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Abstract—Graphics processors (GPU) are interesting for non-
graphics parallel computation because of the potential for more
than an order of magnitude of speedup over CPUs. Because
the GPU is often presented as a C-like abstraction like Nvidia’s
CUDA, little is known about the hardware architecture of the
GPU beyond the high-level descriptions documented by the
manufacturer.

We develop a suite of micro-benchmarks to measure the
CUDA-visible architectural characteristics of the Nvidia GT200
(GTX280) GPU. We measure properties of the arithmetic
pipelines, the stack-based handling of branch divergence, and
the warp-granularity operation of the barrier synchronization
instruction. We confirm that global memory is uncached with
∼441 clock cycles of latency, and measure parameters of the
three levels of instruction and constant caches and three levels
of TLBs.

We succeed in revealing more detail about the GT200 archi-
tecture than previously disclosed.

I. INTRODUCTION

The graphics processor (GPU) as a non-graphics compute
processor has a very different architecture from traditional
sequential processors. For both developers of the platform
as well as for GPU architecture and compiler researchers,
it is essential to understand the architecture of a current
design in detail. For the developer, knowing the underlying
hardware architecture is essential for tuning a program to run
at maximum performance. Compilers must likewise know the
properties of the hardware in order to properly optimize code.
In architecture research, it is important to understand the trade-
offs that were made (and that a trade-off was made) in order
to accurately model and improve current architectures.

The Nvidia G80 and GT200 GPUs are capable of non-
graphics computation using Nvidia’s C-like CUDA program-
ming interface. Nvidia provides hints of the GPU performance
characteristics in the CUDA Programming Guide [1] in the
form of rules, but the rules are vague, and there is little
indication of how the underlying hardware is organized and
how it motivates the rules.

To learn more about the characteristics of the Nvidia GPU,
we constructed a suite of micro-benchmarks targeting specific
parts of the architecture. We verified some of the performance
characteristics discussed in the Programming Guide, and re-
vealed architectural details beyond what was revealed in the
manuals.

We make the following contributions:

• We verify performance characteristics listed in the CUDA
Programmer’s Reference.

• We explored the detailed functionality of divergent
branches and of the barrier synchronization instruction.

Fig. 1. Streaming Multiprocessor with 8 Scalar Processors Each

Fig. 2. Thread Processing Cluster with 3 SMs Each

• We measure the structure of the memory caching hi-
erarchy, including the TLB hierarchy, constant memory
caches, and instruction memory caches.

We begin with background on the CUDA computation
model in Section II. We then describe the architecture of the
GT200 GPU in Section III and present our detailed measure-
ments in Section IV. We review related work in Section V.

II. BACKGROUND

A. GPU Architecture

CUDA models the GPU architecture as a parallel multicore
system. It abstracts the thread-level parallelism of the GPU
into a hierarchy of threads (”thread”, ”warp”, Cooperative

Fig. 3. GPU with TPCs and Memory Banks



SM Resources
SPs 8 per SM
SFUs 2 per SM
DPUs 1 per SM
Registers 16,384 per SM
Shared Memory 16 KB per SM

Caches
Constant Cache 8 KB per SM
Texture Cache 6-8 KB per SM

GPU Organization
SMs 3 per TPC
TPCs 10 total
Clock 1.35 GHz
Memory 8 × 128MB, 64-bit
Memory Latency 400-600 clocks

Programming Model
Warps 32 threads
Blocks 512 threads max
Registers 128 per thread max
Constant Memory 64 KB total
Kernel Size 2M PTX insns max

TABLE I
GT200 PARAMETERS ACCORDING TO NVIDIA [1], [2]

Thread Array (CTA) or ”block”, ”grid”). While the program-
ming model uses collections of scalar threads, the hardware
more closely resembles an 8-wide processor operating on 32-
wide vectors, but allows each channel to branch separately.

These threads are mapped onto a hierarchy of hardware
resources. Blocks of threads are executed within Streaming
Multiprocessors (SM, Figure 1). The basic unit of execution
flow in the SM is the warp, a collection of 32 threads. Nvidia
refers to this arrangement as Single-Instruction Multiple-
Thread (SIMT), where every thread of a warp executes the
same instruction in lockstep. The SM contains arithmetic units,
and other resources that are private to blocks and threads, such
as per-block shared memory and the register file.

Groups of SMs belong to Thread Processing Clusters (TPC,
Figure 2). TPCs contain resources (e.g. caches) that are shared
between several SMs, most of which are not visible to the
programmer.

The GPU (Figure 3) consists of the collection of TPCs,
the interconnection network, and the memory system (DRAM
memory controllers).

The parameters Nvidia discloses for the GT200 GPU we
used are shown in Table I.

B. Compilation Flow

CUDA presents the GPU architecture as a C-like program-
ming language with extensions to abstract the GPU threading
model. In the CUDA model, host CPU code can launch GPU
routines by calling device functions that execute on the GPU.

Since the GPU uses an instruction set different from the host
CPU, the CUDA program uses a compile flow that separates
the code into CPU and GPU code, compiles them using
different compilers targeting different instruction sets, and then
merges the compiled code into a single ”fat” binary [3].

A summary of the relevant portions of the compilation flow
is as follows:

• C-like CUDA GPU functions separated from Host C
functions (cudafe)

• GPU code compiled into PTX intermediate representation
(nvopencc)

• PTX code compiled into native GPU ”cubin” binary
(ptxas)

• Host C code and cubin merged, then compiled into host
executable (host C compiler, e.g. gcc)

• Potential for further modification of the GPU cubin by
GPU driver at load or run time

Although PTX is described as being the ”assembly” level
representation of GPU code, we have found that PTX is not
useful for detailed optimization or micro-benchmarking. The
native instruction set differs too much from PTX, and much
optimization is done to the PTX code, so PTX code is not
a sufficiently precise representation of the actual machine
instructions executed. In most cases, we have found it most
productive to write in CUDA C, then verify the generated
machine code sequences at the cubin level.

