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Abstract—Electromigration is a reliability concern that affects
chip power grids carrying high current over the course of
several years. In order to guarantee safety of the chip from void
nucleations due to electromigration, a set of current constraints
can be generated as a guideline for chip design. In this work,
we propose a tool to efficiently generate approximate constraints
through model order reduction, based on Arnoldi’s algorithm.
Our method leverages several properties of the matrices at hand
to efficiently perform the required computations in the reduced
subspace, before projecting the results back to the original space.

Index Terms—Electromigration, power grid, void, current
constraints, model order reduction, Arnoldi.

I. INTRODUCTION

Electromigration (EM) is the movement of metal atoms

in the direction of the electron wind in metal lines carrying

high current. The problem is exacerbated whenever the current

density is high in the line, which is getting more common with

continued technology scaling. It is also affected by different

parameters such as temperature, the materials used, etc. EM

can ultimately lead to the formation of voids and hillocks in

the metal line. A void is the absence of material at some point

in the line, whereas a hillock is the extrusion of metal through

cracks in the dielectric. Hillocks are not really a concern in

modern damascene metal systems due to the metal liner that

blocks these extrusions, which is why we focus only on voids.

While atoms are moving, and before the void appears, a stress

gradient develops in the line, with tensile stress at one end

of the metal line and compressive stress at the other end.

This is called the void nucleation phase. Whenever the tensile

stress exceeds a critical stress threshold called σcrit, a void

“nucleates” and appears at the junction, marking the start of

the void growth phase. The presence of a void may completely

block atomic flow through that line, but still allows electric

flow through the less conductive metal liner. During void

growth, the resistance of the line increases with void length

until it reaches some steady-state value. With voids nucleating

in different metal lines, the resulting resistance changes can

cause circuit failures.

Although EM is common in many other structures, the

power delivery network (PDN), and more specifically the on-

die power grid, will be the focus of our work, because it mostly

carries unidirectional current. Because electromigration is a
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very slow phenomenon which takes months and even years

to develop, high-frequency components of the current are not

relevant. We instead consider the DC average of the currents in

the power grid, which are readily available through the power

budgets of the underlying circuit blocks drawing power from

the grid.

The power grid is composed of metal meshes on different

metal layers connected to each other by means of vias.

Within each layer, the metal in the supply network consists

of physically disconnected metal structures that are generally

shaped like trees (i.e., graphs with no cycles), which are called

interconnect trees in the EM literature [1]. Even though cycles

might be present, it is common practice in the field to assume

that the grid consists only of trees. Every tree consists of a

number of connected straight-line metal branches. The end-

points of branches are called junctions, which may be shared

among multiple connected branches. Since the grid is formed

of trees, each tree with m ≥ 2 junctions has (m − 1) ≥ 1
branches. Every junction is connected to at least one metal

branch, and most junctions are connected to vias which in turn

connect them to other metal layers. Since vias do not allow the

flow of metal atoms, electromigration analysis may consider a

via to be connected to a current source rather than another line

in a different layer. Moreover, the power grid must be able to

drive a load, which is modeled as ideal current sources that

do not vary with time, and that are connected to the lowest

layer of the grid through junctions.

With voids nucleating in different areas of the power grid,

and with the resulting resistance changes, some junction

voltages will drop, which may lead to voltage drop violations

and timing failures. Power grid safety under electromigration

is a major reliability concern for chip design, which can be

addressed in multiple ways. This work focuses on what has

been called the “inverse problem” [2]. Given a grid, we wish to

find constraints for the current sources that load the grid, which

would guarantee safety of the chip from EM for the desired

lifetime, and would serve as a guideline for chip design.

