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ABSTRACT

Electromigration (EM) degradation evolves slowly towards failure,

over a period of years. This is why EM checking methods use ef-

fective current models to represent the underlying circuit work-

load, which are typically constant (DC) currents over time. How-

ever, ignoring all input current variations around the mean can be

risky, because low-frequency input variations can have a signifi-

cant impact on EM, resulting in shorter than expected lifetimes.

With the use of dark silicon and multimodal chip operation, such

low-frequency changes inworkload are becoming increasingly com-

mon in modern designs. Ignoring these variations can lead to false

positives and must be avoided. We tackle this by developing a sto-

chastic effective current model for the input current waveforms

that is easy for users to specify and which allows stochastic es-

timation of the impact of input variability on the lifetime. User-

provided guidance on the expected durations of various modes of

operation is used to provide input current variances, which are

then propagated to provide variances around the stress waveforms

in the metal network, which gives a more realistic estimate of the

EM lifetime. Variance propagation can be expensive for large sys-

tems, but a novel simulation-like framework will be presented that

allows efficient variance propagation for large interconnect trees.

This has revealed that the variance can be highly significant. Even

when the standard deviation of the inputs is small, at around 20–

30% of the mean, we see a 30–40% drop in the lifetimes.
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1 INTRODUCTION

In a metal line carrying significant current density, as often hap-

pens in integrated circuits (IC), the free electrons push and move

the metal atoms in the direction of the electron wind, i.e., towards

the anode end of the line; hence the name electromigration (EM) for

this effect. The resulting atomic flow increases compressive stress

at the anode and tensile stress at the cathode. If the levels of stress

become high enough, a void may be created due to high tensile

stress near the cathode, or a hillock (extrusion of metal through

cracks in the dielectric) may form due to high compressive stress

near the anode, which can either way result in circuit failure. With

the confinement of metal lines in today’s metal technology, voids

are much more likely than hillocks and so one is often more con-

cerned with the buildup of tensile stress. A void is created once the

stress exceeds a certain level of stress, called the critical stress. The

effect is slow and cumulative, and may take years to manifest as a

chip failure.

While signal and clock lines do suffer from EM degradation,

these lines carry bidirectional current and so have longer lifetimes

due to healing. In contrast, metal lines in the power distribution

network (PDN) carry mostly unidirectional current with no bene-

fit of healing and so are more susceptible to EM failure. Thus our

work is focused on EM in the PDN. The PDN consists of the power

grid and the ground grid. Modern grids span multiple layers (often

all the layers) of metallization and they consist of meshes of power

and ground lines. Without loss of generality, we will focus on the

power grid. Due to EM, metal atoms can travel between differ-

ent connected branches on the same layer. However, they cannot

travel through a via to other metal layers above and below, because

of the metal liner under every via which acts as a barrier to atomic

movement, but allows electronmovement. As a result, EM-induced

metal transport within a layer remainswithin that layer, so that the

overall analysis problem is decomposed into sub-problems on dif-

ferent layers, corresponding to metal structures that are physically

disconnectedwithin any given layer. The vastmajority of these pla-

nar structures turn out to be trees, i.e., they have no cycles. So, it

is typical in the field to simply use the term interconnect trees to re-

fer to these metal islands. In an interconnect tree, the nodes where

two or more lines meet, or where a line ends, are called junctions.

Junctions are where voids are most likely to nucleate, and so they

are “nodes of interest.” Because of the mesh structure of modern

power grids, even though the first void may increase the resistance

in the grid, it may not lead to an actual failure. A void causes a fail-

ure only if it results in a voltage-drop violation, and that may not

happen until several voids have nucleated.

As a result of continued scaling of IC technology, EM has be-

come a major reliability concern in modern design [11]. Today, it
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is becoming harder to sign off on chip designs using state-of-the-

art EM checking tools, as there is very little margin left between

the predicted EM stress and that allowed by EM design rules [10].

This loss of safety margin can be traced back to the inaccurate and

oversimplified nature of EM models used by existing tools. Stan-

dard practice in the industry is to break up a grid into isolatedmetal

branches, then assess the reliability of each branch separately us-

ing Black’s model [1]. This approach is inaccurate, for a number

of reasons. For one thing, being an empirical model, the fitting

parameters obtained for Black’s model under accelerated testing

conditions are not valid at actual operating conditions, and this

leads to significant errors in lifetime extrapolation [3, 8]. Modern

physics-based EM models do not have this problem. In addition,

because they handle every line separately, in isolation, methods

based on Black’s model ignore the material flow between branches.

In today’s mesh structured power grids, atomic flux can flow freely

between the branches of an interconnect tree and this has a big im-

pact on the stress distribution and void nucleation.

