
Microarchitectural Innovations: Boosting
Microprocessor Performance Beyond
Semiconductor Technology Scaling

ANDREAS MOSHOVOS, MEMBER, IEEE,AND GURINDAR S. SOHI, MEMBER, IEEE

Invited Paper

Semiconductor technology scaling provides faster and more
plentiful transistors to build microprocessors, and applications
continue to drive the demand for more powerful microprocessors.
Weaving the “raw” semiconductor material into a micropro-
cessor that offers the performance needed by modern and future
applications is the role of computer architecture. This paper
overviews some of the microarchitectural techniques that empower
modern high-performance microprocessors. The techniques are
classified into: 1) techniques meant to increase the concurrency
in instruction processing, while maintaining the appearance of
sequential processing and 2) techniques that exploit program
behavior. The first category includes pipelining, superscalar exe-
cution, out-of-order execution, register renaming, and techniques
to overlap memory-accessing instructions. The second category
includes memory hierarchies, branch predictors, trace caches,
and memory-dependence predictors. The paper also discusses
microarchitectural techniques likely to be used in future micro-
processors, including data value speculation and instruction reuse,
microarchitectures with multiple sequencers and thread-level
speculation, and microarchitectural techniques for tackling the
problems of power consumption and reliability.

Keywords—Branch prediction, high-performance microproces-
sors, memory dependence speculation, microarchitecture, out-of-
order execution, speculative execution, thread-level speculation.

I. INTRODUCTION

Microprocessor performance has been doubling every
year and a half for the past three decades, in part due

Manuscript received January 14, 2001; revised June 15, 2001. The work
of A. Moshovos was supported in part by the University of Toronto and by
the National Sciences and Engineering Research Council of Canada. The
work of G. S. Sohi was supported in part by the National Science Foun-
dation under Grants CCR-9900584 and EIA-0071924, by the University of
Wisconsin Graduate School, and by a donation from Intel Corp.

A. Moshovos is with the Department of Electrical and Computer Engi-
neering, University of Toronto, Toronto, ON M5S 3G4, Canada (e-mail:
moshovos@eecg.toronto.edu).

G. S. Sohi is with Computer Sciences, University of Wisconsin-Madison,
Madison, WI 53706 USA (e-mail: sohi@cs.wisc.edu).

Publisher Item Identifier S 0018-9219(01)09682-7.

to semiconductor technology scaling, and in part due to
innovations in computer architecture and accompanying
software. Semiconductor technology scaling has resulted in
larger numbers of smaller and faster transistors. Innovations
in computer architecture have resulted in microprocessors
that achieve performance greater than what would have been
possible by technology scaling alone.

There are two main reasons why architecture is instru-
mental in boosting performance beyond technology scaling.
First, technology scaling is often nonuniform. For example,
the technologies used to build processors are optimized for
speed, while the technologies used to build main memories
are mostly optimized for density. Without the help of novel
architectural techniques, a shrunk and hence faster version of
a processor would simply spend most of its time waiting for
the relatively slower memory. Second, technology scaling fa-
cilitates higher integration by allowing us to pack more tran-
sistors on a chip of the same size. These additional transis-
tors, in turn, facilitate architectural innovations that would
not be possible otherwise. Many of these innovations are
meant to increase the concurrency of instruction processing.
Thus, the techniques used to address the above two issues
can broadly be classified into two categories: 1) techniques
to deal with the mismatch created by nonuniform technology
scaling and 2) techniques to increase the concurrency in in-
struction processing.

In this paper, we review some of the microarchitectural
techniques that are implemented in most modern high-per-
formance processors. We also discuss recent proposals that
may be implemented in future processors. We focus on pro-
viding the underlying motivation and on explaining the prin-
ciples underlying their operation. Our emphasis is onmi-
croarchitectural techniques, i.e., techniques that are, in gen-
eral, not directly visible to a programmer, and consequently
require no support from external entities. These techniques
improve performance without placing an additional burden
to software developers.

0018–9219/01$10.00 © 2001 IEEE

1560 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

(a) (b)

Fig. 1. (a) A simple loop calculating the sum of all ten elements of
arraya[�]. (b) Machine-code level implementation of this loop. Sum
andi have been register allocated to registers r0 and r1, respectively.

In Section II, we present techniques to increase the con-
currency in instruction processing. In Section III, we discuss
techniques that exploit regularities in program behavior. Sec-
tion IV illustrates the use of the above techniques in a typical
modern high-performance processor. In Section V, we dis-
cuss microarchitectural techniques that are likely to be found
in future microprocessors.

II. I NCREASING CONCURRENCY IN INSTRUCTION

PROCESSING

Many of the microarchitectural mechanisms found in a
modern microprocessor serve to increase the concurrency of
instruction processing. To understand the rationale behind
and progression of these techniques, let us begin with the in-
cumbent model for specifying a program.

The most widespread model is thesequential execution
model. Consider, for example, the loop shown in Fig. 1(a),
which calculates the sum of the elements of array. This
code is written with an assumption ofsequential execution
semanticsor simply sequential semantics. That is, we as-
sume that statements will execute one after the other and in
the order they appear in our program. For example, we expect
that “ ” will execute before “ ,”
and that the latter will execute before “ ”
and so on. Consequently, when our code is translated into ma-
chine instructions as shown in Fig. 1(b),sequential seman-
tics implies that instructions have to execute sequentially, in
program order: I1 executes before I2, while I3 of iteration 1
executes before I3 of iteration 2.

The sequential execution model is an artifact of how com-
puters were implemented several decades ago. It is the in-
cumbent model even today because it is simple to understand,
reason about, and program. Moreover, it results in an unam-
biguous and repeatable execution: repeated executions of the
same program with the same initial state results in the same
state transitions. This property is critical to the engineering
and debugging of both software and hardware.

Sequential instruction processing, however, is at odds with
high performance. To achieve high performance we need to
overlap the processing of instructions, i.e., process multiple
instructions in parallel. Many of the microarchitectural tech-
niques, therefore, serve to: 1) allow overlapped and parallel
instruction processing, yet retain an external appearance of
sequential instruction processing and 2) increase available
concurrency so that parallel and overlapped instruction pro-
cessing can be achieved.

The processing of instructions can be overlapped via
pipelining, which we discuss in Section II-A. Further
overlap can be achieved with techniques forinstruction-level
parallelism (ILP), which we discuss in Section II-B. An
observation critical to parallel execution of a sequential
program is that the (sequential) semantics of a program define
what shouldappearto take place when a program is executed
and not necessarily how instruction processing need take
place internally. Since the only way an external entity (e.g., a
programmer) can determine whether an instruction has exe-
cuted is by inspecting the machine’s state, only updates to the
machine state, and not the actual processing of instructions,
need to adhere to sequential execution semantics.

The amount of parallel execution that can be achieved is
limited by the concurrency amongst the instructions available
for processing. The concurrency is limited by constraints that
impose an ordering on instruction processing. Many microar-
chitectural techniques serve to increase concurrency by re-
laxing ordering constraints. (We mention these constraints
when we discuss the techniques used to relax them.)

A. Pipelining

Fig. 2(a) shows how instruction processing would proceed
sequentially. As shown in Fig. 2(b), processing a single in-
struction involves a number of micro-operations.Pipelining
overlaps the micro-operations required to execute different
instructions. Instruction processing proceeds in a number of
steps, orpipeline stageswhere the various micro-operations
are executed. In the example of Fig. 2(c), instruction pro-
cessing proceeds into three steps: fetch, decode, and execu-
tion and the processing of I3, I4, and I5 is now partially over-
lapped.

Even though instruction processing is overlapped, an
external appearance of sequential execution is maintained.
Specifically, at any given point in time the machine state
is such that it appears thatall instructions up to a specific
point have been executed, whilenone of the instructions
that follow have been executed. For example, at pointin
Fig. 2(c), I4 has completed execution while I5 has been
decoded and I6 has been fetched. As far as an outside
observer is concerned, I5 and I6 have not been processed
since they have not updated any registers, memory or any
other visible state.

With pipelining an instruction can be in two states:
in-progress and committed. In-progress instructions may
have been fetched, decoded or performed some actions,
however, they have not made any changes to user-visible
machine state.Committedinstructions have completed exe-
cution and made changes to machine state. As far as a user
is concerned only committed instructions have executed;
in-progress instructions appear as if they have not been
processed at all.

Pipelining improves instruction processing throughput,
but does not reduce the latency of instruction processing.
In general, none of the techniques that attempt to overlap
instruction processing reduce the latency of processing an
individual instruction; typically they sacrifice instruction
processing latency for instruction processing throughput.

MOSHOVOS AND SOHI: MICROARCHITECTURAL INNOVATIONS 1561

Fig. 2. (a) Execution without pipelining. (b) Steps required for executing a single instruction.
(c) Execution with pipelining: the various execution steps of different instructions are overlapped.

Fig. 3. Superscalar execution. I4 and I5 execute in parallel. I4 has to wait for I3 (since it requires
the value in r2). I6 has to wait for I4 as it needs the new value of r1 produced by I4.

Additional information about pipelining can be found in
[19] and [29].