Based on a closed-form expression for the currents constraints

derived in [2] under certain assumptions, we introduce a fast

and efficient way to compute the constraints using a model

order reduction technique. This allows us to handle much

larger interconnect trees compared to existing methods.
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II. BACKGROUND

A. Equivalent Circuit Model

In [3], a model was developed to track the evolution of

stress in a power grid by drawing an analogy with specially

constructed RC circuits. The equivalent circuit is constructed

as follows: every tree junction corresponds to a node in the

circuit, and every tree branch corresponds to a series chain

of resistors. Each chain is the result of the discretization of

an RC transmission line, with a discretization size of 20. We

therefore make a distinction between two different types of

nodes: the junction nodes, which correspond to the original

junctions of the tree, and the internal nodes which are a result

of the discretization of a branch. In the new RC circuit, there

are n = 20(m−1)+1 nodes, m of which are junction nodes,

and the rest are internal nodes. As previously mentioned, we

represent the via connections by ideal current sources, so in

the equivalent circuit, every junction node is also connected to

an ideal current source to ground, whose values are stored in

the m× 1 vector u. The entries of u are defined as a function

of the current source vector i of the original tree,

u = MDM+i. (1)

In this equation, the m× (m− 1) matrix M is the incidence

matrix of the tree, whose (i, j)th entry is 0 if node i is not an

endpoint of edge j, and otherwise +1 (or −1) if the direction

of the edge is away from (or towards) node i, and M+ refers to

the Moore-Penrose inverse of M . As for D, it is the diagonal

matrix of the strictly positive scale factors used in [3, eq. 35]

to multiply the branch currents of the original tree.

The key finding in [3] is that the stresses in the original

interconnect tree can be found by simply scaling the voltages

in the equivalent circuit. In other words, one can use traditional

circuit techniques to solve the circuit equations and obtain the

node voltages v(t), then deduce the values of the stresses σ(t)
in the original tree according to

v(t) = ξσ(t), (2)

where ξ = 1 V/MPa, as in [3, eq. 31].

Let us now define the n × n conductance matrix G of the

equivalent circuit, the n×n diagonal matrix C of capacitance

values, and the n×m matrix H such that its (i, j)th entry is

1 if node i is connected to current source j (and 0 otherwise).

After applying nodal analysis on the equivalent circuit, we can

construct the stress equation

Gσ(t) + Cσ̇(t) = Hu = HMDM+i, (3)

or

σ̇(t) = Aσ(t) + C−1HMDM+i, (4)

where A = −C−1G is the system matrix.

B. Safety from Voids

Even though the time-to-failure (TTF) of a metal line or

metal network is stochastic due to random process variations,

we focus only on specific (deterministic) grid instances. Given

a specific instance of a power grid, we call the set of safe

current assignments all those underlying currents for which

the lifetime of the chip is greater than or equal to the desired

target lifetime T , i.e.,

S(T ) = {i ∈ R
m : TTF(i) ≥ T} . (5)

For the sake of generating current constraints, we make

a simplifying assumption by considering safety of the chip

as safety from voids, instead of safety from voltage drop

violations. This allows us to consider trees independently,

since no structural change occurs before void nucleation.

If all trees in the grid are safe, we can declare that the

grid is safe as well. We rely on the fact that if the stress

does not exceed the stress threshold anywhere, no voids will

appear. Since this condition is hard to guarantee at every

time point from time 0 until the target lifetime T , we make

another simplifying assumption: we assume that the stresses

are monotone. Although this does not necessarily always hold,

it is almost always the case except for initial dynamics, or after

a void formation that induces structural change (which would

not happen before failure when considering safety from voids).

Under these assumptions, the safety set is expressed as [2]

S(T ) = {i ∈ R
m : σ(T ) ≤ σcrit} . (6)

As shown in [2], the stress at time T can be expressed

in terms of the original input currents i and the initial stress

vector σ0 as

σ(T ) = eATσ0 + (I − eAT )G+HMDM+i, (7)

so that

S(T ) = {i ∈ R
m : Ki ≤ s} , (8)

where the pair (K, s) are the n×m matrix K and the n× 1
vector s, defined as

K = (I−eAT )G+HMDM+ and s = σcrit−eATσ0. (9)

The most significant challenge in the generation of the

constraints is the computation of the matrix exponential eAT ,

as will be explained in Section II-C.

C. The Matrix Exponential

Let A be a square n × n matrix, and T be a time scalar

which multiplies the matrix A. The exponential of AT , written

eAT , is the n× n matrix defined as

eAT , I +AT +
A2T 2

2!
+

A3T 3

3!
+ ... =

∞∑

k=0

AkT k

k!
. (10)

An algorithm to compute the matrix exponential can be devel-

oped based on this definition, but it is known that the matrix

computed by this algorithm, which is meant to approach eA,

is unreliable and takes a very long time to converge. There

is no guaranteed error bound, and the algorithm will typically

experience numerical instability. For both timing and stability

concerns, this simplistic approach does not work for large

matrices.