1.1 Stress-based EM Simulation

Physics-based models for EM like Korhonen’s model [5] have been

found to be quite efficient as they are 1-dimensional (1D) and lend

themselves to both analytical and numerical solutions. Once ex-

tended with boundary conditions, Korhonen’s model becomes ap-

plicable to multi-line structures like interconnect trees, and this

has been done in the recent past by several groups, including the

EKM model (stands for extended Korhonen’s model) by Chatter-

jee et al. [2]. EKM applies to whole interconnect trees, which over-

comes the aforementioned inaccuracy of branch-by-branch analy-

sis. Korhonen’s equation is discretized in space and time to provide,

for every interconnect tree, a linear time-invariant (LTI) system of

the form

Ûx = Ax + B̂û, (1)

where x is a vector of stress values at discretized nodes in the in-

terconnect,A and B̂ are the system and input matrices respectively

and û is the input vector consisting of the terminal currents of the

interconnect tree. Alternatively, as recently done in [4], the LTI

system can be expressed in terms of the grid terminal currents,

and this will be more useful for our needs, so we will be using the

transformed system

Ûx = Ax + Bu, (2)

where B is a matrix that includes dependence on the conductance

matrix of the grid andu is a vector of the grid terminal currents. By

numerically simulating these LTI systems, one for each intercon-

nect tree, one can track the stress levels in the grid over time, and

thus determine the times and locations of the sequence of void nu-

cleations. Effectively, this leads to a stress-based EM simulation for

on-chipmetal structures. During the simulation, the voltages in the

power grid are tracked until failure is declared when the voltage

drop at any of the grid’s port nodes exceeds some user-specified

threshold. This provides a Time-To-Failure (TTF) estimate. How-

ever, the system and input matrices are functions of the branch

diffusivities, which are random variables. Therefore, the random-

ness of branch diffusivities is taken care of by running a Monte

Carlo loop that ultimately provides the mean time-to-failure (MTF)

of the grid.

1.2 The Effective Current Problem

Electromigration damage is slow and cumulative over time, and

damage may occur after a few years, or never, depending on the

level of current density, the geometry of the lines, the temperature

and the metal technology. In addition, for individual metal lines

in test structures, many studies have been done over the last 50

years to assess the impact of the shape of the current waveform

over time, be it DC, alternating, unidirectional pulsed, or other.

In using methods like EKM to predict the damage to chip power

grids, an immediate question arises: what current stimulus should

be applied at the current sources that load the grid? Specifically,

what current waveforms should be applied? There are obviously

an infinity of current waveforms that can be applied. One is inter-

ested in current stimulus that is representative of what the chip

will generate during “typical" chip operation, but this is not help-

ful because there is no well-defined notion of typical operation.

Ideally, one would like to run a simulation of the chip, under typ-

ical “workload,” extract the source currents from that, then apply

them to the grid as part of EM simulation. This is problematic for

many reasons. It is very hard, almost impossible, in today’s design

flows to simulate chip workload representing several years worth

of chip operation, and to extract the power tap currents for the

whole design. Large chips can be simulated using high level archi-

tectural or functional models, but these models rarely have good

supply current models, and the simulations would typically cover

only a modest number of clock cycles. Simulating years worth of

chip activity is practically impossible.

In the past, and specifically in the testing of metal structures

composed of one or a few lines, much has been done to identify

a suitable DC current level that represents a good effective current

value which, when applied to the test structure produces the same

mean time-to-failure (MTF) for that test structure as the MTF un-

der the time-varying current. A very common method has been to

use the DC average current value in a metal line, resulting from

a time-average over a very long time period, as the effective DC

current.

Considering the LTI system (2), it is clear that the effective cur-

rent should be related to a convolution in some way. Taking a sim-

ple case for demonstration, for an LTI system with a single input

and single output, and assuming zero initial stress, the stress at

some point along the tree would be given by σ (t) =
∫ t

0
h(τ )i(t −

τ )dτ , where h(·) is the impulse response function and i(·) is the

branch current waveform. Suppose the current was to be fixed over

all previous time at some value ieff and we require the resulting

σ (t) to come out to have the same value as in the above integral,

then we would enforce
∫ t

0
h(τ )ieffdτ = σ (t) =

∫ t

0
h(τ )i(t − τ )dτ .

But this would mean that the value of ieff must depend on t , in fact

ieff (t) =
1

∫ t

0
h(τ )dτ

∫ t

0
h(τ )i(t − τ )dτ . (3)

So the effective current is not truly a fixed DC average but it de-

pends on the time for which the stress is to be computed. It is not

a simple time average, but a weighted average based on the val-

ues of the impulse response function over all previous time. Be-

cause the impulse response dies down over time, the recent past of

the current waveform matters much more than its distant past. So
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the long-term plain average of the current waveform is not really

representative. Furthermore, evaluating the above expression for

ieff (t) basically requires a simulation of the system itself for the

specified current waveforms, so there is no merit or value in using

this approach.
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Figure 1: A low-frequency pulsed-DC input current (a) with

a superimposed high-frequency component, and resulting

stress response (b).

