.
With this mechanism, data-dependent deci-
sions can be made on all elements in a vector
in parallel, making it unnecessary to test and
branch on each element individually. AltiVec
can use the vsel instruction to simulate predi-
cated execution, which can eliminate many
branches. Since vsel selects values on a bit-by-

bit basis, it is also useful for selecting and merg-
ing vector subfields that do not fall on element
boundaries.

In cases where data-dependent redirection
of program control flow cannot be avoided,
AltiVec’s vector-compare instructions option-
ally update PowerPC’s condition register
(CR06) field. Subsequent PowerPC condi-
tional-branch instructions can test this regis-
ter in the normal manner. A special form of
vector compare—vector compare-bounds—
speeds up 3D-graphics clipping operations.

Loads and stores
The philosophy behind AltiVec’s memory

operations is to support only basic load and
store primitives in an effort to keep the mem-
ory path as fast as possible. The load-vector
and store-vector instructions transfer full
quadword vectors between memory and the
vector registers. Load-vector-element and
store-vector-element instructions transfer
individual byte, halfword, and word scalar
elements between memory and the vector reg-
isters. Vector loads and stores use the index-
addressing mode (RA|0 + RB) only.

All memory accesses are aligned on their nat-
ural size boundary. If a load or store’s address
is not size aligned, the appropriate number of
least-significant address bits is ignored and an
aligned transfer occurs. AltiVec provides assis-
tance for extracting misaligned data once it is
in the registers. Special load-vector-for-shift-
left/right instructions assist in this process by
computing a permute-control vector based on
the misaligned memory address. Random iso-
lated unaligned-vector loads can be simulated
with just four instructions, but the average cost
of unaligned-vector loads in a long linear
sequence, which is the more important case,
approaches an average of only two instructions
(one load vector and one vector permute).
These two instructions will issue simultane-
ously in most AltiVec implementations.

Software-directed prefetch streams
AltiVec allows software to manage the band-

width between processor and memory with
explicit cache management instructions. With
these instructions, software can indicate to the
cache hardware how it should prefetch data and
prioritize replacement. The principal instruc-
tion for this purpose is the cache-prefetch
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instruction, called data-stream touch. This
instruction specifies the starting address, a block
size (one to three vectors), the number of blocks
to prefetch (one to 256 blocks), a signed stride
(± 32,768 bytes), and a 2-bit tag that unique-
ly identifies one of four prefetch streams that
can run simultaneously. Other forms of data-
stream touch are provided for writing data into
streams and marking data as transient, that is,
as having poor temporal locality.

AltiVec coding examples
AltiVec has proven adept at accelerating a

wide range of multimedia and DSP applica-
tions. To illustrate its utility, we present cod-
ing examples from the areas of image
processing, wavelet signal processing, and
Galois-field arithmetic. 

Median filter
Median filter is an algorithm commonly

used in image processing to smooth out noise.
The support region of the pixel neighborhood
in such a filter is normally a sliding filter win-
dow. Since the data type is usually 8-bit
unsigned (intensity) values, the sequence of
scalar memory accesses typically involves
numerous misaligned memory accesses. Fig-
ure 2 provides a high-level description of a 
5 × 5 median filter based on a simple algo-
rithm. The two most important functions are
pixel load and compare-and-swap.

In Figure 2, one pixel neighborhood appears
in the dashed box. Twenty-five vectors are
needed to calculate 16 output pixels in the
third row. Even though pixel sets are mis-
aligned, the use of AltiVec’s load and shift fea-
tures completely avoids expensive unaligned
memory accesses. Additionally, with this
approach each pixel is fetched only once, thus
minimizing the number of memory accesses.

This example illustrates AltiVec’s double-
shift instruction, vsldi. The critical innermost
loop of compare-and-swap (V1, V2) can be
implemented using a simple three-instruction
sequence of vmaxub Vx, V1, V2; vminub V1,
V1, V2; vor V2, V1, Vx. This sequence,
which accumulates the minimum pixel value
in V1, can be executed in just two cycles on a
typical AltiVec superscalar implementation,
resulting in a significant speedup over scalar
processors for median filters, even with this
simple algorithm. With a more sophisticated

algorithm, AltiVec can execute median filter at
1.2 cycles per output pixel. 

Haar transform
The applications of wavelet technology

have increased markedly in areas such as dig-
ital image processing, data compression,
astronomy, acoustics, sub-band coding, imag-
ing, speech discrimination, and fractal com-
pression. The Haar transform, introduced in
1910, is the oldest wavelet transform. The 
2 × 2 transform decomposes an image into
four bands whose spatial frequencies and spa-
tial contents differ. 