We have not observed any modification of the cubin code
before execution, but we have no guarantees that such modi-
fications cannot be done. Conceptually, the GPU driver could
make changes to the cubin code to emulate unsupported
functionality or to work around hardware flaws triggered by
specific code sequences.

III. MEASUREMENT METHODOLOGY

To explore the GT200 architecture, we create specially-
crafted micro-benchmarks to expose the hardware bottleneck
related to each of the characteristics we wish to measure. Our
conclusions will be drawn from analyzing the execution times
of the micro-benchmarks rather than direct probing of the
hardware.

We used decuda [4] to assist in understanding the code
sequences generated by the Cuda compiler. Decuda is a
disassembler for Nvidia’s machine-level instructions, derived
from analysis of Nvidia’s compiler output, as the instruction
set is not publicly documented. Decuda also served as a
convenient tool for aligning blocks of code.

__global__ vo id kmulu_dep512 ( u n s i g n e d *ts , i n t *out , . . . )
{

. . .

f o r ( i n t i=0;i<2;i++)
{
start_time = clock ( ) ; / / Only measure l a s t i t e r a t i o n
repeat256 (t *= t2 ; t2 *= t ; ) / / 512 m u l t i p l i c a t i o n s
stop_time = clock ( ) ;

}

. . .
}

Listing 1. Sample Multiplication Benchmark

The general structure of a micro-benchmark consists of
GPU kernel code containing timing code (using clock())
around a section of code that exercises the hardware being
measured. The kernel is run enough times so appropriate



averages can be taken. Listing 1 shows a sample kernel used
to measure the latency of multiplication operations.

Typically, a benchmark runs through the entire code at least
twice, with the first iteration not measured, to avoid the effect
of cold instruction cache misses. Benchmarks also write some
combination of the internal variables to global memory at the
end of the benchmark to prevent the compiler from optimizing
away the arithmetic inside the loop. Timing code is done by
reading clock() into a register that is later moved to global
memory, avoiding global memory writes from interfering with
the test.

The remainder of this section describes measurement
methodology specific to certain structures in the architecture.
Detailed descriptions of the tests and results are in Section IV.

A. Arithmetic Pipeline

Arithmetic performance is measured by timing a block
of code that exercises typically the one instruction we are
measuring. We ensure that the kernel code fits within the
instruction cache. We make each instruction depend on the
result of the previous instruction to measure pipeline latency.
We use multiple warps of the same code to measure the
aggregate throughput.

B. Control Flow and Barrier Synchronization

Control flow behavior is measured by constructing micro-
benchmarks of varying branching behavior, including branch
divergence. The order of execution of code blocks of interest
is observed using the clock() function. Other behaviors were
derived from whether the GPU deadlocked on the given
kernel code. A similar approach was used to investigate the
syncthreads barrier synchronization instruction.

C. Interconnect

We observed non-uniform access latencies in the intercon-
nect when an access leaves a TPC. This was observed in
the global memory access time and the L3 instruction and
constant cache access time. The access time varied by nearly
100 cycles, dependent only on TPC placement. To factor out
the effect of the interconnect, many of the tests report average
performance over all 10 placements of the executing block on
TPCs.

D. Global Memory, Caches

Memory characteristics were measured using pointer-
chasing code. The kernel core measured the runtime of code
which repeatedly read a value in memory to obtain the location
of the next memory read. Due to the absence of data prefetch-
ing, our tests were done on arrays of varying sizes using linear
accesses of varying strides. Most TLB measurements used the
same technique with the stride set to the memory translation
page size (512 KB).

The instruction cache tests did not have the ability to vary
the access stride. Branch latency was too high to be useful
for measuring stride or random accesses of the instruction
memory. Measuring instruction caches required execution of a
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Fig. 4. Timing of two consecutive kernel launches for 10 and 30 blocks.

block of independent instructions and varying the instruction
cache footprint.

IV. TESTS AND RESULTS

This section presents our detailed results and our tests and
measurements. We begin by measuring our measuring tool, the
clock() function. We then explore the SM’s various arithmetic
pipelines, branch divergence and barrier synchronization. We
also explore the caching hierarchies both within and surround-
ing the SMs.

A. Clock

The clock() function returns the value of a counter that is
incremented every clock cycle [1]. We use the clock() function
for all of our timing measurements. Sampling the counter
before and after a block of code for each thread provides
a measure of the number of cycles taken by the device to
completely execute the thread.

A clock() followed by a non-dependent operation takes 28
cycles. This is because the clock() function translates to a
move from the %clock register followed by a left-shift of 1
(according to decuda) as follows:

mov $r1, %clock
shl $r1, $r1, 1

The pipeline latency is 24 cycles (See Section IV-B). Since
these two instructions are dependent, it takes 24 cycles to
execute the mov, plus 4 cycles to issue the shl instruction.
The left-shift suggests that the counter is incremented at half
the shader clock frequency.

%clock registers are per-TPC. Figure 4 shows the recorded
timestamps for two consecutive kernel launches. The first
kernel call runs 10 blocks on 10 different TPCs, while the
second kernel call runs one block on each of the three SMs on
all 10 TPCs. The two consecutive markers show the starting
and ending times of each block execution on each SM. It
can be seen from the second kernel call that the three blocks
executing on the same TPC have the same timestamp value,
while the timestamps vary across different TPCs.



Latency
(clocks)

Throughput
(ops/clock)

Issue Rate
(clocks/warp)

SP 24 8 4
SFU 28 2 16
DPU 48 1 32

TABLE II
ARITHMETIC PIPELINE LATENCY AND THROUGHPUT

B. Arithmetic Pipelines

Each SM contains 3 different types of execution units (as
shown in Figure 1):
• 8 SP units that execute single precision floating point and

32-bit integer ALU instructions.
• 2 SFU units that are responsible for executing tran-

scendental functions and mathematical functions such as
reverse square root, sine, cosine, etc.

