
Real Numbers 
• How to represent: 

 
– 0.25 
– 1,234,543.00123476 



What do they mean 

    
   12.125 
             x101    x100          x10-1  x10-2  x10-3 



Now let’s try in binary 
• Say we had 8 bits: 

 

  1011.1011 
X      x23      x22       x21      x20             x2-1      x2-2   x2-3     x2-4 
 

         = 8  + 0 + 2  +  1   + 0.5 + 0 + 0.125 + 0.0625 
 11.6875 



Fixed-Point Representation 
• Given N bits to represent real numbers 
• The         is fixed by convention between two digits 
•  e.g., 4.2 representation   

scalar fractional 



The problem with fixed-point 

• Range is small 
• Cannot represent very large or very small or mix 
• Programmers have to use scaling factors  





Floating Point: Concept 
• Point can “float” anywhere we want 

scalar fractional 



Floating point concept contd. 

• Range still small 
• Cannot represent very large number or very small 

ones 

1 1 1 1 1 1 127 

0 0 0 0 0 1 0.015625 



Floating-Point Concept Final 
• Given N bits represent as close a number as you can 
• E.g., w/ 6 bits 

1 1 1 1 1 1 1 1 0 1 0 1 0 0 1 0 1 0 1 0 0 0 1 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 1 



IEEE 754 Standard for Floating Point 
• 16-, 32-, 64-, or 128-bit 
• Float = 32-bit, single precision 
• Double = 64-bit, double precision 
• In general:  

E S M 

0 + 
1 - 2E 1.M x 

implied 



Single-Precision, 32-bit 

 1 10000001 10000000000000000000000 
S = - 
E = 129 – 127 
M = .1 

-22 x 1.1 = 1100.0 = -6  

E S M 

0 + 
1 - 2E-127 1.M x 

32 
8 23 

(-1)S x 2E-127x1.M = 



Single-Precision, 32-bit 

 0 01111110 11000000000000000000000 
S = + 
E = 126 – 127 
M = .11 

+2-1 x 1.11 = 0.111 = 0.875  

E S M 

0 + 
1 - 2E-127 1.M x 

32 
8 23 

(-1)S x 2E-127x1.M = 



How to represent a number in IEEE FP 

 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 1 

STEP 1: Find most-significant “1” 

STEP 2: Mantissa: digits to the right 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 1 

STEP 3: Exponent, how many bits till the actual dot 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 1 

13 



Example 
00011100110101110011.11110011101 

 

00011100110101110011.11110011101 
 

00011100110101110011.11110011101 
 

00011100110101110011.11110011101 
 

0 1000111 11001101011100111111001 

S 143-127 mantissa 

mantissa 

16 



Floating Point is not precise always 
• 00011100110101110011.11110011101 
• Was represented as: 
• 00011100110101110011.1111001 
• The error for SP FP is within 2-23 

• In general given a number x FP represents: 
x’ 

• Error: 
x – x’ 

• There is a number ε such that: 
1 + ε = 1 

• Machine epsilon 

lost 



Floating Point is not precise always 
• Relative Error 

x – x’ / x = δ 
• Number represented is: 

x (1 + δ) 
• Error in the units in the last place, ulp 
• Spacing between two successive floating point 

numbers 
– Within 0.5 ulp with rounding to nearest 

 



Got to be careful with calculations 
• Say want to calculate: 

 A + B 
• With FP we’ll get this: 

A (1 + δA) + B (1 + δB)  
• But this may not be possible to represented 

exactly, so we have:  
(A (1 + δA) + B (1 + δB))(1 + δ3)  

• Which evaluates to: 
A B [1 + A / (A + B) (δA+ δ3) + B / (A + B) (δB+ δ3)]  

• What happens when A ~ B? 
 



Got to be careful with calculations 
• Say want to calculate: 

 A x B 
• With FP we’ll get this: 

A (1 + δA) x B (1 + δB)  
• But this may not be possible to represented 

exactly, so we have:  
(A (1 + δA) x B (1 + δB))(1 + δ3)  

• Which evaluates to: 
A x B x [1 + δA+ δB + δ3]  

 
 



FP calculations may introduce errors 
• Some rules: 

– Be wary of subtracting very close numbers 
– Adding numbers that differ greatly in magnitude 



Special Representations 
• If E=0, M non-zero, value=(-1)^S x 2^(-126) x 0.M 

(denormals) 
– Mantissa is not normalized 
– Very small numbers close to 0 

• If E=0, M zero and S=1, value=-0 
• If E=0, M zero and S=0, value=0 
• If E=1...1, M non-zero, value=NaN “not a number” 
• If E=1...1, M zero and S=1, value=-infinity 
• If E=1...1, M zero and S=0, value=infinity 
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