For a better effective current concept, we need amodel or metric

(but not a single number) that captures the aggregate characteris-

tics of a current waveform, including its variability around its aver-

age. Because the dynamic system (2) for tracking the EM-induced

stress is very slow, with time-constants on the order of days or

weeks, the system effectively filters out all high-frequency input

current variations, as seen in Fig. 1. Given this, one can see why the

DC average might be useful to represent the aggregate impact of

the inputs: it is the ultimate low-pass filter, and ignores everything

but the DC component. However, because it masks all variations

of the waveform around the average, the DC average also masks

the effect of low-frequency variations, variations on the order of

weeks or months. As shown in Fig. 1, the stress curve responds

significantly to slow (low-frequency) input variations, such as a

pulsed DC input, but is not sensitive to the high-frequency noise

around the pulses. Ignoring significant stress variations leads to

MTF estimates that are too optimistic. More realistic EM checking

should take into account variations in the stress response arising

from low-frequency variations in the applied currents.

Typically, low-frequency variations in the power supply cur-

rents are the result of major changes in functionality, e.g., due to

changes in themodes of operation of the chip or, more precisely, of

the large design blocks in the chip. Typical modesmay include high

performance, long battery life, standby, power down, etc. Without

loss of generality, we will assume that the supply current of ev-

ery design block k is represented by a single current source ik (t)

that is attached to the power grid. In order to account for the im-

pact of these low-frequency variations on the EM degradation of

the power grid, we have pursued two objectives: 1) provide a low-

burden mechanism for users to provide their knowledge of the

high-level operation of the chip; 2) translate these specifications

into variances of the stresses in the metal network, which imme-

diately translate into changes (improvements) in the lifetime esti-

mates.

2 STOCHASTIC EFFECTIVE CURRENT
MODEL

As might be expected, a good way of capturing uncertainty and

variations is to use stochastic analysis. Thus, our mechanism for

capturing user knowledge is what we call the stochastic effective

current model. Formally, we model every block current source ik (t)

as a stationary (wide-sense1 stationary (WSS)) stochastic process

with fixedmean µk and fixed variance σ 2
k
. Furthermore, we assume

that every block k has Dk modes, and the current in each mode j,

where j = 1, 2, . . . ,Dk is modelled as another stationary stochastic

process ik j (t), with fixed mean µk j . In order to fully determine

these various processes, we expect some user input, specifically,

for each block:

(1) The average power dissipation in each mode. Knowing the

supply voltage, this gives us the mean value µk j of the sup-

ply current in every mode of operation. Optionally, we can

also make use of the variance σ 2
k j

of the supply current in

each mode. Even approximate knowledge of the ratio σk j/µ

would be useful, if available.

(2) The average time spent in each mode. We refer to this as the

expected occupancy time or the sojourn time in each mode,

to be denoted by τk j . Let τk =
∑Dk

j=1 τk j .

With such user specifications, the modes of operation easily trans-

late to an embedded Markov Chain [6], which is a discrete-time

Markov Chain describing the transitions of a continuous-time pro-

cess, in this case the current source, between its states or modes

of operation. Once in a given mode, we assume that a block can

switch equiprobably to any other mode of operation. This is only

a simplifying assumption, because we expect that it may not be

easy for users to provide the actual probabilities. The method can

certainly incorporate unequal transition probabilities, if available.

A few results follow from the above (details are omitted for

brevity, but available in [4]). First, the probability that a block k

is in any given mode j is fixed over time. We call these the modal

probabilities and denote them by pk j , and they can be shown to be

pk j =
τk j

τk
. (4)

From this, we can find themean µk of the overall stochastic process

ik (t) for the block, as

µk =

Dk
∑

j=1

µk jpk j , (5)

and the variance of ik (t) can be shown to be

σ 2
k
=

Dk
∑

j=1

pk j (σ
2
k j
+ µ2

k j
) − µ2

k
, (6)

where σ 2
k j

is the variance of the current source ik (t) in its mode j

of operation, if provided by the user. If not, it can be safely set to

1Throughout this work, we will use “stationary” process to refer to a wide-sense sta-
tionary stochastic process, i.e., a process with a fixed mean for which the mean of the
product x (t1)x (t2) depends only on t1 − t2 , for any t1, t2 . A stationary process also
has a fixed variance over time.
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zero so that

σ 2
k
=

Dk
∑

j=1

pk j µ
2
k j

− µ2
k
. (7)

Another important characteristic of the process ik (t) is its auto-

correlation coefficient, which depends on the notion of covariance.