• 1 DPU unit that handles computations on 64-bit floating
point operands.

Table II shows the latency and throughput of each of these
execution units, when all operands are in registers.

To measure the pipeline latency and throughput of each
type of execution unit, we use a test consisting of a chain of
dependent instructions that map to that unit, similar to the one
shown in Listing 1 for multiplication. For the latency tests, we
run a single block of only 1 thread. For the throughput tests, we
run a block of 512 threads (maximum number of threads per
block) to ensure full occupancy of the units. Our benchmark
suite contains a kernel to test the latency and throughput of a
number of the documented arithmetic, logic, and mathematical
operations. Tables III and IV show which execution unit each
of these operations map to, as well as the observed latency
and throughput.

Table III shows the latency and throughput of various
arithmetic instructions. Single-precision and double-precision
multiplication and multiply-and-add (mad) map to a single
device instruction, while 32-bit integer multiplication and mad
translate to multiple native instructions. Integer multiplication
translates to a chain of 4 dependent instructions, hence takes 4
times the pipeline latency (96 cycles). Similarly, integer mad
translates to 5 dependent instructions and takes 120 cycles. The
hardware only supports 24-bit integer multiplication via the

mul24() intrinsic. For 32-bit integer and double operands,
division translates to a call to a subroutine that emulates
this operation, resulting in high latency and low throughput.
However, single-precision floating point division is translated
to an inlined sequence of instructions, and has a lower latency
and higher throughput.

Table III also shows that the throughput for single-precision
floating point multiplication is ∼11.2 ops/clock, which means
that multiplication can be issued to both the SP and SFU
units. This suggests that each SFU unit is capable of doing
∼2 multiplications per cycle, twice the throughput of other
(more complex) instructions that map to this unit. The table
also shows that the throughput for single-precision floating
point mad is 7.9 ops/clock, suggesting that mad operations

Instruction Type Execution
Unit

Latency Throughput

add, sub,
max, min uint, int SP 24 7.9

mad uint, int SP 120 1.4
mul uint, int SP 96 1.7
div uint – 608 0.28
div int – 684 0.23
rem uint – 728 0.24
rem int – 784 0.20
and, or,
xor, shl,
shr

uint SP 24 7.9

Instruction Type Execution
Unit

Latency Throughput

add, sub,
max, min float SP 24 7.9

mad float SP 24 7.9
mul float SP, SFU 24 11.2
div float – 137 1.5

Instruction Type Execution
Unit

Latency Throughput

add, sub,
max, min double DPU 48 1.0

mad double DPU 48 1.0
mul double DPU 48 1.0
div double – 1366 0.063

TABLE III
LATENCY AND THROUGHPUT OF ARITHMETIC AND LOGIC INSTRUCTIONS

Instruction Type Execution
Unit

Latency Throughput

umul24() uint SP 24 7.9
mul24() int SP 24 7.9
usad() uint SP 24 7.9
sad() int SP 24 7.9
umulhi() uint – 144 1.0
mulhi() int – 180 0.77
fadd rn(),
fadd rz()

float SP 24 7.9

fmul rn(),
fmul rz()

float SP, SFU 26 10.4

fdividef() float – 52 1.9
dadd rn() double DPU 48 1.0
sinf(),
cosf()

float SFU? 48 2.0

tanf() float – 98 0.67
exp2f() float SFU? 48 2.0
expf(),
exp10f()

float – 72 2.0

log2f() float SFU 28 2.0
logf(),
log10f()

float – 52 2.0

powf() float – 75 1.0
rsqrt() float SFU 28 2.0
sqrt() float SFU 56 2.0

TABLE IV
LATENCY AND THROUGHPUT OF MATHEMATICAL INTRINSICS

cannot be executed by the SFUs.
mul24() and umul24() provide 24-bit signed and un-

signed integer multiplication that map to a single native
instruction, as shown in Table IV. The log2f() and rsqrt()
functions also map to single device instructions handled by



Fig. 5. SP Throughput and Latency

the SFU. The sinf(), cosf(), and exp2f() intrinsics
each translates to a sequence of two dependent instructions
operating on only one operand, and thus takes 48 cycles
(2×24). sqrt() is a sequence of two instructions: a rsqrt
followed by reciprocal.

Figure 5 shows latency and aggregate throughput of depen-
dent SP instructions (integer addition), as the number of warps
on the SM increases. The observed latency is 24 cycles below
6 warps, when the pipeline is not full. Time-slicing increases
the observed latency. Since all warps observe the same latency,
the warp scheduler is fair. Throughput increases linearly while
the pipeline is not full, then saturates at 8 operations per clock
once the pipeline is full.

The scheduler does not manage to schedule optimally (does
not fill the pipeline) when there are 6 or 7 warps in the SM,
leading to increased latency and decreased total throughput
than the SM should be capable of. The Programming Guide
states that 6 warps (192 threads) should be sufficient to hide
register read-after-write latencies, which would have been
possible with better warp scheduling.

C. Control Flow

1) Branch Divergence: A warp executes a single common
instruction at a time. Every instruction issue time, the SIMT
unit selects a warp to execute and issues the instruction to the
active threads of the warp. When threads of a warp diverge
due to a data-dependent conditional branch, the warp serially
executes each branch path taken, disabling threads that are
not on that path [1]. Figure 6 shows the execution timeline
for two concurrent warps in a block whose threads diverge 32
ways, where each thread takes a different path based on its
thread ID. The figure shows that within a single warp, each
path is executed serially, while the execution of different warps
may overlap. Threads that take the same path are executed
concurrently with each other.

2) Reconvergence: When the execution of the different
paths is complete, the threads converge back to the same
execution path [1]. The compiler inserts one instruction before
a potentially-diverging branch, which provides the hardware
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Fig. 6. Execution Timeline of Two 32-Way Divergent Warps.

with the location of the reconvergence point. It also inserts the
reconvergence point using a field in the instruction encoding.