B. Instruction Level Parallelism

The simple pipelining approach achieves some overlap in
instruction processing, but allows only one instruction in any
phase of processing (e.g., decode). Moreover, instructions re-
main in their original program order as they flow through
the pipeline stages: instructions are decoded, executed, and
write their results in program order. The techniques we de-
scribe next attempt to further increase the concurrency of in-
struction processing. Superscalar execution allows multiple
instructions, that are adjacent in program order, to be in the
same stage of processing simultaneously. Out-of-order exe-
cution allows instructions to bypass other instructions, and
enter various stages of instruction processing (e.g., execu-
tion) in an order that is different from the original program
order. Speculative execution increases the available concur-
rency by alleviating ordering constraints (e.g., control depen-
dences). The key in these approaches is to process instruc-
tions in an arbitrary order, but give the external appearance
that they were processed sequentially.

1) Superscalar Execution:Consider instructions I4 and
I5 of Fig. 1(b). Pipelining willpartially overlap their execu-
tion. Superscalar executiongoes a step furthercompletely
overlapping their execution as shown in Fig. 3. In other
words, I4 and I5 execute inparallel. In general, super-
scalar execution allows the parallel execution of adjacent
instructions when such execution does not violate program
semantics. For example, we cannot execute I6 in parallel
with I5 as I6 needs the result of I5.

Superscalar execution and pipelining are orthogonal. We
can build a superscalar engine that is not pipelined and vice
versa and, of course, we can build a pipelined superscalar
engine.

Superscalar execution requires additional hardware
functionality. The first additional hardware requirement is
a parallel decoder. Such a decoder needs to determine the
dependence relationships amongst multiple instructions;
this requires multiple comparisons between the source
operands of an instruction and the destination operands of
preceding instructions being considered for parallel execu-
tion. Superscalar execution also requires sufficient execution
resources such as functional units, register read/write ports

1562 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

(a)

(b)

Fig. 4. Out-of-order execution: (a) I3 and I5 execute in parallel. I4 and I6 have to wait for I3 and I5
respectively. Nevertheless, I4 and I6 also execute in parallel. (b) Introducing a commit stage to
preserve sequential semantics.

and memory ports. Moreover, routing networks (orbypass
paths) may be needed to route results among these resources.
Additional information can be found in [19] and [23].

2) Out-of-Order Execution:As described, superscalar
execution can execute two or more instructions in parallel
only if they appear consecutively in the program order.
Out-of-order execution relaxes this ordering constraint,
thereby increasing concurrency [2], [63], [64].

In our code of Fig. 1(b), out-of-order execution would
allow I5 to execute before I4 since I5 does not need a value
produced by I4. A possible execution order facilitated by
out-of-order execution is shown in Fig. 4. Instructions I3
through I6 are now fetched and decoded in parallel. Immedi-
ately after decode, I3 and I5 execute in parallel and I4 and I6
wait for I3 and I5, respectively. They can execute in parallel
once I3 and I5 generate their results.

Out-of-order execution can result in a violation of the se-
quential semantics; therefore, additional effort is needed to
ensure that the external appearance of sequential execution
is maintained. For example, at pointin Fig. 4(a), the ma-
chine state is inconsistent: I3 and I5 have executed and I4, an
instruction in between I3 and I5, has not. This discrepancy
is of significance only if the machine’s state is inspected at
point . Mechanisms to give the external appearance of se-
quential execution are discussed in Section II-B4.

3) Speculative Execution:So far, we focused on in-
creasing the overlap between instructions whose execution
is certain. Whether a block of instructions will be executed
or not is determined by the outcome of control instructions,
such asconditional branchinstructions. In typical programs,
a branch instruction occurs every fifth or sixth instruction.

Thus, if we chose to overlap only instructions whose execu-
tion was certain, we would typically only be able to overlap
the processing of five or six instructions at best. On the other
hand, a superscalar processor with dual instruction issue, and
with a ten-stage processing pipeline would need to overlap
the processing of 20 instructions to keep the processing
pipeline full. To obtain this additional concurrency, we are
forced to look beyond branch instructions for additional
instructions to process.

Speculative execution allows instructions beyond
branches (i.e., instructions whose execution status is uncer-
tain) to be processed in parallel with other instructions. The
concept is simple: predict the outcome of the branch and
speculatively process instructions from the predicted path. If
the prediction was incorrect, make sure that the speculatively
processed instructions are discarded and that they do not
update the machine state. Speculation can be carried out
past multiple branch instructions. (Later, in Section III-B,
we will see how program behavior can be exploited to make
accurate predictions on the outcomes of branches.)

The above form of speculative execution is also known as
control-speculative execution, since the speculation is on the
outcome of a control (branch) instruction. It overcomes or-
dering constraints due tocontrol dependences, and is found
on all modern high-performance microprocessors. Later, we
discuss other forms of speculative execution that attempt to
further increase concurrency by alleviating other ordering
constraints.

The hardware required to support speculative execution is
very similar to the hardware required to support out-of-order
execution [21]–[23], [44], [54], [58]. The role of this hard-

MOSHOVOS AND SOHI: MICROARCHITECTURAL INNOVATIONS 1563

ware is to maintain the external appearance of the sequential
semantics of the program. (Now we are not only processing
instructions out of program order, but are also processing in-
structions that might never have to be processed in a sequen-
tial execution.) We discuss this hardware in the next section.
A point to note is that once hardware has been provided to
support control-speculative execution, the hardware can typ-
ically support other forms of speculative execution with min-
imal changes.

4) Preserving Sequential Semantics:To understand how
sequential semantics can be preserved while permitting
a nonsequential instruction processing order, it is useful
to assume that instruction processing now proceeds in
three phases:in-progress, completed, and committed. An
instruction iscommittedwhen it has completed execution,
made state changes and these changesarevisible to external
observers. For example, in pointof Fig. 4(a), I3 is com-
mitted. Acompletedinstruction has also executed and made
changes, however, these changes arenot visible to outside
observers; they are visible only internally, e.g., to other
instructions in progress. For example, in pointof Fig. 4(a),
I5 is completed. The new value of r1 is visible to I6 (not
to I4 or I3) but is not visible to outside observers. State
changes made by completed instructions are conditional;
they may get committed if execution is not interrupted (e.g.,
by an exception or by a misspeculation) or they may be
discarded otherwise. Finally,in-progressinstructions may
have performed some actions but have not yet made any
state changes. For example, in pointof Fig. 4(a), both I4
and I6 are in-progress.

By allowing instructions to be processed in any convenient
order, we can improve concurrency, and consequently per-
formance. Committing instructions in sequential order pre-
serves sequential semantics. This is shown in Fig. 4(b). No-
tice that in point , only I3 has committed, while in point,
all instructions have successfully committed. While I5 has
completed at point, any related state changes will be hidden
to an outside observer and will be discarded if an exception
occurs. Consequently, as far as an external observer is con-
cerned, this machine adheres to sequential semantics.

The preceding discussion alludes to the existence of two
distinct machine states. The first is thearchitecturalstate:
the machine state as affected only by committed instructions.
This state is visible to external observers and always adheres
to sequential semantics. The second is thespeculativestate.
This state includes all updates done by both committed and
completed instructions.

Allowing Out-of-Order Completes While Forcing In-
Order Commits: We now describe the actual mechanisms
that allow out-of-order completes while forcing in-order
commits. As instructions are fetched and decoded they are
assigned a slot, in program order, at the tail of a queue-like
structure, the reorder buffer. When instructions complete
execution, they set a flag in their assigned slot. Committing
instructions is done by inspecting the state of the instruction
at the head of thereorder buffer. If the instruction at the
head of the reorder buffer has completed execution, it can
be committed. Thus, instructions are committed in program

order. If an exception occurs, we simply discard the ex-
cepting instruction and all other instructions that follow it in
the reorder buffer.

Maintaining Speculative and Architectural States:Up-
dates to speculative state are done when an instruction com-
pletes, while updates to the architectural state are done when
an instruction commits. When exceptions or other interrup-
tions occur, it is necessary to discard the speculative state
and resume execution using the architectural state. There-
fore, what is needed is physical storage elements where the
speculative and architectural values can reside, and a means
for distinguishing between architectural and nonarchitectural
values.

There are several ways of implementing this functionality.
We limit our discussion to the register state. One option is
to keep the speculative state in thereorder buffer[54], [58].
When an instruction completes, the value is placed in a field
in the appropriate entry on the reorder buffer. When the in-
struction commits, the value is then written to the architec-
tural register file. A second option is ahistory-file method
[54]. Here a single machine state exists along with a log of
recent, yet-to-be-committed changes. As instructions com-
plete, they update the machine state. However, at the same
time a log record is kept holding the previous value of the
registers being updated. These records are maintained in pro-
gram order similarly to what was done for the reorder buffer.
When an instruction commits, no further action is necessary
and the corresponding log record is discarded. If an excep-
tion occurs, the log records are used to restore the architec-
tural machine state.

The above solutions have distinct storage space for ar-
chitectural and nonarchitectural values. Another option is
to have a combined storage space, aphysical register file,
and useregister mapping tablesto determine which phys-
ical registers contain architectural values, and which contain
nonarchitectural value. This requires a scheme forregister
renaming[2], [17], [25], which we discuss next.

5) Register Renaming—Facilitating Out-of-Order and
Speculative Execution:Register renaming was originally
proposed to facilitate out-of-order execution, by overcoming
artificial dependence constraints for a machine with a
limited number of registers [2], [64]. Today, it is used to also
facilitate speculative execution. We introduce this concept
by describing its original purpose.