We will use E[X ] to refer to the expected value, i.e., themean, of the

random variable (RV) X . The autocovariance function of a scalar

stochastic process x(t) is

Cx (t1, t2) = E [x(t1)x(t2)] − E[x(t1)]E[x(t2)], (8)

and its autocorrelation coefficient is defined as

ρ(t1, t2) =
Cx (t1, t2)

√

Cx (t1, t1)Cx (t2, t2)
. (9)

For any stationary process, ρ(t1, t2) = Cx (t1, t2)/σ
2
x is an even func-

tion of only t = t1−t2, i.e., ρ(t) = ρ(−t). For our work, let ρk j (t) be

the autocorrelation coefficient of the supply current ik j (t), which

is the current in block k when in mode j. If these are available, then

the autocorrelation coefficient of the overall block current ik (t), to

be denoted ρk (t), can be shown (details in [4]) to be

ρk (t) =

Dk
∑

j=1

ρk j (t)e
−|t |/τk jpk j . (10)

If the user is unable to provide a variance for the current in every

mode, then the ρk j (t) are also not available and one can safely set

them to 1, so that

ρk (t) =

Dk
∑

j=1

e−|t |/τk jpk j . (11)

As a final refinement of the model, we have identified an effective

time-constant τ ∗
k
such that the area under e−|t |/τ

∗
k is equal to the

area under ρk (t) from (11). It turns out that τ ∗
k
=

∑Dk

j=1 τk jpk j , lead-

ing to the approximation

ρ̃k (t) = e−|t |/τ
∗
k , (12)

which turns out to be quite accurate, as we will see below. It will

also be of great utility for the general case approach using the shap-

ing filters, as we’ll see later in this work.

Table 1 shows four examples of the current source specifications

for a block k with three modes. The user-provided settings are the

modal mean current values µk1, µk2 and µk3, and mean occupancy

times τk1, τk2 and τk3. Also shown are the computed modal proba-

bilities pk j and the resulting ratios σk/µk for the overall block cur-

rent. Notice that widely varying block modal current means µk j
lead to larger σk/µk values. It would’ve been a heavy burden on

users if we had required them to specify both the mean µk and

variance σ 2
k
of the overall block current, factoring in all the possi-

ble modes. Instead, a key benefit of this stochastic effective current

model, based on very reasonable assumptions, is that it provides a

way to compute these key properties based on user specifications

that are easy to provide. In what follows, we will determine the

effect of the stochastic effective current model on the stress simu-

lation flow. We will demonstrate how the stochastic properties of

the system inputs, which were computed from user specifications,

translate to the system outputs.

Table 1: Sample user specifications for a block kkk with three

modes, and the resultingσk/µkσk/µkσk/µk for the overall block current.

Mode 1 Mode 2 Mode 3 σk/µk
µk1 = 101 mA µk2 = 102 mA µk3 = 97 mA

2 %τk1 = 212 ms τk2 = 210 ms τk3 = 220 ms

pk1 = 33% pk2 = 33% pk3 = 34%

µk1 = 130 mA µk2 = 102 mA µk3 = 80 mA

20 %τk1 = 135 ms τk2 = 172 ms τk3 = 220 ms

pk1 = 25% pk2 = 33% pk3 = 42%

µk1 = 143 mA µk2 = 98 mA µk3 = 78 mA

25 %τk1 = 121 ms τk2 = 177 ms τk3 = 220 ms

pk1 = 23% pk2 = 34% pk3 = 43%

µk1 = 162 mA µk2 = 96 mA µk3 = 74 mA

33 %τk1 = 101 ms τk2 = 170 ms τk3 = 220 ms

pk1 = 21% pk2 = 34% pk3 = 45%
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Figure 2: Stress response toMarkovChain sampleswith vari-

ance band capturing variations.

3 STOCHASTIC STRESS ANALYSIS

As mentioned earlier, the stress in metal lines or interconnect trees

can be described by means of a linear time-invariant (LTI) system,

usually expressed in the standard differential form

Ûs(t) = As(t) + Bu(t), with s(0) = s0, (13)

where s(t) is the n × 1 state vector, u(t) is them × 1 input vector,

A ∈ Rn×n and B ∈ Rn×m . The problem of assessing the impact

of the input current variances arising from the Markov model on

the variance of the stress around its mean as it evolves over time

is a generic linear system problem: given the system input means

and variances, find the state (or output) means and variances. The

overall goal will be to combine the mean solution with the vari-

ance solution in order to generate a band around the mean curve

that captures both the trend and the variation of the stress. To il-

lustrate this point, consider Fig. 2 which shows the result of apply-

ing randomly generated input waveforms, as inputs to a system

for an interconnect tree with 1904 nodes, which is extracted from
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the ibmpg2 industrial benchmark grid. The figure shows several

time-varying stress responses surrounding the mean curve and

mostly contained within the 6σ variance band, at one of the sys-

tem outputs. By computing the variance directly, as we will see

below, we are able to generate such variance bands without run-

ning any waveform sampling (which becomes very expensive for

large trees). It is clear from the figure that the higher stress at the

top-end of the 6σ band can cause void nucleationmuch earlier than

one would get if working only with the mean curve. Strictly speak-

ing, and in order to use a voltage-drop based failure criterion as in

recent work [2], one should also assess the impact of the current

variance on the voltage variance in the grid, because it might im-

pact the failure time. However, we have found that the impact is

minimal (about 0.1% of Vdd ), so that it is sufficient to update only

the mean of the voltage drop after void nucleation, which is done

by simply solving the DC systemGv = u, whereG is the grid con-

ductance matrix and u is the current mean.