When threads diverge, each path is executed serially until
the reconvergence point, at which time the other path begins
executing immediately after the divergent branch.

According to [5], a branch synchronization stack is used to
manage independent threads that diverge/converge. We use the
kernel shown in Listing 2 to confirm this statement.

i f (tid == c [ 0 ] ) { . . . }
e l s e i f (tid == c [ 1 ] ) { . . . }
e l s e i f (tid == c [ 2 ] ) { . . . }
. . .
e l s e i f (tid == c [ 3 1 ] ) { . . . }

Listing 2. Reconvergence Stack Test

We use the array c to specify the order in which the
threads are executed. We observed that when a warp reaches
a conditional branch, the taken path is always executed first.
In this case, for each if statement the else path is the taken
path, and is hence executed first, so that the last then-clause
(else if (tid == c[31])) is always executed first, and the first
then-clause (if (tid == c[0])) executed last.

Figure 7 shows the execution timeline of this kernel when
the array c contains the increasing sequence {0, 1, ..., 31}.
Thread 0 executes the first code block, thread 1 executes the
second code block, and so on. In this case, the code block for
thread 31 is the first to execute.

Figure 8 shows the results of the same test when the array
c contains a decreasing sequence {31, 30, ..., 0}.

The above two tests show that the thread ID does not affect
execution order. We observed execution ordering that was
consistent with the taken path being executed first, and the
fall-through path being pushed on a stack. Other tests showed
that the number of active threads on a path also has no effect
on which path is executed first.

3) Effects of Serialization: The programming guide states
that for the purposes of correctness, the programmer can
essentially ignore the SIMT behavior [1]. In this section, we
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Fig. 7. Execution Timeline of Kernel Shown in Listing 2. Array c contains
the increasing sequence {0, 1, ..., 31}
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Fig. 8. Execution Timeline of Kernel Shown in Listing 2. Array c contains
the decreasing sequence {31, 30, ..., 0}

show an example of code that would work if threads were
independent, but breaks due to the SIMT behavior.

w h i l e (sharedvar != tid ) ;
/ * ** r e c o n v e r g e n c e p o i n t ** * /
sharedvar++;

Listing 3. Example code that breaks due to SIMT behavior

In this code, the variable sharedvar starts out as 0.
Intuitively, the first thread would break out of the while
loop and increment sharedvar, which would cause each
consecutive thread to do the same, fall out of the while loop
and increment sharedvar for the next thread to execute.
In the SIMT model, branch divergence occurs when thread
0 fails the while-loop condition. The compiler marks the
reconvergence point just before sharedvar++. When thread
0 reaches the reconvergence point, the other (serialized) path
is executed. Thread 0 cannot continue until those threads also
reach the reconvergence point. This causes deadlock as thread
0 cannot increment the shared variable.

D. Barrier Synchronization

Synchronization between warps of a single block is done
using syncthreads(), which acts as a barrier at which all
warps wait until all warps reach the barrier before any warp is
allowed to resume execution. The syncthreads() operation is
implemented as a single instruction with fairly low overhead.
When a single warp executes a sequence of syncthreads()
operations, we observed a latency of 20 clock cycles for each

syncthreads().
1) syncthreads() for Threads of a Single Warp: If only

some threads within a warp execute syncthreads(), the kernel
does not hang, since syncthreads() works at the granularity
of a warp. The programming guide states that syncthreads()
acts as a barrier for all threads in the same block. The test in
Listing 4 shows that syncthreads() waits for all warps (all 1
warps in this test) in a block before continuing. This kernel is
executed for a single warp, in which the first half of the warp
writes an array of shared counters, and the second half of the
warp reads the elements of the same array.

i f (tid < 16)
{
count [tid%16] = tid ;
__syncthreads ( ) ;

}
e l s e
{
__syncthreads ( ) ;
count [tid ] = count [tid%16]

}

Listing 4. Example code that shows syncthreads() synchronizes at warp
granularity

In this example, the second half of the warp does not
read the updated values in the array count, showing that

syncthreads() does not synchronize diverged threads within
one warp as the programming guide’s description would
suggest.

2) syncthreads() Across Multiple Warps: When a warp
calls syncthreads(), it waits at the barrier until all other
warps in the block either call syncthreads() or terminate,
then resumes execution. The kernel does not hang if only
some warps within the block call syncthreads(), as long as
those that do not call syncthreads() eventually terminate.
If syncthreads() waits for warps that for any reason do
not terminate, then syncthreads() will wait indefinitely, as
there is no time-out mechanism. Listing 5 shows one example
where one warp spins waiting for data generated after the

syncthreads() in the other warp.
The programming guide states that syncthreads() is al-

lowed in conditional code, but only if the conditional evaluates
identically across the entire thread block, otherwise the code
execution is likely to hang or produce unintended side effects
[1]. Listing 6 shows the details of what happens when the
above recommendation is violated.

In this example, the second and third syncthreads() syn-
chronize, while the first and fourth syncthreads() synchro-



/ * T e s t run wi th two warps * /
count = 0 ;
i f (warp0 )
{
__syncthreads ( ) ;
count = 1 ;

}
e l s e
{

w h i l e (count == 0) ;
}

Listing 5. Example code that deadlocks due to syncthreads()

i f (warp0 )
{

i f (tid < 16) / / Two−way b ra nc h d i v e r g e n c e
__syncthreads ( ) ; [ 1 ]

e l s e
__syncthreads ( ) ; [ 2 ]

}
i f (warp1 )
{
__syncthreads ( ) ; [ 3 ]
__syncthreads ( ) ; [ 4 ]

}

Listing 6. Example code that produces unintended results due to
syncthreads()

nize together. (For warp 0, code block 2 executes before code
block 1 because block 2 is the branch’s taken path. See Section
IV-C1.). This confirms that syncthreads() operates at the
granularity of warps; Diverged warps are no exception, as each
serialized path executes syncthreads() separately and waits
for all other warps in the block (i.e. warp1) to also execute

syncthreads() (or terminate).