Consider the code snippet of Fig. 5 and inspect the var-
ious dependences that exist. Instruction I2 needs the value
produced by I1, and stored in register r1. Therefore, atrue
or read-after-writedependence exists between these instruc-
tions and they must execute in order (in Section V-A, we
will relax this ordering). Instruction I3 does not read any of
the results produced by either I1 or I2. As described, out-of-
order execution will not allow instruction I3 to execute be-
fore I1 or I2 because I3 overwrites the value of r1 produced
by I1 and read by I2. That is, I3 has anoutput or write-
after-write dependence with I1 and anantidependenceor
write-after-read dependencewith I2. Collectively, output-
and antidependences are referred to asartificial dependences
to distinguish them from true dependences. They are also

1564 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

(a) (b) (c)

(d) (e) (f)

Fig. 5. Register renaming enhances our ability to extract instruction level parallelism. (a) Code with
false dependences. Instruction 3 has an antidependence with instruction 2 and an output dependence
with instruction 1 as it overwrites register r1. Without register renaming instructions will execute in
order since there can be only one value for r1 at any given time. (b) If we had infinite register names,
we could avoid false dependences. (c)–(f) Implementing register renaming. (c) After decoding
instructions 1 and 2 registers r1 through r5 have been mapped to physical registers ra through re.
(d) Decoding instruction 3. We first look at the current mapping for register r4. Then, we rename r1
to a physical register from the free list. (e) Decoding instruction 4. We find that now r1 is mapped to
rf. Consequently, instruction 4 will read the r1 result produced by instruction 3 and not the one
produced by instruction 1. Correctness is maintained as instruction 1 and 2 can communicate using
physical register ra. We rename r5 to rg. (f) After committing instructions 1 and 2, we can release
ra. No other instruction will ever need the value of r1 produced by instruction 1 as in the original
program it would have been overwritten by instruction 3.

calledname dependences, since they are a consequence of
reusing the same storage name; no dependence and conse-
quently ordering constraint, would have arisen had a different
register name been used every time we wrote a new result
[see Fig. 5(b)].

Register renaming maps register names to various storage
locationsand in theprocess iteliminates falsedependences. In
a processor with register renaming, there are (typically) more
storage locations than there are architectural registers. When
an instruction isdecoded,astorage location isassigned tohold
its result, and the destination register number is mapped to
this storage location. At this point the target register has been
renamedto the assigned storage location. Subsequent refer-
ences to the target register are redirected to this storage loca-
tion, until another instruction that writes to the same register is
decoded. Then, the register is renamed to another storage lo-
cation. A previously mapped storage location can be reused
once the previous value is no longer required.

Speculative execution creates another application for reg-
ister renaming. With speculative execution we have nonspec-
ulative and speculative values residing in storage elements,
some of which will be committed to the architectural state
while others will not. In addition, multiple values bound to
the same architectural register could be present, including
nonspeculative and speculative values. Means are needed to
direct a reference to a register to a particular storage element;
this is the functionality provided by register renaming.

Many schemes for register renaming exist. A common im-
plementation of this method comprises aphysical register
file, a register renaming tableand afree physical register
list, e.g., [17], [25]. Thephysical register fileprovides the
storage for values. Theregister renaming tablecontains the
current mapping of architectural register names to physical
registers. The free list contains the names of those phys-
ical registers that are currently available for mapping. An
example is shown in Fig. 5(c)–(e). Let us assume an initial
state immediately after instructions I1 and I2 have been de-
coded. At this point, the architectural registers r1 through r5
are mapped to physical registersthough , while the free
register list contains through . The register names for in-
structions I1 and I2 have been changed internally during de-
code. This was done by accessing the register renaming table
to determine the current name assigned to each source reg-
ister operand. Also, new names were allocated for registers
r1 and r3, the targets of instructions I1 and I2 respectively.
Upon decoding instruction I3, the physical registers for its
two input registers are located by accessing the register re-
name table [Fig. 5(d)]. Then, a new nameis allocated for
its target register r1 [Fig. 5(d)]. As a result, when instruction
I4 is decoded [Fig. 5(e)], it uses to communicate with in-
struction I3. Eventually, when instruction I2 commits, phys-
ical register is returned to the free register list so that it can
be reused [Fig. 5(f)]. (In practice, the condition for returning
a register to the free list is more stringent [25].)

MOSHOVOS AND SOHI: MICROARCHITECTURAL INNOVATIONS 1565

Maintaining sequential semantics is done by extending the
existing mechanisms deployed for out-of-order execution:
we treat changes to the register rename table and the free
list the same way we treat changes to register values. Reg-
ister renaming decisions arecompletedduring decode and
arecommittedonly when the corresponding instruction com-
mits. This can be done using slight variants of the schemes
described in Section II-B4.

6) Overview of Instruction Processing:Having under-
stood the goals of overlapped, superscalar, out-of-order, and
speculative instruction processing, and the means to accom-
plish the desired tasks, we now overview the processing of an
instruction in a modern microprocessor. First, wefetchan in-
struction from memory. Then, we have to determine its input
dependences and rename its target registers if any, a process
typically referred to asdecodeor dispatch. Instructions are
then sent to holding stations orreservation stationswhere
they wait for their input operands to become available. An
instruction whose input dependences have been satisfied is
deemedreadyfor execution. Subject to resource availability
(e.g., functional units or register file ports) a ready instruction
is selectedfor execution. If selected, it can then commence
execution, orissue. When an instruction completes execution,
its result is broadcast to all waiting instructions. Instructions
that are waiting for the value can copy it into the appropriate
place. Checks are also made to see if the instruction can be
woken up, i.e., whether all its operands are available, and
thereby become ready for execution. After an instruction has
been executed, it becomes a candidate forretiring, at which
point it is committedin program order.

7) Overlapping Memory Instructions:So far, we
have concentrated on instructions that operate on register
operands, and we discussed a progression of techniques for
increasing the overlap in processing such instructions. Load
and store instructions have memory operands. Techniques to
overlap the processing of loads and stores follow a similar
progression to the techniques described for nonmemory
instructions. However, since loads and stores are typically
only a third as frequent as other instructions, the progres-
sion of techniques for loads and stores typically lags the
techniques for other instructions.

Until the 1990s, most microprocessors executed load in-
structions serially even though the processing of nonmemory
instructions was pipelined. Improving the overall instruction
processing rate then demanded an improvement in the rate of
processing loads and stores, and microprocessors of the early
1990s started to overlap the execution of loads and stores,
in a manner similar to pipelining. To do so required the use
of nonblockingor lockup-freecaches [30], [60]. More re-
cently, microprocessors have felt the need to execute multiple
load/store operations simultaneously [1], [13], [20], similar
to superscalar execution. Next-generation microprocessors
are feeling the need to execute load and store operations out
of order, and speculatively [8], [28], [40].

Techniques for the concurrent processing of load and store
instructions, however, are more complicated than equivalent
techniques for nonmemory instructions. This is because es-
tablishing dependence relationships amongst load and store

instructions is more challenging: while register names are
available in the instruction themselves, memory addresses
are calculated at run time. Consequently, we cannot inspect
loads and stores as they are fetched and decoded, and estab-
lish dependence relationships before executing any instruc-
tions. Rather, we have to wait until their addresses have been
computed. Once addresses have been computed, associative
searches (for matching addresses) are required to determine
dependence relationships.

The above discussion reveals some of the difficulty in pro-
cessing loads and stores. If we need to be sure that no depen-
dence relationships are violated in a scheduling decision, an
address-basedscheduler needs as input the addresses being
accessed by the all the loads and stores under consideration,
and it needs to compare these addresses with one another.
This not only requires complex search hardware, it delays
the scheduling of loads until the addresses of all prior store
instructions are known, e.g., [20], [39].

Recent approaches to scheduling loads propose the use of
data dependence speculationto overcome the constraints for
address-based schedulers, as described above. Rather than
wait for all prior addresses to be know, i.e., for allambiguous
or unknown memory dependencesto be resolved, a predic-
tion is made as to whether a load is going to be dependent
upon a prior store. If no dependence is predicted, the load
is (speculatively) scheduled for execution. Later, checks are
made to determine if the speculation was correct, with re-
covery actions initiated in case of incorrect speculation. As
mentioned earlier, the basic mechanisms to support control
speculation can also support data dependence speculation
with little or no modifications. A review of relevant methods
can be found in [39].

III. EXPLOITING PROGRAM BEHAVIOR

The techniques described in the previous section allow in-
struction processing to be performed in a certain manner.
However, additional mechanisms are needed to support the
basic instruction processing methods. We discuss several of
them in this section. The mechanisms we discuss exploit the
fact that typical programs do not behave randomly. There are
uniformities and regularities that can be exploited.

The microarchitectural mechanisms that we discuss in this
section can broadly be classified into two groups: 1) mech-
anisms to bridge the gap created by disparate rates of im-
provement for different parameters (e.g., logic and memory
speeds) and 2) mechanisms to support or enhance previously
described concurrent-processing techniques. Several of the
mechanisms of this section and those of Section II are tightly
coupled: individual mechanisms by themselves might not be
of practical use in a given design.

A. Memory Hierarchies

1) Cache Memory:To goal of a memory hierarchy is to
bridge the gap caused by the disparate rates of increase in
speed between processor logic and memory.