Figure 3 (next page) illustrates this trans-
form, along with its implementation in
AltiVec code. This example illustrates the use
of the multiply-sum operation. Support for
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Aligned Aligned

Sliding window

1. lvx

2. lvx

3. vsldi

4. vsldi

5. vsldi

6. vsldi

V0, [1600]

V31, [1616]

V1, V0, V31, 1

V2, V0, V31, 2

V3, V0, V31, 3

V4, V0, V31, 4

; 10% gray pixels from memory, Row 1

; Next set of 10% gray pixels, Row 1

; Funnel shift for 20% gray pixels, Row 1

; Funnel shift for 30% gray pixels, Row 1

; Funnel shift for 40% gray pixels, Row 1

; Funnel shift for 50% gray pixels, Row 1

for each pixel vector {             /* i.e., a set of 16 pixels */
       load appropriate 25 pixel values P[0..24]
       for i : = 0 to 12 {
                    MIN = P [i]
                    for j := i upto 24 {
                               Compare_and_Swap (Min, P[j])
                               /* MIN <-min (MIN, P[j]);
                                       P[j] <- max (MIN, P[j]) */
                          }
             }
             /* MIN holds the median of P[0..24] at this point */
}

(a)

(b)

(c)

Figure 2. Pixel access during 5 × 5 median filtering.



one signed and one unsigned operand is cru-
cial for filtering applications like this, where
the signed filter coefficients are small enough
to fit in a byte and the input is unsigned 8-bit
data. A video-loop filter, which performs
smoothing in YUV color space, is another
such application. Here the convolution ker-
nel is separable and has coefficients small
enough to fit in a byte. In the absence of archi-
tectural support for byte data types, the pro-

gram would have to unpack the data and
extend the coefficients to 16 bits, losing half
the potential parallelism.1,3

Galois-field arithmetic
Table lookups involving small tables (256 or

fewer elements) and small elements (8 or fewer
bits) are common in multimedia and commu-
nication kernels such as cyclic redundancy
check (CRC) code generation, convolution
encoding, Galois-field (GF) multiplication, and
many nonlinear functions, such as gamma cor-
rection. Also, bit-level manipulations, includ-
ing various simple functions such as bit-stream
interleaving or bit (un)packing, are often pro-
grammed using table lookup functions. Most
traditional scalar and SIMD architectures do
not support parallel implementation of such
functions, so, for example, a sequence of 16
index extractions, 16 address calculations, and
16 data loads would be needed to load 16 data
items based on 16 indices. AltiVec accom-
plishes all of these operations with one vperm
instruction. 

This powerful capability enables sophisticat-
ed techniques like GF arithmetic, unlocking
entirely new algorithms that are computation-
ally intractable on conventional scalar and
SIMD engines. Figure 4 illustrates the steps in
performing a 16-way parallel lookup in a 256-
element table (with byte elements).1,3 

GF arithmetic, that is, arithmetic over a
finite field, has many important applications.
One example is Reed-Solomon coding, which
is a type of block code commonly used for
error correction in broadband communica-
tions. With add-form representation, GF addi-
tion is just an exclusive-or operation. GF
multiplication, however, is expensive. For
example, a GF (24) multiplication involves
three table lookups into two 16-element tables
and a modulo-15 addition, as shown in Fig-
ure 5. Note that the more commonly used GF
(28) multiplication can be carried out using
three GF (24) multiplications and four GF (24)
additions.10

Performance results
The AltiVec performance data presented in

this article is based on cycle-accurate simulation
of Motorola’s MPC 7400 microprocessor with
AltiVec. The simulated processor has several
important microarchitecture characteristics: 

92

ALTIVEC EXTENSION

IEEE MICRO

2×2 input
block

Input pixels
(unsigned bytes)

Output pixels
(signed 16 bits)

P00 P01 P10 P11 P20 P21 P30 P31 Band03Band02Band01Band00

P02 P03 P12 P13 P22 P23 P32 P33 Band13Band12Band11Band10

Band23Band22Band21Band20

Band33Band32Band31Band30

Transform
Band0i = Pi0 + Pi1 + Pi2 + Pi3
Band1i = Pi0 + Pi1 − Pi2 − Pi3
Band2i = Pi0 − Pi1 + Pi2 − Pi3
Band3i = Pi0 − Pi1 − Pi2 + Pi3

0.; V0  and V1 hold two 2×2 blocks of input pixels, V30 holds null
0.; V4 holds 4-byte sequence: 1, 1, 1, 1 splatted
0.; V5 holds 4-byte sequence: 1, 1, −1, −1 splatted
0.; V6 holds 4-byte sequence: 1, −1, 1, −1 splatted
0.; V7 holds 4-byte sequence: 1, −1, −1, 1 splatted
1.  lvx
2.  lvx
3.  vmrghh
4.  vmrglh
5.  vmsummbm
6.  vmsummbm
7.  vpkswss

0.; other bands are similarly calculated 

V0, [image]
V1, [image +XX]
V2, V1, V0
V0, V1, V0
V11, V2, V4, V30
V10, V0, V4, V30
V10, V11, V10

; V1 = P71 P70 … P01 P00
; V2 = P73 P72 … P03 P02
; V3 = … P43 P42 P41 P40
; V4 = … P03 P02 P01 P00
; V10 = Band07 … Band04
; V11 = Band03 … Band01
; V10 = Band07 … Band00

(a)

(b)

Figure 3. A 2 × 2 Haar transform (a) implemented in AltiVec code (b).

