Real Numbers

• How to represent:

- -0.25
- -1,234,543.00123476

What do they mean

12.125

x10¹ x10⁰ x10⁻¹ x10⁻² x10⁻³

Now let's try in binary

• Say we had 8 bits:

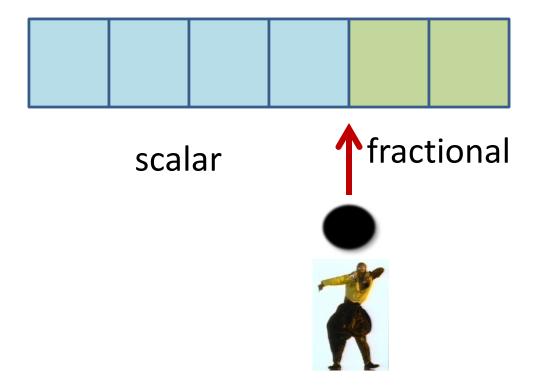
1011.1011

X x2³ x2² x2¹ x2⁰ x2⁻¹ x2⁻² x2⁻³ x2⁻⁴

= 8 + 0 + 2 + 1 + 0.5 + 0 + 0.125 + 0.0625 11.6875

Fixed-Point Representation

- Given N bits to represent real numbers
- The **O** is fixed by convention between two digits
- e.g., 4.2 representation

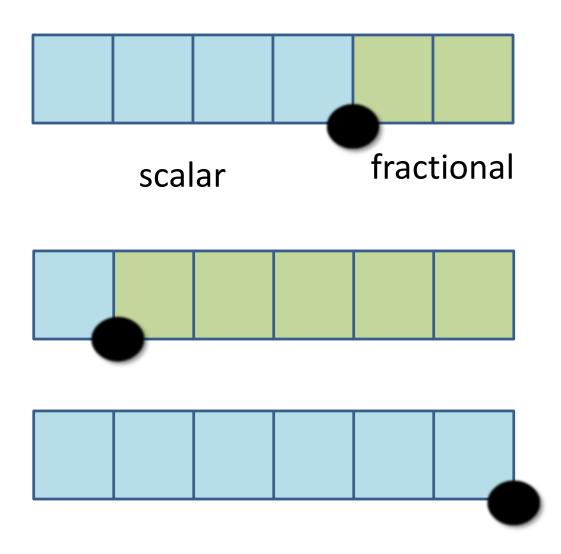


The problem with fixed-point

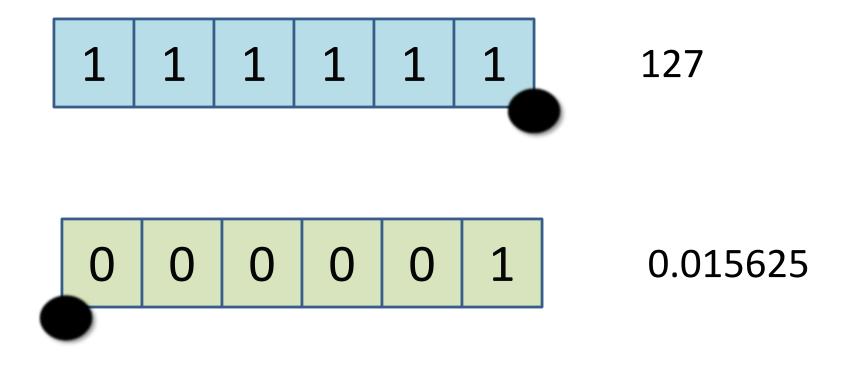
- Range is small
- Cannot represent very large or very small or mix
- Programmers have to use scaling factors

Floating Point: Concept

• Point can "float" anywhere we want



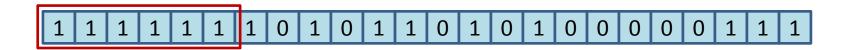
Floating point concept contd.