Program memory demands have been increasing steadily:
two decades ago, a few kilobytes of memory were sufficient

1566 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

(a) (b) (c)

Fig. 6. (a) A code with regular array accesses. (b) Memory access timing without prefetching.
Requests are not overlapped. (c) Prefetching requests the next array element while the previous
request is still in progress. Request processing is overlapped and as a result overall throughput is
increased. Notice that it still takes the same amount of time to fetch each individual array element.

to capture the memory footprint of most programs, today tens
of megabytes are needed. This increase in memory demand is
likely to continue and poses a continuous performance chal-
lenge for two reasons: First, programs access memory at least
once for every instruction executed (to get the instruction it-
self) and twice if the instruction reads or writes memory data
(about one in every three instructions in most programs).
Second, sufficiently large memories tend to be very slow.
Today, a typical access time for a DRAM memory is 40–100
processor clock cycles. This speed differential coupled with
the frequent need to access memory can impair performance
forcing even a processor with highly concurrent instruction
processing to spend most of its time waiting for memory.

Sufficiently fast and large memories are unfortunately
either not feasible or extremely expensive. However, fast
but small memories are feasible and relatively inexpensive.
Cachingis a microarchitectural solution that approximates
a large and fast memory using a small and fast one. A
cache is a fast and small memory placed in between the
processor and main memory. Initially, the cache is empty.
After the processor references an address, a copy of the data
as received from the slow main memory, is saved, orcached
in the cache. If the processor references the same address
later on, it would find that a copy resides in the cache (this
is called acache hit) and get the data much faster without
having to access main memory.

Since the cache is much smaller than main memory,
cached addresses are eventually replaced with newly ref-
erenced ones. For this reason, caches can reduce memory
access latency only when a program references an address
repeatedly and close enough in time so that it keeps finding
it in the cache. Fortunately, most programs do exhibit this
kind of behavior, which is referred to astemporal locality.
In addition, many programs exhibitspatial locality. That
is, once they reference an address A, they soon reference
nearby addresses (e.g., A1 or A 2). We can exploit this
behavior by having cache entries (or blocks) hold multiple
consecutive memory addresses. Accessing any address
within the block results in the transfer of the whole block
from memory. Accordingly, a cache isprefetchingdata in
anticipation of future processor references.

Caches improve performance by reducing theaverage
time required to access memory data; some memory
references are sped up, others are not. They are also apre-
diction-basedmechanism since theyguess, albeit implicitly,

that programs will exhibit both temporal and spatial locality.
The basic concept was described in the 1960s [67], and there
have been a number of improvements and alternate cache
designs, e.g., [24], [52], [53].

What we have described is the simplest form of amemory
hierarchywhere a single level of caching exists in between the
processor and main memory. To compensate for the ever in-
creasing difference in processor and memory speeds, modern
memory hierarchies consist of multiple caches, which are typ-
ically organized linearly. Caches closer to the processor tend
to be faster and for that smaller; a modern microprocessor typ-
ically has two levels of cache memory on the processor chip.
Being the part of the memory hierarchy closest to the pro-
cessor, caches also provide a cost effective solution to sup-
porting multiple simultaneous memory references [60].

2) Stream Buffers and Hardware-Based Prefetch-
ing: Basic caches perform implicit prefetching by fetching
more data than that currently requested by the processor.
Other more explicit forms of prefetching have been proposed
and sometimes implemented in microprocessors. The basic
idea is illustrated in Fig. 6. Part (a) shows a loop accessing
the elements of array b[] using a linear progression. As
shown in Fig. 6(b), without prefetching we first access one
element, wait until it is received and then access the second
one and so on. With prefetching as shown in Fig. 6(c), a
mechanism generates speculative requests for subsequent
array elements. For example, while the main program ref-
erences b[100] the prefetching mechanism requests b[110],
which is the next reference made to the data structure by the
program. While individual requests take the same amount of
time as before, overall performance is increased as multiple
requests are overlapped.

Such techniques are very effective for numerical applica-
tions, applications that perform a large number of numer-
ical computations over sizeable data structures which are
typically arrays. Many of these applications exhibit fairly
regular array accesses often accessing elements in a linear
fashion (e.g., a[1], a[2], a[3] and so on), a program behavior
that can be exploited.Stream buffersare hardware mecha-
nisms that identify and exploit such access patterns to reduce
memory latency [24]. They observe the addresses generated
by the program while it is executing, looking for addresses
that differ by a constant, or astride. Upon identifying such
patterns, stream buffers inject accesses to subsequent array
elements using a simple calculation method such as “pre-

MOSHOVOS AND SOHI: MICROARCHITECTURAL INNOVATIONS 1567

vious address stride” [10 in our example of Fig. 6(a)],
e.g., [7], [41]. If and when the program makes a reference to
that address, it can be accessed, with a low latency, from the
stream buffer, or the cache. Other forms of prefetching use
heuristics such as prefetching multiple consecutive blocks on
a miss [37], [53].

B. Branch Prediction

In Section II-B3, we motivated the need for control-specu-
lative execution. Here, the outcome of a branch instruction is
predicted using a scheme forbranch prediction. Instructions
are fetched from the predicted path, and executed specula-
tively while the branch execution progresses. The effective-
ness of control-speculative execution is heavily influenced
by the accuracy of the branch prediction, and the efficiency
of the mechanisms to fetch instructions from the predicted
path. Accordingly, these techniques have been studied exten-
sively, and a considerable amount of hardware in a modern
microprocessor is expended to achieve accurate branch pre-
diction and instruction fetch.

Branch prediction can be broken into two subtasks: Pre-
dicting whether the branch will be taken, i.e., itsdirection
and predicting itstargetaddress, or where the branch points
to. These two issues are frequently studied separately, so we
also separate our discussion of them.

1) Predicting the Direction of Branches:One class of
branch direction prediction methods relies onstatic heuris-
tics. For example, we could always predict branches as taken.
This heuristic, though reasonably accurate, is not sufficient
to fulfill the requirement for a modern branch predictor. Ac-
cordingly, severaldynamicprediction methods have been de-
veloped and implemented.

Dynamic branch prediction methods observe branch out-
comes as execution progresses and adapt their predictions ac-
cordingly [12], [42], [55], [62], [70], [71]. The simplest pre-
dictor of this kind uses alast-outcomeapproach and guesses
that a branch will follow the same direction it did last time
we encountered it. It works by recording branch directions
(a single bit is sufficient) in a table indexed by the address of
the branch instruction (the branch PC). Entries are allocated
as branches execute and are updated every time the corre-
sponding branch executes again. This table is typically re-
ferred to as abranch prediction table.

Further improvements exploittemporal biasesin in-
dividual branch behavior [55]. For example, if the loop
of Fig. 1(a) is executed multiple times, I7 will exhibit a
T TNT TN pattern, where “T T” is a sequence of
nine taken and N is a single not taken. The last-outcome
predictor will mispredict twice every time the NT sequence
appears. If we instead tried to identify the most frequent out-
come (in this case taken), then only one misprediction will
occur. A commonly used method uses a two-bit saturating
counter per branch predictor entry. Values 0 and 1 represent
a strong and a weak bias toward not-taken, while values 2
and 3 represent a weak and a strong bias toward taken. As
branches execute we update these counters incrementing
or decrementing them accordingly. Other automata besides

counters have been used motivated by other commonly
occurring branch constructs [31].

Another class of predictors relies on pattern-detection and
association. A simple pattern-based predictor works as fol-
lows. A history-registerrecords directions as branches are
predicted. This is a shift register and it holds the last
branch directions (e.g., 0 for not taken and 1 for taken). Upon
encountering a branch, its PC and the contents of the history
register are used to index into a prediction table containing
a single bit per entry. This bit indicates what happened last
time the same combination of PC and past branch outcomes
has been observed. In our loop example, such a predictor
would associate the 9-bit history T…T with N (not taken).
It would also associate any of the remaining nine histories
with 8 T and one N with T (taken). There is a variety of pat-
tern-based branch predictors each with its own advantages
and disadvantages, e.g., [70]. For example, we could keep
separate history registers per branch. This last point brings
us to another important innovation in branch prediction,cor-
relation. The observation here is that different branches ex-
hibit correlated behavior. For example, if branchis taken,
then often branch is also taken. Pattern-based predictors
can exploit this phenomenon improving accuracy [12], [42],
[62], [70], [71]. Pattern-based prediction can be generalized
by including other pieces of relevant information that pro-
vide a strong indication of the direction of the branch they
are associated with (e.g., the PC of preceding branches).

Some branch predictors work better than others for
specific branches. Better overall results are possible by
combining branch predictors [36]. For example, such a
predictor may include a simple counter-based predictor,
a pattern-based one and a predictor selector. To predict a
branch, all three predictors are accessed in parallel. The
predictor selector is used to select between the other two
predictors. As execution progresses, the predictor selector
is updated to point to the most accurate of the other two
predictors on a per-branch basis.

2) Predicting the Target Address:If a branch is predicted
to be taken, we have to also predict where it goes to. This
is fairly straightforward for the majority of branches where
the target address is always the same (PCoffset). We can
predict such addresses using another PC-indexed table. Any
time a branch executes, its target address is recorded in this
branch target buffer (BTB). When predicting a branch, we
can obtain the target address from the BTB (if the corre-
sponding entry is present). In another variation of the BTB
scheme, in addition to the target address some of the target
instructions are also stored within the BTB. Recall, that ulti-
mately what we care about is fetching the target instructions.