Index0…3

Index4

Index5

Index6

Index7

vperm

vsel

vsel

vsel

vsel

Figure 4. 256-entry, 8-bit-element table lookup using AltiVec.



• all instructions are fully
pipelined with single-
cycle throughput;

• simple operations (sim-
ple arithmetic, logical,
permute) have a 1-cycle
latency;

• compound operations
(for example, multiply-
sum) have 3 to 4 cycles
of latency;

• the processor can issue
one ALU-class and one
permute-class instruc-
tion each cycle (permute
class includes most
nonarithmetic opera-
tions such as pack,
unpack, splat, permute,
and so on); and

• there is no restriction on
issuing AltiVec instruc-
tions in the same cycle as
PowerPC scalar instruc-
tions.

Table 3 (next page) sum-
marizes performance on a
variety of media functions,
chosen to cover a wide spec-
trum of media processing,
including audio, video, graph-
ics, speech recognition, and communication.
The optimal scalar algorithm for a media func-
tion is often different from the optimal AltiVec
algorithm. Therefore, to present a fair com-
parison, we made every effort to pick the best
algorithm for each case.

The AltiVec extension to the PowerPC
architecture was designed to offer archi-

tectural support for the entire range of multi-
media processing. Multimedia processing has
its roots in signal and image processing, where
overall performance is often determined by
the performance of critical loops iterating over
a large input data set. AltiVec’s large vector
register file, full-range data-type support, four-
operand nondestructive instruction format,
unmatched data-reorganization capability
(permute), and powerful SIMD instruction
set enable it to significantly speed processing
in these critical loops. At the same time,

AltiVec’s data-prefetch streams can keep the
SIMD processing engine fed with data. The
speedups achievable with AltiVec are sufficient
to enable media-rich applications to run
entirely on general-purpose PowerPC micro-
processors without the aid of hard-to-use spe-
cial-purpose media processors or dedicated
hardware accelerators. MICRO
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Figure 5. Galois-field (16) multiplication (a) implemented in AltiVec code (b).
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Table 3. AltiVec performance on various media functions.

Speedup over 

Cycles using optimized scalar code

Function Data set AltiVec on same processor

Motion estimation 176 × 144, 8-bit 90.7/macroblock 16
Quantization 8 × 8 DCT output block, 16-bit → 8-bit 96.8 12.5
8 × 8 inverse discrete cosine transform 8 × 8 image block, 16-bit 101.7/block 12.3
Inverse fast Fourier transform 128 complex taps, floating point (FP) 1,700 3.5
Windowing (Dolby AC3 function) 256 elements, FP → 16-bit 834/kernel 4.9
Matrix-matrix multiplication Two 4 × 4 → one 4 × 4, FP 36.5 6.2
Matrix-vector multiplication 4 × 4 arrays times 4-element vectors, FP 5.6/vector Not available (n/a)
Transform, perspective, projection 800 vertices, 400 normals, FP 28,800 2.5
Buffer accumulation [RGBA] (8-bit), FP scale factors 5.3/pixel 17.5
Bezier curve drawing Four 16-bit → 64 16-bit points 2.48/point 6.3
3 × 3 median filter 128 × 128 pixels 1.23/pixel n/a
Separable convolution 512 × 512 pixels 1.94/pixel n/a
Bilinear interpolation 128 × 128 pixels 26.7/pixel 6.4
Color-space conversion 4,800 pixels 2.25/pixel n/a
L-filter11 128 × 128 pixels 5.23/pixel n/a
13-tap, real finite impulse response AltiVec: 16-bit; scalar PPC: FP 4.25/output 9.4
Linear prediction, Levinson-Durbin 12 LP coefficients, FP 388 3.2
Linear prediction, Schur recursion 12 LP coefficients, FP 238 7.1
Bit-packing in 64-QAM 

(quadrature amplitude modulation) 
demodulation12 32 16-bit → 384 bits 35 10.5

CRC-32 128-bit → 32-bit 1.312/byte n/a
Autocorrelation 256 8-bit samples → 16 32-bit coefficients 676 30.7
GSM (global system for mobile 

communications) module 4.2.11 Signed 16-bit, 60,600 samples 1,034 12.5
2 × 2 forward Haar transform Eight 2 × 2-pixel blocks →

16-bit frequency bands 0.375/pixel n/a
Sorting using Batcher sort 16 8-bit elements 76 10.0
(2,1,3) convolution encoder Two sets of 125 bits → 256 bits 19 n/a
Gamma correction,13 ITU-R 709 8 bit → 8 bit 0.625/pixel n/a
Arbitrary permutation 128-bit 20 n/a
Associative search Two 32-entry tables, 

16-bit keys and tags → 16-bit tag 13 5.8
Gaussian elimination FP, 16 variables 9,824 1.42
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