E. Register File

The register file contains 16,384 32-bit registers (64 KB), as
the CUDA Programming Guide states. The number of registers
used by a thread is rounded up to a multiple of 4. We did not
notice any quantization of the allocation of the registers in the
register file beyond this constraint.

Fig. 9. Total registers used by a block is limited to 16,384 (64 KB). Maximum
threads in a block is quantized to 64 threads, indicating 64 banks.

Attempting to launch a block of threads that use a total
of more than 64 KB of registers results in a failed launch.
Likewise, attempting to use more than 128 registers per thread
fails. The Total regs series in Figure 9 illustrates this limit. It
can be seen that the number of registers used in a block is
at most 16,384. The region below 32 registers per thread is
limited by 512 threads per block.

It can also be seen in Figure 9 that the number of threads run
in a block is quantized to 64 threads. This puts an additional
limit on the number of registers that can be used, and is most
visible when threads use 88 registers each: Only 128 threads
can run in a block, and only 11,264 (88 × 128) registers can
be used, as 192 threads would use more than 16,384 registers.

The quantizing of threads per block to 64 threads suggests
the use of 64 memory banks in the register file. Note that this
is different from quantizing the total register use.

The 64 register file banks would likely be distributed over
the 8 SPs (8 banks per SP). Having at least four banks per
SP and distributing the execution of each warp over four
cycles allows the use of single-ported memories to provide
sufficient bandwidth to execute three-read, one-write operand
instructions (e.g. multiply-add) with no bank conflicts. Having
eight banks per SP would presumably be caused by the need
to provide extra bandwidth for the ”dual-issue” feature using
the SFUs (see Section IV-B) and for memory operations in
parallel with arithmetic.

A similar limitation was alluded to in Section 5.1.2.6 of
the CUDA Programming Guide 2.0 [1]. The Manual states
that due to bank conflicts, ”best results” are achieved if the
number of threads per block is a multiple of 64. What we
observed is that when limited by register count, the number
of threads per block is limited to a multiple of 64, while no
bank conflicts were observed.

F. Shared Memory

Threads belonging to the same block can cooperate by
using data in shared memory. The documentation [1] states
that shared memory is as fast to access as an L1 cache,
with a latency of approximately two cycles. We ran a micro-
benchmark that performed a sequence of dependent reads and
measured the read latency to be 38 cycles.

Unfortunately, we could not identify the reason for this 12
cycle difference. (The pipeline latency is 24 cycles.) We note
that Volkov and Demmel [6] report a similar latency of 36
cycles on the 8800GTX, the predecessor to the GT200. We
used decuda [4] to see how reads are translated natively. Every
read is translated into a movsh command: movsh.b32 $ofs1,
s[$ofs1+0x0030], 0x00000002. This command uses a special
offset register, performs an addition and a left shift by two.

The amount of shared memory allowed per block is 16KB.
The kernel’s function parameters occupy shared memory, and
typically 16 bytes are reserved for system use. For our test
that uses 5 parameters, the compiler reserved an additional
12 unused shared memory bytes, and we can allocate at most
16336 bytes of shared memory. Larger sizes give the following



kernel error when launched: “too many resources requested for
launch”.

G. Global Memory

The global memory is accessible by all running threads,
even if they belong to different blocks. Our incentive in bench-
marking the global memory was twofold: first, we wanted to
verify the performance characteristics provided in the CUDA
Programming Guide and second we wanted to understand how
memory translation is performed in the GT200. Our findings
for the latter are presented in Section IV-H.

An access to global memory has a documented latency
of 400-600 cycles [1]. We implemented a benchmark which
executed a sequence of pointer-chasing dependent reads to
global memory. We found the read latency to be 440 to 441
cycles.

Global memory has no documented caches. To this respect,
we ran a micro-benchmark that swept through a specific array,
whose size we gradually increased. We confirm that no caching
effects were witnessed, except when the size of the array was
smaller or equal to 256 Bytes. In these few cases we witnessed
a small decrease in memory latency in the range of two to
three cycles. We consider these to be DRAM effects, possibly
related to DRAM’s column buffer size.

H. Memory Translation

To understand how memory translation is performed, we
ran a sequence of dependent reads which were situated stride
bytes apart in an array. We varied both the size of the array,
as well as the stride. If strides are big enough to fall into
different pages and we access many pages, we expect to see
the presence, if any, of a translation lookaside buffer (TLB). In
all our experiments our code fits in the instruction cache and
the first iteration is ignored to eliminate skewing the results
from cold instruction cache and TLB misses.

Figure 10 shows the presence of two TLBs. The horizontal
axis depicts the stride in bytes, while the various series
correspond to different array sizes. The read latency presented
in the previous section includes the access to the first level
TLB. The latency penalty of accessing the second level TLB
is ∼50 cycles, while a miss there results in a total latency of
approximately 700 cycles.

If the two TLB levels were fully associative, we could infer
from this figure that the first level has 16 entries and the last
level has 31 entries with the 32nd entry potentially dedicated
to the code segment. We find that only the first level TLB is
fully associative.

To validate our initial conclusions, we created another
micro-benchmark where only a fixed number of array elements
are accessed in a round-robin fashion. Figure 11 shows how
the access latency (y axis) changes in respect to two param-
eters, the number of elements accessed (series) and the stride
difference of these elements (x axis). When the strides are
small enough, accesses will fall into the same page, while
once the strides get larger than the page size, the pages will
spill to lower TLB levels and to memory.
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Fig. 10. Global Memory - Presence of two TLBs
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Fig. 11. Page Size and TLB entries

If we focus on the series where 17 elements are accessed
we can see that the first stride where there are misses is at
512 KB. This is the page size. In addition we can see that
for a 512 KB stride, any series that accesses more than 16
elements will have 100% miss rate on the first level TLB. For
a 256 KB stride, which is half the page size, series that access
up to 32 elements always hit in the first level. Even though
the first level has 16 entries, every two accesses fall within the
same page due to the stride pattern. If more than 32 elements
are accessed then the miss rate is 50% for the first TLB level,
resulting in a latency of approximately 467 cycles.