Since function calls and returns are very common, spe-
cial predictors have been developed for them. In these pre-
dictors, a short, hardware stack is kept. Upon encountering
a call instruction, the return address is pushed onto the hard-
ware stack. Upon encountering a return, the hardware stack
is used to predict the return address [26].

The predictors we have described will fail for indirect
branches having multiple target addresses (e.g., the “switch”
statement in C or virtual function calls in C++). A number of

1568 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

predictors for indirect branches have been proposed. They
are based on generalizations of the schemes used for branch
prediction, e.g., [5], [10], [27].

While modern branch predictors are highly accurate (often
90% or more), improving branch prediction accuracy is one
of the most important problems in microarchitecture. As we
move toward higher frequencies, longer pipelines and rela-
tively slower main memories, it is desirable to extract more
instruction level parallelism. This requires higher branch pre-
diction accuracy. To understand the severity of the problem,
let us consider a processor where up to 125 instructions can
be active at any given point in time. Assuming a 90% branch
prediction accuracy and that one in every five instructions
is a branch, we can calculate the probability of filling up a
window of this size to 0.9 or just 0.07. (This is an approxi-
mate calculation but serves to illustrate our point.) This prob-
ability drops to 0.005 for a 250 instruction window. Highly
accurate branch prediction is critical to increasing the useful-
ness of control-speculative execution. (In Section V, we will
see other proposals for increasing concurrency that do not re-
quire all sequential branches to be predicted, as above.)

C. Trace Cache

In addition to high branch prediction accuracy, it is also de-
sirable to predict multiple branches per cycle. Here is why:
Modern processors may execute up to four instructions simul-
taneously. Processors capable of executing eight or more in-
structions per cycle are forthcoming. To sustain parallel exe-
cution of this degree, we need to fetch at least as many instruc-
tions per cycle. Assuming that on the average one in five in-
structions is a branch, we need to predict at least two branches
per cycle. In practice, because branches are not necessarily
spaced uniformly, we may need to predict more than that. A
potentiallycomplexandexpensivesolution tomultiplebranch
prediction is to replicate or multiport existing predictors.

The trace cacheoffers a complete solution to predicting
and fetching multiple instructions including branches per
cycle [43], [45], [47]. It exploits the observed behavior that
typically only a few paths through a program are actually
active during an execution of the program.

The trace cache is a cache-like structure storing a se-
quence, or atraceof instructions as they have been fetched
in the past. Consider the code of Fig. 7(a). Fig. 7(b) shows
how a conventional branch predictor/cache organization
would predict and fetch the sequence I1, I2, I4, I5, I6 (I2
is taken and I5 is not). Instruction fetch is limited by both
branch count and memory layout. Even though we predicted
that I2 is taken, we have to wait at least a cycle to fetch the
target I4. This is because the latter is stored in a separate
cache block. Fig. 7(c) shows how prediction and fetch would
proceed with the trace cache. The first time this sequence
is predicted, we access the conventional cache and pay the
same penalties as in Fig. 7(b). However, as instructions
commit, we store them in order into a trace cache entry. Next
time around, all instructions become available in a single
cycle from the trace cache. Passing this sequence as is to
the rest of the processor is equivalent to predicting branches
I2 and I5 as taken and not taken, respectively, and fetching

(a) (b)

(c)

Fig. 7. Trace cache: predicting and fetching multibranch
instruction sequences per cycle. (a) Code snippet. (b) Predicting and
fetching in a conventional processor. We are limited to one prediction
per cycle. Moreover, we are restricted to accesses within a single
cache block. (c) Execution with a trace cache and trace cache entries.

all necessary instructions. In effect, we performed both
multiple branch prediction and fetched multiple instructions.
As shown in Fig. 7(c), it is possible to store instruction
sequences corresponding to different paths through the code.

D. Memory Dependence Speculation and Prediction

As mentioned in Section II-B7, memory dependence spec-
ulation can be used to increase the concurrency in processing
load and store instructions. Program behavior, the fact that a
vast majority of loads do not exhibit dependences with store
instructions that are in close temporal proximity, provides the
rationale fornaive memory dependencespeculation. In this
scheme, a load with unresolved dependences is always ex-
ecuted immediately, with the assumption that its execution
will not violate any dependences.

As we attempt to extract more parallelism by having more
instructions being processed concurrently, more loads expe-
rience memory dependences and naive speculation does not
perform as well [40]. This suggests the need for more accu-
ratememory dependence predictiontechniques, which pre-
dict when a load is likely to be dependent on a prior store,
and on which prior store is it dependent. Much better perfor-
mance is possible when a load is synchronized with the store
on which it depends. Fortunately, the memory dependence
stream of typical program exhibits repetition, a behavior that
memory dependence prediction exploits to predict and spec-
ulatively synchronize loads and stores [39].

IV. PUTTING IT ALL TOGETHER: A MODERN

HIGH-PERFORMANCEPROCESSOR

To put it all together, Fig. 8(a) illustrates how instruction
processing is conceptually carried out in a modern, high-per-
formance processor. Instructions are fetched, decoded, and
renamed in program order. At any given cycle, we may actu-
ally fetch or decode multiple instructions; many current pro-
cessors fetch up to four instructions simultaneously. Branch
prediction is used to predict the path through the code so that
fetching can run-ahead of execution. After decode, instruc-
tions are issued for execution. An instruction is allowed to
execute once its input data becomes available and provided

MOSHOVOS AND SOHI: MICROARCHITECTURAL INNOVATIONS 1569

(a) (b)

Fig. 8. Modern high-performance processor. (a) How execution progresses. Instructions are
fetched, decoded, and renamed in program order. Multiple instructions are typically processed per
cycle. Instructions are allowed to execute and complete in any permissible order based on operand
and resource availability. Instructions commit in order. (b) Internal structure.

that sufficient execution resources are available. Once an in-
struction executes, it is allowed to complete. At the last step,
instructions commit in program order.

Fig. 8(b) shows the underlying structures used to facili-
tate out-of-order execution. The front end, comprising an in-
struction cache and a branch prediction unit, is responsible
for supplying instructions (a trace cache is used in some de-
signs). As instructions are fetched, they are stored into the
instruction buffer. The instruction buffer allows the front end
to run ahead of the rest of the processor effectively hiding in-
struction fetch latencies. The decode and rename unit picks
up instructions from this buffer and decodes and renames
them appropriately. These instructions are then fed into the
reorder buffer and the scheduler. At the same time, entries
are also allocated in the load/store scheduler for loads and
stores. Instructions are allowed to execute out of order. They
access the physical register file using the physical names pro-
vided during decode and rename. Execution takes place in
functional units. Multiple functional units typically exist to
allow parallel execution of multiple instructions. Loads and
stores are buffered in the load/store scheduler where they
are scheduled to access the memory hierarchy. Stores are al-
lowed to access memory only after they have committed;
they are buffered into an intermediate buffer residing be-
tween the load/store scheduler and the data cache until they
can commit. Instructions are committed in order using the
reorder buffer. Maintaining the original program order in the
reorder buffer also allows us to take corrective action when
necessary, as is needed on a misspeculation (branch or data-
dependence) or on an interrupt.

V. FUTURE MICROARCHITECTURAL TRENDS

So far, we have seen a variety of techniques that are
mainly directed at the problem of achieving high perfor-
mance in current microprocessors. Additional transistor
resources were expended for microarchitectural mechanisms

whose role was to extract, increase, and exploit concur-
rency in processing the instructions of a single, sequential
program. This included mechanisms to allow instructions
to be processed in arbitrary orders, allow instructions to
be executed speculatively, and mechanisms that exploit
program behavior to improve the accuracy of speculation.
Transistor resources were also spent on memory hierarchies
to bridge the gap created by disparate rates of improvement
in logic and memory speeds.

Future microprocessors will be faced with new challenges.
Performance will likely continue to be a challenge, with new
parameters in the performance equation (e.g., the impact of
increasing wire delays, e.g., [35], [38]). However, other chal-
lenges will arise, for example, power, design and verification,
and reliability. Our expectation is that microarchitecture will
be called upon to help solve these problems. We discuss some
microarchitectural techniques that have been proposed in re-
cent years, and are likely to be used commercially in the near
future.

A. Data Value Speculation and Value Prediction

Earlier, we saw control speculation for control depen-
dences and memory dependence speculation for overcoming
ambiguous memory dependences. Data value speculation
has been proposed as a way of overcoming true dependences,
further increasing the available parallelism [15], [33].

With data value speculation, a prediction is made on the
values of data items (the output of an instruction, or the inputs
of an instruction). Two instructions that were dependent can
be executed in parallel if the output of the first instruction (the
input of the second) can be predicted with high accuracy. As
with other forms of speculation, the speculation needs to be
verified, and recovery actions initiated in case of incorrect
speculation.

Surprisingly, it is possible to predict the values of many
instructions with a reasonable accuracy. Empirical studies of

1570 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

program behavior show that many instructions tend to pro-
duce the same value every time they execute. Others cycle
through a small set of values following a regular pattern (e.g.,
1, 2, 4, 1, 2, 4 and so on). And finally, some instructions
follow well defined patterns such as increasing a value by
a fixed amount (e.g., incrementing by 2 or 3). This observed
program behavior is calledvalue locality[32], [51], [57].

A number of value predictors have been proposed. Cur-
rent value prediction schemes, however, do not achieve pre-
diction accuracies high enough to obtain a benefit from value
speculation; the costs of a misspeculation override any bene-
fits from the additional concurrency. Should better value pre-
dictors be developed, value speculation is likely to find in-
creasing use as a means to increase parallelism. More likely,
limited applications of value prediction and speculation are
likely to be developed for critical data dependencies where
values are highly predictable.