- Range still small
- Cannot represent very large number or very small ones

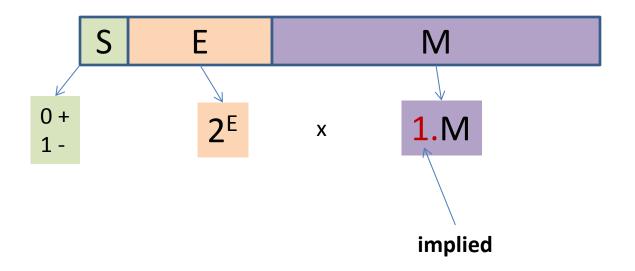
Floating-Point Concept Final

- Given N bits represent as close a number as you can
- E.g., w/ 6 bits

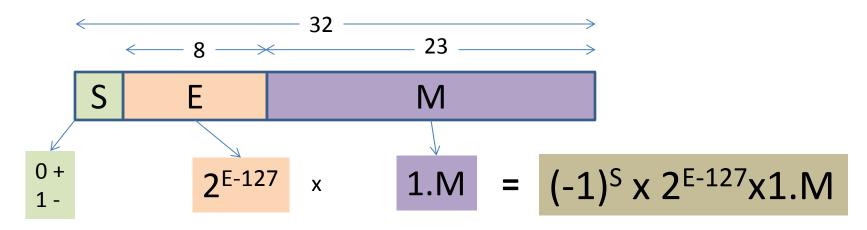


IEEE 754 Standard for Floating Point

- 16-, 32-, 64-, or 128-bit
- Float = 32-bit, single precision
- Double = 64-bit, double precision
- In general:



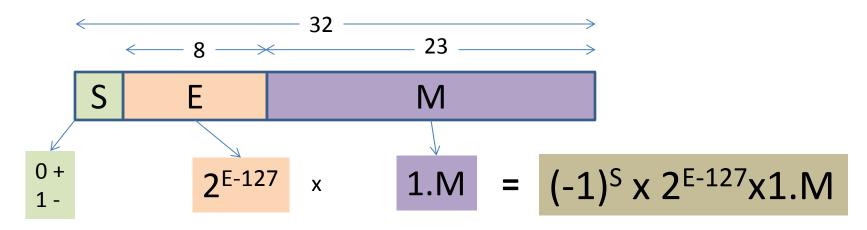
Single-Precision, 32-bit



- S = -
- E = 129 127
- M = .1

$-2^2 \times 1.1 = 1100.0 = -6$

Single-Precision, 32-bit



- S = +
- E = 126 127
- M = .11

 $+2^{-1} \times 1.11 = 0.111 = 0.875$

How to represent a number in IEEE FP

STEP 1: Find most-significant "1"

STEP 2: Mantissa: digits to the right

STEP 3: Exponent, how many bits till the actual dot



00011100110101110011.11110011101

000**1**1100110101110011.11110011101

00011100110101110011.11110011101

mantissa

000111001101011.11110011.1111001

_____ 16 ____>

0 1000111 11001101011100111111001

S 143-127 mantissa

Floating Point is not precise always

 \leftarrow lost \rightarrow

- 00011100110101110011.1111001**1101**
- Was represented as:
- 000**1**1100110101110011.1111001
- The error for SP FP is within 2⁻²³
- In general given a number **x** FP represents:

x'

• Error:

• There is a number **ε** such that:

 $1 + \varepsilon = 1$

• Machine epsilon

Floating Point is not precise always

• Relative Error

 $x - x' / x = \delta$

• Number represented is:

x (1 + δ)

- Error in the units in the last place, ulp
- Spacing between two successive floating point numbers
 - Within 0.5 ulp with rounding to nearest

Got to be careful with calculations

• Say want to calculate:

A + B

• With FP we'll get this:

A (1 + δ_A) + B (1 + δ_B)

• But this may not be possible to represented exactly, so we have:

 $(A (1 + \delta_A) + B (1 + \delta_B))(1 + \delta_3)$

- Which evaluates to:
 A B [1 + A / (A + B) (δ_A+ δ₃) + B / (A + B) (δ_B+ δ₃)]
- What happens when A ~ B?

Got to be careful with calculations

• Say want to calculate:

A x B

• With FP we'll get this:

A (1 + δ_A) x B (1 + δ_B)

• But this may not be possible to represented exactly, so we have:

 $(A (1 + \delta_A) \times B (1 + \delta_B))(1 + \delta_3)$

• Which evaluates to:

 $A \times B \times [1 + \delta_A + \delta_B + \delta_3]$

FP calculations may introduce errors

- Some rules:
 - Be wary of subtracting very close numbers
 - Adding numbers that differ greatly in magnitude

Special Representations

- If E=0, M non-zero, value=(-1)^S x 2^(-126) x 0.M
 (denormals)
 - Mantissa is not normalized
 - Very small numbers close to 0
- If E=0, M zero and S=1, value=-0
- If E=0, M zero and S=0, value=0
- If E=1...1, M non-zero, value=NaN "not a number"
- If E=1...1, M zero and S=1, value=-infinity
- If E=1...1, M zero and S=0, value=infinity