We assume that the stress system (13) is stable, i.e., all the eigen-

values of A have negative real parts, and that the input u(t) is

bounded, so that s(t) is also bounded. The system description can

also be given in integral form, as the solution of the above ordinary

differential equation (ODE) system (13), which is

s(t) = eAt s0 +

∫ t

0
eA(t−τ )Bu(τ )dτ . (14)

For our work, the inputs ui (t) are stationary stochastic processes

and the initial state s0 is a vector of random variables (RVs), and

we would like to compute the mean and variance over time at the

system outputs. We will denote the variance of an RV X by σ 2
X
,

where σX ≥ 0. In our context, the input processes are currents,

and the system outputs are stress values at discretized points in

the power grid. For practical reasons, we will assume that theui (t)

are mutually uncorrelated, and are uncorrelated from s0. The ui (t)

processes have fixed means µui , captured in the vector µu , as well

as fixed variances σ 2
ui . We will also assume that the components of

the initial state s0 are mutually uncorrelated, with variances cap-

tured in the vector σ 2
s0 .

An RV X can always be written as the sum of its mean µX and

the RV X̃ = (X − µX ), which is obviously a zero-mean RV. It is of-

ten useful to simplify the presentation by working with zero-mean

RVs, from which one can easily recover X = µX + X̃ . For a stochas-

tic process X (t), we can also set X̃ (t) = (X (t) − µX (t)) and work

with the zero-mean stochastic process X̃ (t), from which one can

easily recoverX (t) = µX (t)+X̃ (t). For an LTI system with WSS in-

put processesui (t) = µui +ũi (t), the system response can be found

by superposition, in two phases. In the first phase, we consider the

system with the deterministic inputs µui = E[u(t)], starting from

the deterministic initial state µs (0) = E[s0]. In the second phase,

we consider the system inputs to be zero-mean RVs and proceed

to compute the variances of the system outputs. The solution of

the system in the first phase is in fact the output means, as can

be seen by taking the expectation E[·] of both sides of (14) and us-

ing linearity. In this case, it is easy to compute the output µs (t) by

performing a numerical simulation of the system with E[s0] as the

initial state and the constants µui as the input stimuli. The mean

simulation in this sense has been extensively studied in [2]. In this

work, our focus is on the second phase, i.e., computing the state

variances, which is much more involved as we will show in the

next section.

Variance computation is computationally expensive for large

scale system, such as one encounters in VLSI circuits. In fact, it

is rarely attempted in EDA. Nevertheless, we will demonstrate a

powerful new approach for performing this computation, based

on numerical simulation, which allows us to handle moderate size

problems. The rest of this paper is concerned with the computa-

tion of the variance curves of the system states where the analysis

is now based on zero-mean input processes and a zero-mean initial

state.

4 VARIANCE COMPUTATION

For any vector RV x with mean µx , we will use Vx to denote the

covariance matrix Vx = E
[

(x − µx )(x − µx )
T
]

, which is a sym-

metric matrix whose diagonal terms are the variances of the com-

ponents xi . Let a and b be two vector RVs and let c = a+b. If ai and

bj are uncorrelated for every i and j, then it’s easy to see thatVc =

Va+Vb , due to E
[

(a − µa )(b − µb )
T
]

= E
[

(b − µb )(a − µa )
T
]

= 0.

For the system (13), if we denote the first term of the right-hand-

side (RHS) of the solution (14) by a(t) = eAt s0 and the second

(integral) term of the RHS by b(t), then clearly a(t) and b(t) are

uncorrelated, because they depend on the uncorrelated s0 andu(t),

respectively, so that

Vs (t) = Va (t) +Vb (t), (15)

where Va (0) = Vs0 , which is the covariance matrix of the initial

state s0, andVb (0) = 0. We will tackleVa (t) andVb (t) separately.

4.1 Contribution of the Initial State (Va(t))

The covariance matrix Va (t) is the contribution due to the ini-

tial state and can be easily expressed, benefiting from E[a(t)] =

eAtE[s0] = 0 and E[aT (t)] = E[sT0 ]e
AT t
= 0, as

Va (t) = E
[

a(t)a(t)T
]

= E
[

eAt s0s
T
0 e

AT t
]

, (16)

so that

Va (t) = eAtVs0e
AT t
. (17)

In large scale problems, computation of the full matrix exponential

eAt is prohibitively expensive because, while A is typically sparse,

its exponential is often a full matrix. In fact, storing the full Vs (t)

may itself be impractical. However, we don’t actually need the full

covariance matrix of the state; we only need its diagonal entries,

i.e., we are interested in the scalars

σ 2
si (t) = eTi Vs (t)ei , (18)

for certain 1 ≤ i ≤ n nodes of interest, where ei is the n × 1 vector

with 1 in position i and 0 everywhere else. Thus, the contribution

of the initial state to the state variance vector can be found by com-

puting

σ 2
si (t) = eTi e

AtVs0e
AT tei = (eA

T tei )
TVs0 (e

AT tei ). (19)

Computing the product of amatrix exponential by a vector is much

more practical than computing the full matrix exponential, but it

too is very expensive for large scale problems. Instead, notice that

σ 2
si (t) = p(t)

TVs0p(t), (20)
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where p(t)
△
= eA

T tei clearly satisfies the ODE system

Ûp(t) = ATp(t), with p(0) = ei . (21)

This system (21) can be numerically simulated over time and the

resulting p(t) used to compute σ 2
si (t) at every time point, via (20).