The second level TLB has 64 entries and is eight-way set-
associative. The only outlier to the idea of a 64 entry eight-way
set-associative L2 TLB is the 17 series. Specifically, the point
at 2 MB should be at ∼600 cycles (50% miss rate) instead
of 500. This behavior can explained by the presence of some
extra storage, as explained later in this section.

Figure 12 presents the associativity of the two TLB levels.
The number of elements in the line that transitions from one
TLB level to another is the number of sets in the TLB. The
first level TLB is fully associative and thus the transition from
441 cycles to 490 happens in one step. The transition from
490 cycles to 700 includes eight transition points. The points



appear to be nicely spaced and we would expect the presence
of an eighth point at roughly 515 cycles, rather than the current
∼495 cycles. Its lack is explained in the following test.
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Fig. 12. TLB associativity

Figure 13 presents a possible explanation for the two
inconsistencies we noted in figures 11 and 12. It shows the
presence of another structure backing up the second level TLB.
The latency of this structure appears to be approximately 17
cycles.

Our initial intention was to confirm that the associativity of
the second TLB level is eight. This is possible to see, if all
missing accesses to the first TLB level (TLB1) map to a single
set in the second level TLB (TLB2). However, since TLB1 has
16 entries and is fully associative, accesses that will miss the
TLB1 will already overflow a TLB2 set since its associativity
is around eight. To overcome this issue we changed the stride
access pattern of our micro-benchmark as follows: Our micro-
benchmark accesses x number of elements, in a round-robin
fashion. The first 16 elements are spaced 512KB apart, i.e.,
the page size, so that they fill the first two ways of TLB2. The
remaining x - 16 elements are spaced 4MB apart, so that they
map to a single set. 4MB is the page size (512 KB) multiplied
by the number of sets (8).
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Fig. 13. Presence of an additional structure post the second TLB level

In Figure 13 the horizontal axis shows the number of
elements accessed (i.e., the value of x). When up to 16
elements are accessed, all of them hit in TLB1 resulting in an

Fig. 14. Constant Memory. Latency includes one address computation
instruction. Three levels of caching are seen, with the L3 having non-uniform
access times.

average latency of 441 cycles. When the number of elements
is between 16 to 22, then they all hit in TLB2. Specifically in
the 22 case, the first 16 occupy two ways and the remaining
six fill in the available 6 ways of a given set. The latency is
490 cycles.

If more than 22 elements are accessed, we expect a latency
increase since some of these accesses will be satisfied in
memory. However, there will always be 14 hits in TLB2 since
seven out of the eight sets will have no conflicts and thus 14
out of the 16 elements allocated in the first two ways will
always hit.

In summary, with our benchmark, we expected to see a
linear increase in the access latency, that would be half the
latency to memory when 28 elements were accessed. In our
results, this linear increase start at 31 elements. From 23 to 30
elements, we do see an increase but it is only by six cycles.
This extra step is indicative of another hardware structure that
acts as a victim cache to the second level TLB. Some of our
results indicate that this structure could have eight entries and
be fully associative or it could have a single entry. Further
research is required to identify its organization.

The presence of this structure explains the two inconsisten-
cies mentioned earlier. In Figure 11 in the 17 series the point at
2 MB has a latency of 500 because it hits in this extra structure.
Similarly, in Figure 12 the missing eighth point exists but has
a much lower latency than expected because it hits in this
backup TLB.

I. Constant Memory

There are two segments of constant memory. One is user-
accessible, while the other is used by compiler-generated
constants (e.g. comparisons for branch conditions) [3]. The
user-accessible segment is limited to 64 KB. The Programming
Guide states that the constant memory space is cached.

We detected three levels of caching of the constant memory
space. The access latency using a stride of 256 bytes, including
one address computation, is plotted in Figure 14. Addressing
constant memory space appears to require the use of a special



Fig. 15. Constant Memory, highlighting the 2 KB L1 cache. Latency includes
one address computation instruction.

offset register ($ofs1) with an immediate offset operand (0
to 32,767). Modifying $ofs1 appears to be impossible by
an instruction which reads constant memory, thus address
computations add at least one extra instruction of overhead.
The latency measurements are averaged over all placements
of the test code onto TPCs. The maximum and minimum
latencies over the different placements are also plotted.

The plot clearly shows three levels of caching of sizes 2 KB,
8 KB, and 32 KB. The access latency of each cache level
is roughly 56, 129, 268. The access latency when all caches
miss is 524 cycles, which is higher than the observed latency
for uncached global memory (See Section IV-G), partly due
to the need for a separate address computation instruction.
The measured latency includes the latency of two arithmetic
instructions (one address computation, one to load the value),
so the raw memory access time would be roughly 48 cycles
lower than the numbers reported here.

1) L1: A 2 KB L1 instruction cache is located in each SM
(See Section IV-I4). The L1 cache has a 64-byte cache line
size, and is 4-way set associative with 8 sets (32 lines total).
It can be seen from Figure 15 that L1 constant cache misses
begin at 2 KB, and increase over 8 steps from 56.5 clocks
to 129.3 clocks, with each step being 64 bytes in size. The
step size indicates the cache line size (64 bytes) and a total
cache size of 32 lines (2,048 bytes = 32 lines × 64 bytes).
Eight steps indicate a set-associative cache containing 8 sets,
implying a 4-way set associativity for a cache with 32 lines.

2) L2: A 8 KB L2 constant cache is located in each TPC
and is shared with instruction memory (See Section IV-I4).
The L2 cache has a 256-byte cache line size and is 4-way
set associative with 8 sets (32 lines total). The region near
8,192 bytes in Figure 14 shows 8 distinct latency steps (8
sets) between L2 hit and L3 hit, with each step being 256
bytes wide (256-byte cache line size). Eight cache sets in a
32-line cache indicates 4-way set associativity.