B. Instruction Reuse

Another technique for exploiting value locality isinstruc-
tion reuse. Unlike value speculation, instruction reuse is
not a speculative technique. The observation here is that
many instructions produce the same results repeatedly. By
buffering the input and output values of such instructions,
the output values of an instruction can be obtained via a
table lookup, rather than by performing all the steps required
to process the instruction. Simpler forms of reuse that do
not require tracking of the actual values are possible [56].
Not performing all the steps of instruction processing can
also benefit power consumption. Instruction reuse can also
salvage some of the speculative work that is otherwise
discarded on a branch misspeculation.

C. Microarchitectures With Multiple Program Sequencers

The microarchitectures that we have discussed so far have
a single sequencer that fetches and processes instructions
from a single instruction stream. As more transistor resources
become available, a natural progression is to have microar-
chitectures that have multiple sequencers, and are capable of
processing multiple instruction streams.

There is a spectrum of multiple-sequencer microarchitec-
tures possible. At one extreme is a microarchitecture where
multiple sequencers are added to the front end of the ma-
chine (instruction fetching, decoding, renaming), with the
back end of the machine remaining mostly unchanged. Each
instruction stream has its own set of front-end resources; the
back-end resources are shared by all the instruction streams.
At the other end of the spectrum is a microarchitecture that is
a collection of multiple processing engines, one for each in-
struction stream. Here, the unit of replication increases from
a functional unit capable of executing an instruction to a pro-
cessing unit capable of processing a sequence of instructions.
Other points in the spectrum, with varying degrees of sharing
of hardware resources, are possible.

The first option is a straightforward extension to a modern
superscalar processor, for example, the one shown in Fig. 8.

It is also called asimultaneous multithreaded (SMT)pro-
cessor [66], [68]. The second option implements a more tra-
ditional multiprocessor on a single chip, and can be viewed
as achip multiprocessor (CMP). Logically, either microar-
chitecture appears to be a virtual multiprocessor. Micropro-
cessors with an SMT are already on the design board, as are
microprocessors with a CMP microarchitecture.

Because a CMP microarchitecture shares fewer resources
than an SMT microarchitecture, it is likely to require more
transistors than an SMT microarchitecture. However, the
replicated, decentralized microarchitecture of a CMP is
appealing from the viewpoint of future design problems:
the use of replication alleviates the design and verification
problems and decentralized microarchitectures with local-
ized communication are more likely to be tolerant of wire
delays than centralized microarchitectures that require more
global communication.

We expect future microprocessors microarchitectures to
have multiple sequencers, with the microarchitecture falling
somewhere on the SMT-CMP spectrum, and shifting toward
the CMP side as transistor budgets increase. Logically such
a microarchitecture appears to be avirtual multiprocessor.
This bring up an important question: what sequence of in-
structions should each processor of the virtual multiprocessor
be responsible for processing? We address this issue next.

Using Multiple Sequencers to Improve Throughput:One
approach to utilizing the multiple virtual processors is aimed
at multiple, independently running programs orthreads. The
motivation here is that often processors are used in multipro-
gramming environments where multiple threads time-share
the system. For example, microprocessors are typically used
as processing nodes in a multiprocessor server.

A straightforward way of using the multiple virtual pro-
cessors is to run a different program on each. Collectively,
the processing throughput is increased, but the time taken
to execute any individual program thread is not reduced. In
fact, because of resource sharing, the time taken to execute a
single program can actually increase.

Using Multiple Sequencers to Improve Single Program
Performance: Since the time taken to execute a single
program will continue to be important, researchers have
been investigating techniques for using multiple virtual
processors to speed up the execution of a single program.

Recall that a way to decrease the execution time of a pro-
gram is to increase concurrency. An approach that has been
used for several decades is to statically divide a program into
multiple threads, i.e., toparallelizeit. This approach is suc-
cessful for regular, structured applications, but is of limited
use for others. The main inhibitor to parallelization is the
presence ofambiguous dependences. Thread-level specula-
tion can be used to overcome these constraints and divide a
program intospeculative threads.

Themultiscalar processing modelis an example of using
thread-level speculation to divide a sequential program into
multiple speculative threads, also calledtasks[59]. These
tasks are then speculatively dispatched, based on control flow
prediction, to the parallel processing units. Data is specula-
tively communicated among the tasks via the registers and a

MOSHOVOS AND SOHI: MICROARCHITECTURAL INNOVATIONS 1571

Fig. 9. The Multiscalar execution model. (a) Continuous, centralized instruction window (e.g.,
typical dynamically scheduled superscalar). (b) Multilscalar’s way of building a large instruction
window. (c) A loop. (d) How this loop may execute under the Multiscalar execution model.

specially designed memory mechanism, theaddress resolu-
tion buffer (ARB)[14] (or an alternative approach, thespec-
ulative versioning cache[16]). There is an implied sequen-
tial ordering between the tasks, which is inherent in the task
creation, and is maintained by the microarchitecture. This al-
lows the appearance of sequential execution to be recreated
from the actual, speculatively parallel, execution.

An example of multiscalar execution is shown in Fig. 9.
An iteration of the while loop comprises a task. A prediction
is made that an iteration of the loop will be executed, and as-
signed to a processing unit (3 iterations have been spawned
as tasks A, B, and C). These tasks are then executed in par-
allel as shown in Fig. 9(d). Notice that each iteration contains
an if statement “c[i] max” that could be unpredictable.
The corresponding branch would limit performance in a con-
ventional processor as misspeculation (in the first iteration)
would result in discarding all instructions that follow (the
ones included in iterations 2 and 3). In the multiscalar model,
however, such branches could be hidden inside each task re-
stricting misspeculation recovery only within a task. Conse-
quently, Multilscalar’s model of extracting concurrency from
a single program actually allows more concurrency that the
superscalar model.

Two recent processors, Sun’s MAJC [65] and NEC’s
Merlot [11], have implemented thread-level speculation
concepts similar to those of the multiscalar model.

Another approach is the use ofhelper threads. The idea
here is to spawn and run short threads in parallel with the
main sequential thread to aid performance. For example,
such threads might be prefetching data from memory, or
they can be implementing a sophisticated branch prediction
algorithm that is not economical or possible to implement
in hardware. Such threads can be embedded statically in the
program, or be dynamically extracted [6], [49], [48], [50],
[61], [72].

D. Power-Aware Microarchitectural Techniques

Successive processor generations typically rely on
more transistors and higher frequencies to deliver higher

performance. Unfortunately, this also increases power
requirements and density (i.e., power dissipated over the
same chip area). Both requirements impose increasingly
stringent constraints for modern microprocessors. With
current projections, it is simply impossible to maintain
the current performance/power/cost growth trend. Since
the microarchitectural mechanisms are what consumes the
power, they will have to be designed (or redesigned) to
address power concerns. A number of recent research efforts
are focusing onpower-awaremicroarchitectural techniques.
These are techniques that facilitate dynamic power versus
performance tradeoffs or offer competitive performance
with reduced power demands.

To understand the opportunities for power optimizations at
the microarchitectural level, first we have to understand what
are the sources of power dissipation in modern processors.
There are two such sources:dynamicandleakagepower.

Dynamic power dissipation occurs whenever a transistor
or wire changes voltage (i.e., value). Dynamic power dissi-
pation is proportional to product of the number of devices
changing value, of the speed of these changes (i.e., oper-
ating frequency) and of the square of the voltage change.
Reducing power dissipation is possible by reducing each of
these factors. Power-aware microarchitectural techniques ad-
dress the number of devices, and their switching speed, while
taking performance into consideration. For example, judi-
ciously disabling control speculation has been shown to re-
duce power dissipation with a minimal impact on perfor-
mance [34].

Power is dissipated even when devices do not change
values due to the imperfect nature of semiconductor-based
transistors. This is theleakage power. In existing designs,
leakage power is relatively small. However, as we move
toward smaller transistors and lower voltages, leakage power
increases rapidly [9]. Power-aware efforts in this area aim
at cutting off power to devices while they are not being
used. This is a challenging task as powering on and off
devices requires some time and, hence, can severely impact
performance [4], [18]. For example, it is possible to reduce
leakage power in caches by deactivating parts of the cache

1572 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

with a negligible impact on hit rate and performance [69].
Other microarchitectural techniques that trade fast (and
leaky) transistors for more, but slower transistors are also
likely to effective in addressing leakage power.

Additional information on current power versus perfor-
mance trends can be found in [9].

E. Microarchitectural Techniques for Reliability

Reliability is also becoming an increasingly important
consideration in microprocessor design. There are two
forces at work. The first is design complexity. As designs
becomes increasingly complex, validating their functionality
under all possible combinations becomes virtually impos-
sible. Second, as we move toward submicrometer designs
and multigigahertz operating frequencies, transient errors
become ever more probable. Transient errors are a side-ef-
fect of physical phenomena such radiation interference.
Consequently, there is an increasing need forfault-tolerant
microarchitectures. Fault tolerance in itself is a research
field with a long history. However, a number of novel fault
tolerance techniques, facilitated by other innovations in
microarchitecture, have been proposed recently.