Algorithm 1 Total variance computation under white noise input

sources. Note, a0, a1 and b−1 are computed from the successive

time steps in the VCBDF2 engine.

1: t0 = 0, p0 = p−1 = ei
2: ṽ = 0, h1 = hmin

3: σ 2
si (t0) = p

T
0 Vs0p0

4: for (k = 1, tk < T , k = k + 1) do

5: b = a0pk−1 + a1pk−2
6: Solve (hkb−1A − I )pk = b, for pk // VCBDF2

7:

8: v = ṽ + (hk/2)
(

pT
k
Qpk + p

T
k−1

Qpk−1

)

// TR

9: Output σ 2
si (tk ) = p

T
k
Vs0pk +v

10: pk−2 = pk−1, pk−1 = pk , ṽ = v

11: hk+1 = update(hk ) // part of VCBDF2 engine

12: tk+1 = tk + hk+1
13: end for

4.2 Contribution of the Inputs (Vb (t))

We now consider the solution due to only the inputs, i.e., with zero

initial state, so that both s(0) = 0 andVs (0) = 0. To get to a general

solution, we will benefit from the special case solution when the

input currents to the LTI system are white noise processes, whose

intensity2 (or variance) is set equal to the computedMarkov model

variance (7). Although white noise inputs are not realizable in prac-

tice, they can serve as a useful idealized approximation. Indeed, we

will see how white noise analysis allows us to handle the general

case when the inputs are not white noise, by means of shaping fil-

ters.

4.2.1 White Noise Analysis. So, assuming the input current sources

are white noise processes, let us define the matrix Q as

Q
△
= BKBT , (22)

where B is the input matrix of the LTI system (2), and K is the

intensity matrix of the input vector u. Since the input processes

are stationary and mutually uncorrelated, the matrix K is diagonal

and its ith diagonal entry is the intensity of the white noise process

ui (t). It can be shown [9] that the covariance of the system states

under white noise inputs and zero initial state is given by

Vs (t) =

∫ t

0
eAτQeA

T τdτ . (23)

Taking the derivative of both sides, we have

ÛVs (t) = eAtQeA
T t
, withVs (0) = 0, (24)

2The intensity of a white noise process is the magnitude of its power spectral density.
It is common in the engineering literature to loosely refer to this as the “variance” of
the process, but this is misleading because strictly-speaking the mathematical white
noise process has infinite variance.

Table 2: Details of the benchmarks used in this work.

Grid Name Branches Junctions Trees Current Sources

ibmpg1 10,853 11,562 709 5,387

ibmpg2 61,143 61,605 462 18,419

ibmpg3 401,412 409,601 8,189 100,527

ibmpg6 797,579 807,825 10,246 380,742

Table 3: CPU times and voiding times under white noise in-

puts.

System Size Num. of CPU Time for 1st Nucleation

(benchmark) Junctions Mean Variance Time Drop

1904 (ibmpg2) 120 1.4 s 9.2 s 6.6 Yrs 42 %

3072 (ibmpg2) 193 1.5 s 23.7 s 14.0 Yrs 30 %

4400 (ibmpg3) 276 7.7 s 2.4 m 16.8 Yrs 16 %

5920 (ibmpg3) 371 8.1 s 3.5 m 0.8 Yrs 81 %

15440 (ibmpg3) 966 10.1 s 25.6 m 1.4 Yrs 75 %

15488 (ibmpg6) 969 9.6 s 19.7 m 10.4 Yrs 9 %
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Figure 3: The variance band around its mean curve.

and we’re interested in the diagonal entries of ÛVs (t), which are the

derivatives of the variances,

Ûσ 2
si (t) = eTi

ÛVs (t)ei = (eA
T tei )

TQ(eA
T tei ), (25)

so that

Ûσ 2
si (t) = p(t)

TQp(t), with σ 2
si (0) = 0, (26)

where p(t)
△
= eA

T tei clearly satisfies

Ûp(t) = ATp(t), with p(0) = ei . (27)

The two ODE systems (26) and (27) are jointly numerically simu-

lated using a hybrid Trapezoidal Rule (TR) and Variable Coefficient

BDF2 (VCBDF2) method to give σ 2
si (t). Notice that simulating the

ODE system (27) also gives the contribution of the initial state by

virtue of (20) and (21), so that, jointly with (26), the full variance so-

lution is computed. The pseudocode for this simulation is shown

in Algorithm 1. Fig. 3 shows an example of this variance simula-

tion applied to one of the 120 junctions of a 1904 node system ex-

tracted from the ibmpg2 benchmark. The mean curve with a 6σ

band shows the significance of the variance band for EM assess-

ment.
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Some details of the various benchmark grids used in this work

are available in Table 2. For the white noise case, Table 3 reports

the times taken to simulate the mean and the variance profiles over

a period of 20 years for various systems representing interconnect

trees extracted from available industrial grid benchmarks. The vari-

ance profiles are computed for all junctions in each system. The

table also reports the percentage reduction in the time to the first

void nucleation in each tree, as a result of factoring in the variance.