The landmark 1978 paper by Moler and Van Loan [4]

entitled “Nineteen dubious ways to compute the exponential

of a matrix”, and its 2003 update by the same authors [5],

review and explore a wide range of algorithms, none of which

constitutes a good solution in all cases. Many algorithms suffer

from numerical instability, especially when the entries of A are

large in magnitude. In terms of numerical complexity, there

are O(n4) methods, as well as O(n3) methods under certain

conditions, but the resulting matrix is often full even if A
is sparse, and there is no good way to benefit from sparsity,

making this extremely expensive for large systems. In short,

it is practically impossible to compute the exponential for

very large matrices, in general. However, in specific problem

domains, there may be reliable approximations that can do the

job.

Given the size of the problems we deal with today, with

billions of nodes in the chip power grid, even the best

classical methods [4], [5] are not applicable. It is prohibitively

expensive to run O(n3) and O(n4) algorithms on such prob-

lems, when sparsity cannot be leveraged. Even for single

interconnect trees, these methods are not acceptable, and must

be adapted using any information that may be available for the

problem domain. There is currently no published work that

provides a fast, efficient and accurate method for computing

current constraints for chip safety from electromigration, or the

matrix exponential of the system matrix under consideration

- as far as we know. The method we propose reduces the

matrix exponential based on Arnoldi’s algorithm, which we

briefly present in the next section.

D. Arnoldi’s Algorithm

Arnoldi’s algorithm [6] was first developed as an application

of the method of minimized iterations in 1951. Although the

original purpose of this algorithm was to reduce a dense matrix

to upper Hessenberg1 form, Arnoldi hinted at its potential use

to approximate the largest eigenvalues of a matrix. The algo-

rithm was later refined by Saad [7] and others, and has since

been used to compute eigenelements of large unsymmetric

matrices.

Given a general n × n matrix A, and a starting unit-

norm vector v1, Arnoldi’s algorithm builds an orthog-

onal basis matrix Q of the Krylov subspace Kk ≡
span{v1, Av1, A

2v1, ..., A
k−1v1}. By considering the Arnoldi

method as a Rayleigh-Ritz projection on a Krylov subspace,

it is known that the Ritz values in Kk and their corresponding

Ritz vectors are good approximations for some eigenpairs

of A.

The algorithm starts with the vector v1 and a desired

parameter k < n that corresponds to the size of the reduced

system. The first column of Q is v1; as for the other columns

1A square matrix H is said to be an upper Hessenberg matrix if it has only
zero entries below the first diagonal, i.e., if hij = 0 for all i > j + 1.

v2, · · · , vk, they are iteratively computed according to the

recurrence relation

hj+1,jvj+1 = Avj −

j∑

i=1

hijvi, (11)

where the hij are chosen such that each vj+1 is orthogonal to

all previously found vi (i = 1, ...j) and ||vj+1|| = 1.

In [8, §6.2.1], Saad gives the basic Arnoldi algorithm

implementing relation (11) with the orthonormality constraint,

reproduced in Algorithm 1.

Algorithm 1 Basic Arnoldi Algorithm

1: procedure ARNOLDI(A,n, k)

2: Choose a vector v1 of norm 1
3: for j = 1, 2, ..., k − 1 do

4: hij = 〈Avj , vi〉, i = 1, 2, ..., j

5: wj = Avj −
∑j

i=1
hijvi

6: hj+1,j = ||wj ||2, if hj+1,j = 0 stop

7: vj+1 = wj/hj+1,j

It was proved in [8, §6.2.1] that the collection of vectors

{v1, ..., vk} which form the columns of Q are a basis for the

Krylov subspace Kk spanned by {v1, Av1, ..., A
k−1v1}. The

following relation is also proved, where H refers to the k× k
upper Hessenberg matrix whose entries are the hij computed

in Algorithm 1,

Q∗AQ = H (12)

In the general case where k < n, the columns of Q are

orthonormal. If we let Q∗ be the conjugate transpose of Q,

this translates to

Q∗Q = I. (13)

Since Arnoldi’s method stops before returning n columns of

Q, it produces the approximation

A ≈ Q∗HQ. (14)