AR-SMT builds upon the SMT microarchitecture [46]. In
AR-SMT, two copies of the same program are run simul-
taneously as two threads on the microprocessor core. The
two threads are time-shifted by a few instructions, with one
thread running ahead of the other. The results produced by
the run-ahead thread are buffered and compared against the
results of the other thread. If a transient error occurs, chances
are that it will affect the execution of only one of the two
threads and, thus, will be detected.

Another proposal, DIVA builds on concepts initially de-
veloped for value prediction [3]. A fast, unreliable processing
core runs ahead of a second slower, but inherently more reli-
able processing core, producing results that may contain er-
rors. The second processing core checks the validity of the
results of the faster core. The slower core can keep up with
the faster one as it uses the results produced by the faster core
as value predictions, and can verify them in parallel without
being constrained by dependences.

VI. CONCLUDING REMARKS

We have presented a variety of microarchitectural tech-
niques that have facilitated the dramatic improvements in
microprocessor performance. These techniques avail of the
more plentiful transistors provided by semiconductor tech-
nology scaling to improve performance beyond that possible
simply by improving transistor speeds. We broadly classi-
fied the techniques into two categories: techniques that in-
crease the concurrency of instruction processing, and tech-
niques that exploit regularities in program behavior.

For increasing the concurrency of instruction processing,
we presented several techniques used in modern micro-
processors: pipelining, superscalar execution, out-of-order
execution and speculative execution. Many transistors in
a modern microprocessor are used to implement these
techniques.

Microarchitectural techniques that exploit program be-
havior either serve to address gaps created by the disparate
scaling of different technologies, or to support techniques for
increasing instruction processing concurrency. We presented
memory hierarchies as an example of a technique with the
former role: addressing the increasing gap in processor and
memory speeds. Techniques serving the latter role included
branch predictors, trace caches, and memory dependence
predictors. Significant transistor resources in modern micro-
processors are also used to implement these techniques.

The beauty of microarchitectural techniques lies in the fact
that they are mostly transparent to entities outside the mi-
croprocessor hardware. This gives microprocessor architects
the freedom to use the microarchitectural techniques of their
choice, without having any material impact (other than pro-
viding increased performance, for example) to programmers.

As we move into the next decade, scaling in semicon-
ductor technology will continue to provide more transistor
resources with which to build microprocessors. However,
microprocessor architects will be faced with newer chal-
lenges, including the gaps created by disparate rates of
improvement in transistor and interconnection speeds, com-
plexities of the design, debugging and verification processes,
power consumption issues, as well as reliability issues, in
addition to the continued demands for more performance.
Many of the upcoming challenges and constraints will have
to be dealt with innovative microarchitectural techniques.
We presented several such techniques in this paper. These
included data speculation and value prediction, instruction
reuse, microarchitectures with multiple sequencers and
thread-level speculation, power-aware microarchitectures
and microarchitectural techniques for improving reliability
and fault-tolerance. Additional novel microarchitectural
techniques will, no doubt, be invented, as problems arise,
and there is a need to address the problems in an efficient
and transparent manner.

REFERENCES

[1] D. Alpert and D. Avnon, “Architecture of the Pentium micropro-
cessor,”IEEE Micro, vol. 13, no. 3, pp. 11–21, 1993.

[2] D. W. Anderson, F. J. Sparacio, and R. M. Tomasulo, “The IBM
system/360 model 91: Machine philosophy and instruction-han-
dling,” IBM J. Res. Develop., pp. 8–24, Jan. 1967.

[3] T. Austin, “DIVA: A reliable substrate for deep submicron design,”
in Proc. Annu. Int. Symp. Microarchitecture, Dec. 1999, pp.
196–207.

[4] J. A. Butts and G. S. Sohi, “A static power model for architects,”
in Proc. 33rd Annu. Int. Symp. Microarchitecture, Dec. 2000, pp.
248–258.

[5] P.-Y. Chang, E. Hao, and Y. N. Patt, “Target prediction for indirect
jumps,” inProc. 24th Annu. Int. Symp. Computer Architecture, June
1997, pp. 274–283.

[6] R. Chappell, J. Stark, S. Kim, S. Reinhardt, and Y. Patt, “Simulta-
neous subordinate microthreading (SSMT),” inProc. 26th Int. Symp.
Computer Architecture, May 1999, pp. 186–195.

[7] T.-F. Chen and J.-L. Baer, “A performance study of software and
hardware data prefetching schemes,” inProc. 21st Annu. Int. Symp.
Computer Architecture, Apr. 1994, pp. 223–232.

[8] G. Z. Chrysos and J. S. Emer, “Memory dependence prediction
using store sets,” inProc. 25th Int. Symp. Computer Architecture,
June–July 1998, pp. 142–153.

[9] V. De and S. Borkar, “Technology and design challenges for low
power and high performance,” inProc. Int. Symp. Low Power Elec-
tronics and Design, Aug. 1999, pp. 163–168.

MOSHOVOS AND SOHI: MICROARCHITECTURAL INNOVATIONS 1573

[10] K. Driesen and U. Holzle, “Accurate indirect branch prediction,” in
Proc. 25th Annu. Int. Symp. Computer Architecture, June–July 1998,
pp. 167–178.

[11] M. Edahiro, S. Matsushita, M. Yamashina, and N. Nishi, “A
single-chip multiprocessor for smart terminals,”IEEE Micro, pp.
12–20, Jul.–Aug. 2000.

[12] A. N. Eden and T. Mudge, “The YAGS branch prediction scheme,”
in Proc. 31st Annu. Int. Symp. Microarchitecture, Nov. 1998, pp.
69–77.

[13] J. H. Edmondson, P. I. Rubinfeld, P. J. Bannon, B. J. Benschneider,
D. Bernstein, R. W. Castelino, E. M. Cooper, D. E. Dever, D. R.
Donchin, T. C. Fischer, A. K. Jain, S. Mehta, J. E. Meyer, R. P. Pre-
ston, V. Rajagopalan, C. Somanathan, S. A. Taylor, and G. M. Wol-
rich, “Internal organization of the Alpha 21164, a 300-MHz 64-bit
quad-issue CMOS RISC microprocessor,”Dig. Tech. J., vol. 7, no.
1, 1995.

[14] M. Franklin and G. S. Sohi, “ARB: A hardware mechanism for dy-
namic memory disambiguation,”IEEE Trans. Comput., vol. 45, pp.
552–571, May 1996.

[15] F. Gabbay and A. Medelson, “Speculative execution based on value
prediction,” EE Dept., Technion-Israel Inst. Technology, Tech. Rep.
TR-1080, Nov. 1996.

[16] S. Gopal, T. N. Vijaykumar, J. E. Smith, and G. S. Sohi, “Speculative
versioning cache,” inProc. Int. Symp. High Performance Computer
Architecture, Feb. 1998, pp. 195–205.

[17] G. F. Grohoski, “Machine organization of the IBM RISC system/
6000 processor,”IBM J. Res. Develop., vol. 34, pp. 37–58, Jan. 1990.

[18] J. P. Halter and F. N. Najm, “A gate-level leakage power reduction
method for ultra-low-power CMOS circuits,” inProc. IEEE Custom
Integrated Circuits Conf., May 1997, pp. 475–478.

[19] J. L. Hennessy and D. A. Patterson,Computer Architecture A Quan-
titative Approach, 2nd ed. San Mateo, CA: Morgan Kaufmann,
1996.

[20] D. Hunt, “Advanced performance features of the 64-bit PA-8000,”
in Proc. COMPCON’95, Mar. 1995, pp. 123–128.

[21] W. W. Hwu and Y. N. Patt, “HPSm, a high performance restricted
data flow architecture having minimal functionality,” inProc. 13th
Int. Symp. Computer Architecture, June 1986, pp. 297–307.

[22] , “Checkpoint repair for high-performance out-of-order execu-
tion machines,”IEEE Trans. Comput., vol. C-36, pp. 1496–1514,
Dec. 1987.

[23] M. Johnson,Superscalar Design. Englewood Cliffs, NJ: Prentice-
Hall, 1990.

[24] N. P. Jouppi, “Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers,” in
Proc. 17th Annu. Int. Symp. Computer Architecture, May 1990, pp.
364–373.

[25] K. Yeager, “The MIPS R10000 superscalar microprocessor,”IEEE
Micro, vol. 16, pp. 28–40, Apr. 1996.

[26] D. Kaeli and P. Emma, “Branch history table prediction of moving
targets due to subroutine returns,” inProc. 18th Int. Symp. Computer
Architecture, May 1991, pp. 34–42.

[27] J. Kalamatianos and D. R. Kaeli, “Predicting indirect branches via
data compression,” inProc. 31st Annu. Int. Symp. Microarchitecture,
Nov. 1998, pp. 270–281.

[28] R. E. Kessler, E. J. McLellan, and D. A. Webb, “The Alpha 21 264
architecture,” inProc. Int. Conf. Computer Design, Dec. 1998, pp.
90–95.

[29] P. M. Kogge,The Architecture of Pipelined Computers. New York:
McGraw-Hill, 1981.

[30] D. Kroft, “Lockup-free instruction fetch/prefetch cache organiza-
tion,” in Proc. 8th Int. Symp. Computer Architecture, May 1981, pp.
81–87.

[31] J. K. F. Lee and A. J. Smith, “Branch prediction strategies and branch
target buffer design,”IEEE Comput., vol. 17, Jan. 1984.