3) L3: We detected a single 32 KB L3 constant cache,
shared between all TPCs. The L3 cache has a 256-byte cache
line size and is 8-way set associative with 16 sets (128 lines
total). The L3 constant cache is connected to the TPCs using

Fig. 16. Constant Memory L3 bandwidth: 9.75 bytes/clock

a non-uniform interconnect.
We observe cache parameters in the region near 32,768

bytes in Figure 14. There are 16 distinct latency steps (16 sets)
between L3 hit and L3 miss, with each step being 256 bytes
wide (256-byte line size), implying 8-way set associativity for
a cache with 64-lines. We believe this is the last level of
caching, as the L3 miss latency is already greater than the
latency of uncached DRAM (See section IV-G).

As can be seen in Figure 14, the minimum and maximum
access latencies for the L3 cache (8-32 KB region) differ
significantly depending on which TPC executes the test code.
This suggests that there is a single L3 cache located at a
fixed position on a non-uniform interconnect, where some
TPCs are closer to the L3 cache than others. The L1 and L2
cache accesses do not see this spread of access times when
TPC placement is varied, indicating this interconnect connects
TPCs together, and is not used when memory traffic stays
within the TPC. We leave investigation of the interconnect
topology for future work.

We also measured the L3 cache bandwidth. Figure 16 shows
the aggregate L3 cache read bandwidth when a varying number
of blocks make concurrent L3 cache read requests, with the
requests within each thread being independent of each other.

The bandwidth of the L3 constant cache appears to be ∼9.75
bytes/clock, seen in the aggregate bandwidth when running
between 10 and 20 blocks. Each TPC appears capable of
generating ∼1.2 bytes/clock of traffic.

Two variants of the tests were run: one using one thread
per block, and one using eight threads per block to increase
constant cache fetch demand. Both tests show similar behavior
below 20 blocks. This suggests that not only is there a limit
to L3 bandwidth (9.75 bytes/clock), but that each TPC is only
capable of requesting 1.2 bytes/clock of fetches regardless
of demand within the TPC as long as the TPC has only one
block executing.

The measurements are not valid above 20 blocks in the
eight-thread case, as there are not enough unique data sets and
the per-TPC L2 cache hides some of the requests from the L3,
causing apparent aggregate bandwidth to increase. Above 30



Fig. 17. Constant Memory Sharing. Per-SM L1 cache, per-TPC L2, global
L3.

Fig. 18. Constant Memory Instruction Cache Sharing. L2 and L3 caches are
shared with instructions.

blocks, the one-thread case has some SMs running more than
one block.

4) Cache Sharing: The L1 constant cache is private to each
SM, the L2 is shared within a TPC, and the L3 is global.
This was tested by measuring the latency profile using two
concurrent blocks with varying placement (same SM, same
TPC, different TPC). If caches are shared, then the two blocks’
memory footprints will both occupy space in the shared cache,
and the observed cache size will be halved. Figure 17 shows
the results of this test.

The baseline with only one block is plotted for comparison:
The baseline shows the three caches with size 2 KB, 8 KB,
and 32 KB. In all cases with two blocks, the memory footprint
interferes at the L3 cache, causing the observed cache size to
be halved to 16 KB. Thus the L3 cache is shared regardless
of placement of the two blocks. When the two blocks are
placed within the same TPC (but not when on different TPCs)
the observed L2 cache size is halved to 4 KB, indicating L2
caches are per-TPC. Following similar logic, only when the
two blocks are placed on the same SM is the observed L1
cache size halved to 2 KB, so L1 caches are private to each
SM.

Fig. 19. Instruction cache latency. This test fails to detect the 4 KB L1
cache. The L2 cache is 8 KB and the L3 cache is 32 KB.

5) Cache Sharing with Instruction Memory: It has been
suggested that the constant cache hierarchy was the same as
the instruction caches [7], [8]. It seems likely that the L2 and
L3 constant caches may also be the L2 and L3 instruction
caches, as the measured cache parameters of the L2 and L3
constant caches match the instruction caches (See Section
IV-J). The L1 parameters differ from the L1 instruction cache,
so we do not expect the L1 to be shared. We find that the
L2 and L3 caches are indeed instruction and constant caches,
while the L1 caches are single-purpose.

Similar to Section IV-I4, we ran two blocks of code with
varying placements. We measured the effect on constant
memory access times when another block uses a large code
footprint by looping through 10 KB of code. The result is
plotted in Figure 18. The access times of the L3 constant
cache is increased when instructions compete for it, so the
L3 is shared. Likewise, the observed L2 constant cache size
is decreased when instructions compete for the cache in the
same TPC. The L1 access times are not affected by instruction
fetch demand, even when the blocks run on the same SM, so
the L1 caches are for constant memory only.

6) Multiple Memory Accesses in a Warp: We believe each
warp is capable of one constant memory access at a time.
We attempted to measure the L2 bandwidth, but have so far
been unable to saturate the L2 cache bandwidth. We believe
this is because each warp supports only one outstanding
constant memory access at a time, even if memory accesses
are independent: The architecture is unable to extract memory-
level parallelism from within a single warp. Although accesses
within a warp are serialized, it appears accesses from different
warps can occur in parallel. We will investigate this conjecture
in future work.

J. Instruction Supply

Each instruction executed by an SM needs to be fetched
from memory. This section discusses our observations on the
cache hierarchy that services the instruction supply.

We detected three levels of instruction caching, of size
4 KB, 8 KB, and 32 KB. Because of the constraints of not



Fig. 20. Instruction cache L1 latency. The L1 is 4 KB, 4-way, 256-byte
lines. Latency is made visible by adding competition for the L2 cache in
other blocks.

being able to make random accesses in the instruction stream
(branches are too slow), the L1 instruction cache was difficult
to detect. Figure 19 shows the latency profile for looping
through a block of code of varying size. The 8 KB L2 and
32 KB L3 caches are clearly visible, but the 4 KB L1 is
not visible, probably due to a small amount of instruction
prefetching that hides the L2 access latency. Note that the
absolute magnitude of clocks/op does not directly reflect
the access latency of the instruction cache or memory. In
particular, 8 clocks per operation reflects the throughput limit
of one warp in the arithmetic pipeline when all instructions
are independent.