It is important to note that the matrix A is not necessarily

well-approximated by the expression in (14). However, it is

accepted in the literature that some of the k eigenvalues and

eigenvectors of H constitute good approximations for some

eigenpairs of A [8], with the approximation becoming better

with increasing values of k. This makes Arnoldi’s algorithm

attractive if one is only interested in a few eigenpairs of

A. Since H is a matrix of modest size k × k, where k
is chosen to be much smaller than n, and because of its

Hessenberg structure, its eigenvalues can easily be computed

with a procedure such as a sparse QR algorithm. Although the

quality of the approximation of the eigenvalues seems to be

mostly based on empirical observations, theoretical results for

convergence are provided in [7]. In short, eigenvalues that are

“extreme and isolated” will be well-approximated, whereas

eigenvalues that are in the innermost part of the spectrum

will have large errors. In practice, it has been observed that

if the Arnoldi parameter k is chosen to be large enough,



a portion of the eigenvalues, corresponding to the largest-

magnitude eigenvalues of A, will be well-approximated by

the eigenvalues of H (with well-approximated eigenvectors),

whereas the rest of the eigenpairs will typically be far from

the actual eigenpairs of A.

III. EFFICIENT CURRENT CONSTRAINTS GENERATION

We now go over our approach for computing the current

constraints for a given interconnect tree, i.e., the vector s
and the matrix K. In order to compute the former, we

derive an expression based on some properties of the matrix

exponential which makes the computation straightforward, and

independent of the matrix exponential itself. The bottleneck of

the procedure is the computation of K, which is intricately

tied to that of the matrix exponential. We run Arnoldi’s

algorithm to generate a projection matrix, which is then used

to project the stress equation onto a reduced subspace of

dimension k ≪ n. The reduced matrix exponential is then

efficiently computed with a procedure based on eigenvalues

and eigenvectors. Finally, the system is projected back to the

original system of dimension n.

A. Reduction of the System Matrix A

The first step of our approach is to reduce the system matrix

A to an approximate matrix of smaller dimension, which still

captures its action on the stress evolution. We perform this

reduction with Arnoldi’s algorithm, in order to preserve some

of the eigenvalues of A = −C−1G. Since C is a diagonal

matrix with strictly positive diagonal entries, it is symmetric

positive definite (SPD), and its inverse C−1 exists and is also

SPD. As for the matrix G, it is the Laplacian [9], [10] of

a connected graph, so it is symmetric positive semi-definite

(SPSD), all its eigenvalues are real and non-negative, and it

has a simple eigenvalue at 0 with corresponding eigenvector 1,

where 1 is the vector whose every entry is 1. Since the product

of two SPSD matrices has non-negative real eigenvalues [11,

Theorem 7.5], then all the eigenvalues of A are real and

non-positive. In the stress equation (7), A appears in the

exponential term, which means that its large eigenvalues (in

absolute value) will produce a very fast transient response.

However, these transients are not significant when dealing with

a slow effect like electromigration. The fast components of the

dynamic response dissipate so quickly that their impact on the

very slow EM stress evolution over time is negligible. They

are effectively filtered out due to the slow dynamics of system,

which are themselves determined by the eigenvalues of small

magnitude. We therefore choose to reduce the matrix in a way

that preserves its smallest eigenvalues (in absolute value).

Arnoldi’s algorithm produces an upper Hessenberg matrix

H whose eigenvalues approximate the large-magnitude eigen-

values of the input matrix A. In order to get an approximation

based on the small-magnitude eigenvalues, we use the shift-

and-invert Arnoldi algorithm [12]. It consists of preprocessing

the input matrix A by shifting it (in order to eliminate its

0 eigenvalue, which is due to the 0 eigenvalue of G) and

inverting it. In other words, the input of the Arnoldi algorithm

becomes

Â , (A− δI)−1. (15)

The matrix Â is fed into the Arnoldi algorithm, which outputs

two matrices Q̂ and Ĥ . If we let the k × k matrix H̄ be

H̄ , Ĥ−1 + δI, (16)

then it can be shown [13] that the eigenvalues of H̄ approx-

imate the k smallest-magnitude eigenvalues of A (and the

corresponding eigenvectors are the same as those of Ĥ). This

is due to the properties of shift and inversion and their effect

on the eigenvalues and eigenvectors of a matrix. This leads to

the key approximation

H̄ ≈ Q̂∗AQ̂, (17)

based on the small-magnitude eigenvalues of A. Note that in

practice, no inversion is required because we do not explicitly

compute Â. Instead, we use a modified version of Arnoldi’s

algorithm [12] with the shifted A matrix as input, and whose

only overhead is the computation of an LU factorization of A.