[32] M. H. Lipasti, “Value locality and speculative execution,” Ph.D. dis-
sertation, Carnegie Mellon Univ., Pittsburgh, PA, Apr. 1997.

[33] M. H. Lipasti and J. P. Shen, “Exceeding the dataflow limit via value
prediction,” inProc. 29th Annu. Int. Symp. Microarchitecture, Dec.
1996, pp. 226–237.

[34] S. Manne, A. Klauser, and D. Grunwald, “Pipeline gating: Specu-
lation control for energy reduction,” inProc. 25th Annu. Int. Symp.
Computer Architecture, June–July 1998, pp. 132–141.

[35] D. Matzke, “Will physical scalability sabotage performance gains?,”
Computer, vol. 30, pp. 37–39, Sept. 1997.

[36] S. McFarling, “Combining branch predictors,” Digital Equipment
Corp., WRL, Tech. Rep. TN-36, June 1993.

[37] E. McLellan, “The Alpha AXP architecture and 21 064 processor,”
IEEE Micro, pp. 36–47, June 1993.

[38] J. D. Meindl and J. Davis, “Interconnect performance limits on
gigascale integration (GSI),”Mater. Chem. Phys., vol. 41, pp.
161–166, 1995.

[39] A. Moshovos, “Memory dependence prediction,” Ph.D. dissertation,
Univ. Wisconsin-Madison, Madison, WI, Dec. 1998.

[40] A. Moshovos, S. E. Breach, T. N. Vijaykumar, and G. S. Sohi,
“Dynamic speculation and synchronization of data dependences,”
in Proc. 24th Annu. Int. Symp. Computer Architecture, June 1997,
pp. 181–193.

[41] S. Palacharla and R. E. Kessler, “Evaluating stream buffers as a sec-
ondary cache replacement,” inProc. 21st Annu. Int. Symp. Computer
Architecture, Apr. 1994, pp. 24–33.

[42] S.-T. Pan, K. So, and J. T. Rahmeh, “Improving the accuracy of dy-
namic branch prediction using branch correlation,” inProc. 5th Int.
Conf. Architectural Support for Programming Languages and Oper-
ating Systems, Oct. 1992, pp. 76–84.

[43] S. J. Patel, M. Evers, and Y. N. Patt, “Improving trace cache
effectiveness with branch promotion and trace packing,” inProc.
25th Annu. Int. Symp. Computer Architecture, June–July 1998, pp.
262–271.

[44] Y. N. Patt, W. W. Hwu, and M. Shebanow, “HPS, a new microarchi-
tecture: Rationale and introduction,” inProc. 18th Annu. Workshop
Microprogramming, Pacific Grove, CA, Dec. 1985, pp. 103–108.

[45] A. Peleg and U. Weiser, “Dynamic flow instruction cache memory
organized around trace segments independent of virtual address
line,” U.S. Patent 5 381 533 , 1994.

[46] E. Rotenberg, “AR-SMT: A microarchitectural approach to fault tol-
erance in microprocessors,” inProc. 29th Int. Symp. Fault-Tolerant
Computing, June 1999, pp. 84–91.

[47] E. Rotenberg, S. Bennett, and J. E. Smith, “Trace cache: A low la-
tency approach to high bandwidth instruction fetching,” inProc.
29th Annu. Int. Symp. Microarchitecture, Dec. 1996, pp. 24–35.

[48] A. Roth, A. Moshovos, and G. S. Sohi, “Dependence based
prefetching for linked data structures,” inProc. 8th Int. Conf.
Architectural Support for Programming Languages and Operating
Systems, Oct. 1998, pp. 115–126.

[49] , “Improving virtual function call target prediction via depen-
dence-based pre-computation,” inProc. Int. Conf. Supercomputing,
June 1999, pp. 356–364.

[50] A. Roth and G. Sohi, “Speculative data-driven multithreading,” in
Proc. 7th Int. Symp. High-Performance Architecture, Jan. 2001.

[51] Y. Sazeides and J. E. Smith, “The predictability of data values,”
in Proc. 30th Annu. Int. Symp. Microarchitecture, Dec. 1997, pp.
248–258.

[52] A. Seznec, “A case for two-way skewed-associative caches,” in
Proc. 20th Annu. Int. Symp. Computer Architecture, May 1993, pp.
169–178.

[53] A. J. Smith, “Cache memories,”ACM Comput. Surv., vol. 14, no. 3,
pp. 473–530, 1982.

[54] J. Smith and A. Pleszkun, “Implementing precise interrupts in
pipelined processors,”IEEE Trans. Comput., vol. 37, pp. 562–573,
May 1988.

[55] J. E. Smith, “A study of branch prediction strategies,” inProc. 8th
Int. Symp. Computer Architecture, May 1981, pp. 135–148.

[56] A. Sodani and G. S. Sohi, “Dynamic instruction reuse,” inProc. 24th
Annu. Int. Symp. Computer Architecture, June 1997, pp. 194–205.

[57] , “An empirical analysis of instruction repetition,” in18th Int.
Conf. Architectural Support for Programming Languages and Oper-
ating Systems, Oct. 1998, pp. 35–45.

[58] G. S. Sohi, “Instruction issue logic for high-performance, interrupt-
ible, multiple functional unit, pipelined computers,”IEEE Trans.
Comput., vol. 39, pp. 349–359, Mar. 1990.

[59] G. S. Sohi, S. E. Breach, and T. Vijaykumar, “Multiscalar proces-
sors,” inProc. 22nd Annu. Int. Symp. Computer Architecture, June
1995, pp. 414–425.

[60] G. S. Sohi and M. Franklin, “High-bandwidth data memory sys-
tems for superscalar processors,” inProc. Int. Symp. Architectural
Support for Programming Languages and Operating Systems, Apr.
1991, pp. 53–62.

[61] Y. Song and M. Dubois, “Assisted execution,” Dept. EE Systems,
Univ. Southern California, Tech. Rep. CENG-98-25, Oct. 1998.

[62] E. Sprangle, R. S. Chappell, M. Alsup, and Y. N. Patt, “The agree
predictor: A mechanism for reducing negative branch history inter-
ference,” inProc. 24th Annu. Int. Symp. Computer Architecture, June
1997, pp. 284–291.

1574 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

[63] J. E. Thorton, “Parallel operation in the control data 6600,” inProc.
AFIPS Fall Joint Computer Conf., vol. 26, 1964, pp. 33–40.

[64] R. M. Tomasulo, “An efficient algorithm for exploiting multiple
arithmetic units,”IBM J. Res. Develop., pp. 25–33, Jan. 1967.

[65] M. Tremblay, J. Chan, S. Chaudhry, A. W. Conigliaro, and S. S. Tse,
“The MAJC architecture: A synthesis of parallelism and scalability,”
IEEE Micro, pp. 12–25, Nov.–Dec. 2000.

[66] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous mul-
tithreading: Maximizing on-chip parallelism,” inProc. 22nd Annu.
Int. Symp. Computer Architecture, June 1995, pp. 392–403.

[67] M. Wilkes, “Slave memories and dynamic storage allocation,”IEEE
Trans. Electron. Comput., pp. 270–271, Apr. 1965.

[68] W. Yamamoto and M. Nemirovsky, “Increasing superscalar perfor-
mance through multistreaming,” inConf. Parallel Architectures and
Compilation Techniques, June 1995, pp. 49–58.

[69] S.-H. Yang, M. D. Powell, B. Falsafi, K. Roy, and T. N. Vijaykumar,
“An integrated circuit/architecture approach to reducing leakage in
deep-submicron high-performance I-caches,” inInt. Symp. High-
Performance Computer Architecture, Jan. 2001.

[70] T.-Y. Yeh and Y. N. Patt, “A comprehensive instruction fetch mecha-
nism for a processor supporting speculative execution,” inProc. 25th
Annu. Int. Symp. Microarchitecture, Dec. 1992, pp. 129–139.

[71] C. Young, N. Gloy, and M. D. Smith, “A comparative analysis of
schemes for correlated branch prediction,” inProc. 22nd Annu. Int.
Symp. Computer Architecture, June 1995, pp. 276–286.

[72] C. Zilles and G. Sohi, “Execution-based prediction using speculative
slices,” inProc. 28th Int. Symp. Computer Architecture, July 2001.

Andreas Moshovos(Member, IEEE) received the M.Sc. degree in com-
puter science from the University of Crete, Greece, and the Ph.D. degree in
computer sciences from the University of Wisconsin-Madison.

He is an Assistant Professor in the Electrical and Computer Engineering
Department, University of Toronto, Toronto, Ontario, Canada. His research
interests are in computer architecture and microarchitecture for high-perfor-
mance, low-cost, and power-aware microprocessors.

Prof. Moshovos is a recipient of the NSF CAREER award. He is a
Member of the ACM.

Gurindar S. Sohi (Member, IEEE) received the Ph.D. degree in electrical
and computer engineering from the University of Illinois, Urbana-Cham-
paign.

He is a Professor in the Computer Sciences and the Electrical and Com-
puter Engineering Departments, University of Wisconsin-Madison. His re-
search interests focus on architectural and microarchitectural techniques for
high-performance microprocessors, including instruction-level parallelism,
out-of-order execution with precise exceptions, nonblocking caches, specu-
lative multithreading, and memory-dependence speculation.

Prof. Sohi is a Member of the ACM.

MOSHOVOS AND SOHI: MICROARCHITECTURAL INNOVATIONS 1575