1) L1: The L1 instruction cache resides in each SM, and
is 4 KB with 256-byte cache lines and 4-way set associativity.

The L1 cache parameters were measured by running (on the
same TPC) 5 concurrent blocks of code: Four to flood the L2
instruction cache, and one to measure. The competition for the
L2 cache allows the L1 misses to create visible performance
loss, instead of staying hidden as in Figure 19 near 4 KB. The
resulting measurement is shown in Figure 20. The 256-byte
line size is visible, as well as the presence of 4 cache sets. We
know the L1 instruction cache is located in the SM because
flooding the L2 from other SMs on the same TPC does not
decrease the observed L1 instruction cache size of 4 KB.

2) L2: The L2 instruction cache resides in the TPC, and is
8 KB with 256-byte cache lines and 4-way set associativity.

We have shown in Section IV-I5 that the L2 instruction
cache is also used for constant memory. Due to space con-
straints we omit the cache parameter test results which verified
the cache parameters on the instruction fetch path are the same
as for constant memory accesses.

3) L3: The L3 instruction cache is global, and is 32 KB
with 256-byte cache lines and 8-way set associativity.

We have shown in Section IV-I5 that the L3 instruction
cache is also used for constant memory. We again omit
independent results here due to space constraints.

We measured the fetch bandwidth of the L3 instruction
cache, and found it to be 8.45 bytes per clock, somewhat

Fig. 21. Instruction fetch size. The SM seems to fetch from the L1 cache
in blocks of 64 bytes.

lower than the 9.75 bytes per clock measured for the L3
constant cache in Section IV-I3. Due to the limitations of
measuring instruction streams, we believe the constant cache
measurement is closer to the peak bandwidth of that cache.

4) Instruction Fetch: The SM appears to fetch instructions
from the L1 instruction cache in blocks of 64 bytes. Figure
21 shows the execution time of 36 consecutive instructions
while other warps running on the same SM continually evict
the region indicated by the large points in the plot. We see
that whole cache lines are evicted (spanning the region 160-
416 bytes) and that the effect of a cache miss is only observed
between but not within blocks of 64 bytes (4 instructions).

5) Instruction Cache Sharing: The L2 and L3 instruction
caches are per-TPC and globally-shared, respectively. The L2
and L3 are the same caches as the L2 and L3 constant caches
(See Section IV-I5). We omit presenting instruction cache
sharing tests due to space constraints. See Section IV-I4 on
the constant caches.

V. RELATED WORK

Volkov and Demmel [6] benchmarked the 8800GTX GPU
to tune linear algebra. They measured the characteristics of
some form of data memory, but did not state to which memory
spaces their results applied. Although we are using the suc-
cessor to the 8800GTX, we expect many of the measurements
to be similar.

They observed cache parameters quite different from our
measurements of the instruction and constant caches. They
also observed a 16-entry TLB using 512 KB pages, but did
not observe a second-level TLB.

GPUBench [9] is an older set of GPU micro-benchmarks
that measure some of the instruction and memory characteris-
tics of programs running on GPUs. The measurements tend to
be fairly high-level due to its use of the OpenGL ARB shading
language.

VI. FUTURE WORK AND CONCLUSIONS

The goal of this project was to construct a suite of micro-
benchmarks targeting specific parts of the architecture, so that



we can understand in detail the hardware organization of the
NVIDIA GT200 GPU.

Table V summarizes our findings.

Arithmetic Pipeline
Latency (cycles) Throughput (ops/cycle)

SP 24 8
SFU 28 2 (4 for MUL)
DPU 48 1

Pipeline Control Flow
Branch

Divergence
Diverged paths are serialized. Reconvergence is

handled via a stack.

Barrier Syn-
chronization

syncthreads() works at warp granularity. Warps
wait at the barrier until all other warps execute

syncthreads() or terminate.

Memories
Register File 16K 32-bit registers, 64 banks (8 per SM)

Instruction

L1: 4 KB, 256-byte line, 4-way, per-SM
L2: 8 KB, 256-byte line, 4-way, per-TPC
L3: 32 KB, 256-byte line, 8-way, global
L2 and L3 shared with constant memory

Global ∼441-cycle latency

TLBs

512 KB page size
L1: 16 entries, fully associative

L2: 64 entries, 8-way set associative
Backup TLB: unknown organization

Constant

L1: 2 KB, 64-byte line, 4-way, per-SM
L2: 8 KB, 256-byte line, 4-way, per-TPC
L3: 32 KB, 256-byte line, 8-way, global

L2 and L3 shared with instruction memory

Shared 16KB, 38 cycles latency

TABLE V
GT200 ARCHITECTURE SUMMARY

Our results validated some of the hardware characteristics
presented in the CUDA Programming Guide [1], but also
revealed the presence of some undocumented hardware struc-
tures such as the caching and TLB hierarchies. In addition,
in some cases our findings deviated from the documented
characteristics (e.g., for shared memory). Further exploration
of these cases is left for future work.

In terms of future work, there are various open questions
which we would like to address.
• Texture memory characteristics
• Memory throughput
• Memory access granularity for global and shared memory
• Organization of the backup TLB
• Explanation for the increased shared memory latency
• Interconnect network. Our instruction cache and global

memory benchmarks revealed latency heterogeneity,
based on which TPC the block was assigned.

• Atomic operations
Many of the issues we faced about how to write a micro-

benchmark that can identify various levels of caching, how
to avoid compiler optimizations and similar challenges exist
across all architectures. We believe there is room for algo-

rithms that could be reused to identify specific characteristics
of any underlying architecture. The ultimate goal is to know
the hardware better, so that we can harvest its full potential.
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