Note that for the system with 193 junctions, the variance simula-

tion is significantly (221X) faster than the one carried out in [4],

where the reported simulation time was 1.46 hours. The last row

in the table corresponds to the largest single interconnect system

found in the benchmarks. The variance band has been observed to

catch many more void nucleation events per run compared to the

mean simulation.

Table 4 shows the impact of accounting for input variance on

the MTF estimates for three full-grid test cases. We report on the

MTF reduction in different scenarios where we vary the inputs’

σ/µ ratios keeping the same µ, and use the 6σ bands around the

outputs. The Monte Carlo analysis (column 6 gives the number of

samples) accounts for the variability in branch diffusivities and is

performed in parallel on 11 cores of a 3GHz Linux machine with

Xeon CPU and 128 GB of RAM. The impact on the MTF can reach

up to 50% for a σ/µ = 33% input variation. This shows the high risk

incurred by neglecting variations in the current, and highlights the

importance of using a more realistic approach for EM checking.

The CPU time required is very good, ranging from 25 minutes for

ibmpg1, up to 5–8 hours for a large grid (ibmpg3) with nearly 410K

junctions.

4.2.2 The General Case and the Augmented System. In general, the

inputs of our system (13) are not white noise, but we can con-

struct another LTI system, called a shaping filter [9] [7], whose

output has the same autocorrelation as the computed ρui (t) and

whose input is white noise. The augmented system, consisting of

the concatenation of the new system (the shaping filter) with the

original system then becomes the full system to be solved using

the above white noise solution. We have already presented the

modelling of the inputs u(t) as stationary mutually uncorrelated

Markov processes whose autocorrelation functions are sums of ex-

ponentials (11), arising from user specifications. We also showed

how these autocorrelation functions can be approximated by a sin-

gle exponential (12). This approximation facilitates the design of

the filter (details in [4]), so that these inputs can each be gener-

ated by a scalar LTI system driven by a white noise input. Let m

be the number of inputs to the LTI system (13). The resulting ODE

structure for the set of input shaping filters is

Ûu(t) = Cu(t) + Dw(t), with u(0) = u0, (28)

where w(t) is am × 1 input vector and C and D are non-singular

diagonalm ×m matrices. Thus, we are dealing with the (n +m) ×

(n +m) white-noise-driven augmented system
[

Ûs

Ûu

]

=

[

A B

0 C

] [

s

u

]

+

[

0

D

]

w (29)

and we will define

x
△
=

[

s

u

]

Ã
△
=

[

A B

0 C

]

B̃
△
=

[

0

D

]

(30)

and

Qw
△
= DKDT

, (31)

where K is the diagonal intensity matrix of w(t). Therefore, we

have the system

Ûx(t) = Ãx(t) + B̃w(t), with x(0) =

[

0

u0

]

, (32)

for which it will be useful to define the (n +m) × (n +m) matrix

Q̃
△
= B̃KB̃T =

[

0 0

0 Qw

]

. (33)

Algorithm 2 Total variance computation under Markov inputs

with shaping filters. Note, a0, a1 and b−1 are computed from the

successive time steps in the VCBDF2 engine.

1: t0 = 0, p0 = p−1 = ei
2: q0 = 0, ṽ = 0, h1 = hmin

3: σ 2
si (t0) = p

T
0 Vs0p0

4: for (k = 1, tk < T , k = k + 1) do

5: b = a0pk−1 + a1pk−2
6: Solve (hkb−1A − I )pk = b, for pk //VCBDF2

7:

8: b = (I + (hk/2)C
T )qk−1 + (hk/2)B

T (pk + pk−1)

9: qk =
(

I − (hk/2)C
T
)−1

b //Closed Form

10:

11: v = ṽ + (hk/2)
[

qT
k
Qwqk + q

T
k−1

Qwqk−1

]

//TR

12: Output σ 2
si (tk ) = p

T
k
Vs0pk +v

13: qk−1 = qk , ṽ = v

14: pk−2 = pk−1, pk−1 = pk
15: hk+1 = update(hk ) // part of VCBDF2 engine

16: tk+1 = tk + hk+1
17: end for

As with the white noise case we saw earlier, the solution for the

state covariance matrixVx (t) for the full augmented system (with

zero initial conditions) is given by

Vx (t) =

∫ t

0
eÃτ Q̃eÃ

T τdτ . (34)

Taking the derivative of both sides, we have

ÛVx (t) = eÃt Q̃eÃ
T t
, withVx (0) = 0, (35)

and we’re interested in the diagonal of ÛVx (t), which holds the

derivatives of the variances. Let ẽi ∈ R(n+m) be zero everywhere

except for its ith entry which is 1, with i ≤ n, so that ẽTi =
[

eTi 0
]

and

Ûσ 2
xi (t) = ẽTi

ÛVx (t)ẽi = (eÃ
T t ẽi )

T Q̃(eÃ
T t ẽi ),

with σ 2
xi (0) = 0,

(36)

and note that Ûσ 2
si (t) = Ûσ 2

xi (t) due to i ≤ n. Let p(t) ∈ Rn and

q(t) ∈ Rm be such that
[

p

q

]

= eÃ
T t ẽi , (37)
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Table 4: Full grid variance simulation using white noise inputs, with 6σ6σ6σ bands.

Grid
Input σ

µ
CPU Time Num. of

MTF
% Drop in

Benchmark for Mean for Variance Total Samples MTF

ibmpg1

1% 3.16 m 47.92 m 51.08 m 61 4.89 Yrs 30 %

2% 3.55 m 38.49 m 42.04 m 57 4.14 Yrs 40.7%

5% 54.6 s 23.32 m 24.23 m 54 2.55 Yrs 63.5 %

ibmpg2

20% 5.4 m 1.13 h 1.22 h 36 9.21 Yrs 23.12 %

25% 4.2 m 1.07 h 1.14 h 39 8.06 Yrs 32.7 %

33% 3.6 m 1.05 h 1.11 h 51 6.12 Yrs 49 %

ibmpg3
20% 31.40 m 4.00 h 4.52 h 8 6.46 Yrs 7.1 %

33% 1.27 h 6.57 h 7.84 h 8 6.37 Yrs 8.5 %

from which it’s clear that
[

p(0)T q(0)T
]

= ẽTi , so that p(0) = ei
and q(0) = 0, and we can write

Ûσ 2
si (t) =

[

pT qT
]

[

0 0

0 Qw

] [

p

q

]

= qTQwq. (38)

In addition, we have
[

Ûp

Ûq

]

=

d

dt

(

eÃ
T t ẽi

)

= ÃT
(

eÃ
T t ẽi

)

=

[

AT 0

BT CT

] [

p

q

]

. (39)

As a result, the variance can be found based on the following three

ODE systems,

Ûσ 2
xi (t) = q

TQwq, with σ 2
xi (0) = 0, (40)

Ûp = ATp, with p(0) = ei , (41)

Ûq = CTq + BTp, with q(0) = 0. (42)

These three systems can be jointly numerically simulated using

VCBDF2 and TR, as previously described, to give σ 2
si (t), as shown

in Algorithm 2, which actually provides the full variance solution,

including the contribution of the initial state. Note the simplifica-

tion arising from the fact that C is a diagonal matrix, so that
(

I − (h/2)CT
)−1

b =
[

b1
1−(h/2)c11

· · ·
bn

1−(h/2)cnn

]T
, (43)

which is needed to computeq. Table 5 reports the CPU times of sim-

ulating the mean and variance curves over 20 years for systems for

trees extracted from ibmpg2.We can see up to 85% drop in the time

to first voiding estimates for inputs with σ/µ = 33%. The CPU cost

depends on the grid size, since the input matrix B in (42), which is

a function of the conductance matrix of the grid, is explicitly used

in the simulation. We used occupancy times of the order of 100µs

to 10ms. For a simulation of the full ibmpg2 benchmark grid using

shaping filters, we found that one sample can be obtained in a to-

tal of 5.8 CPU hours. The drop in sample TTF in this example was

found to be as high as 69.5%. The difference in the CPU times be-

tween the white noise case v.s. the general case is due to the matrix

B, whose computation and storage can be a significant overhead.

5 CONCLUSION

In this work, we have addressed the optimism that’s implicit in

the use of a fixed DC average as the effective current to be used for

EM checking. As an alternative, we developed amodel for the input

current sources that is driven by user specifications that are easy to

provide. We then presented a novel approach to variance computa-

tion, whose key feature is to express the variance computation as

Table 5: Results for the general case using shaping filters, for

some large interconnect trees from the ibmpg2 benchmark.

System Num. of CPU Time for 1st Nucleation

Size Junctions Mean Variance Time % Drop

928 59 1.50 s 27.37 s 6.80 Yrs 66 %

1808 114 1.47 s 1.47 m 3.06 Yrs 84.7 %

1904 120 1.44 s 1.61 m 4.34 Yrs 62.1 %

3072 193 1.56 s 4.64 m 3.71 Yrs 81.4 %

the output of an ODE problem that can be numerically simulated.

We make use of shaping filters, a concept that is adapted from the

study of communication systems. The MTF reduction as a result

of taking the variance into account is quite significant, reaching

≈ 50% for input σ/µ from 2% to 33% in some cases. EM checking

without the variance is simply too optimistic and can be mislead-

ing for design. Even though the grids in our test cases are ofmodest

size, the performance is very promising and it is hoped, now that

the significance of the variance has been demonstrated, that future

work will provide further performance improvements and so allow

the handling of very large grids.
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