The details are in [13].

B. Projection of the System

In the previous section, we saw that the system matrix A
can be projected onto a smaller subspace of dimension k × k
using Arnoldi’s algorithm. We will now see how the outputs

Ĥ and Q̂ of Arnoldi’s algorithm can be used to compute the

matrix exponential in the reduced subspace.

Recall that the system under consideration gives the stress

evolution over time (4). Since the input currents i are constant,

the system (4) can be equivalently expressed by defining

z(t) = σ(t)−G+HMDM+i, (18)

and substituting σ(t) = z(t) + G+HMDM+i back into (4)

to get

ż(t) = −C−1Gz(t) = Az(t) (19)

whose solution is

z(t) = eAtz0. (20)

By using the n×k matrix Q̂ generated by Arnoldi’s method as

a projection matrix, we can project this homogeneous system

onto a Krylov subspace of dimension k. Assuming that the

state vector z is constrained to a low-dimensional subspace

spanned by the linearly independent columns of Q̂, we have

z(t) = Q̂ẑ(t), (21)

where ẑ(t) is a k × 1 vector, from which

ẑ(t) = Q̂∗z(t), (22)

which is obtained by pre-multiplying both sides by Q∗ and

then using (13) to replace Q̂∗Q̂ by I . We now perform a

change of variable by replacing z in (19) by Q̂ẑ, then pre-

multiply by Q̂∗ to get

˙̂z(t) = Q̂∗AQ̂ẑ(t). (23)



By using the approximation in (17), this becomes

˙̂z(t) ≈ H̄ẑ(t), (24)

whose solution is

ẑ(t) ≈ eH̄tẑ0. (25)

Note that H̄ is a k×k matrix, which is much smaller than the

original system matrix A of size n×n. The matrix exponential

in this reduced subspace is therefore much easier to compute

than the original one. After the system is solved in the reduced

subspace, and we obtain (25), we can recover the original

variable z through (21) and (22), as

z(t) ≈ Q̂eH̄tQ̂∗z0. (26)

Now going back to the σ variable by using (18) and rearrang-

ing the terms gives

σ(t) ≈ Q̂eH̄tQ̂∗σ0 + (I − Q̂eH̄tQ̂∗)G+HMDM+i. (27)

Since we are only interested in the time point t = T ,

comparing to (4), the resulting approximate current constraints

are based on

K ≈ (I − Q̂eH̄T Q̂∗)G+HMDM+ (28)

s ≈ σcrit − Q̂eH̄T Q̂∗σ0. (29)

It is clear that the essence of our approach is in fact

eAT ≈ Q̂eH̄T Q̂∗. (30)

This highlights the fact that the computation of the matrix

exponential is simplified by computing the exponential of a

reduced matrix, which is then projected back to the original

space.

C. Computation of the Reduced Matrix Exponential

The application of the Arnoldi-based approximation reduces

the computation of an n×n matrix exponential eAT to that of

a k×k matrix exponential eH̄T , which is still a nontrivial task.

We now explain the strategy we adopt for this computation.

Recall that H̄ = Ĥ−1+ δI . Instead of explicitly computing

H̄ and then finding its matrix exponential (which would

require a matrix inversion, and would lose the Hessenberg

structure of Ĥ), we first find the eigenvalues of Ĥ and

their corresponding eigenvectors - which is easier than for a

general matrix, because it is upper Hessenberg. From these,

we can readily obtain the eigenvalues and eigenvectors of

H̄ , and the computation of the matrix exponential becomes

straightforward, as we will now show.

Note that, since Ĥ is approximating the eigenvalues of the

shifted and inverted version of A (which is diagonalizable

because it is the product of two SPSD matrices), it is fair to

assume that Ĥ is diagonalizable (and its eigendecomposition

exists).

Theorem 1. Let H̄ = (Ĥ−1 + δI) as defined in (16), and

let [V,Λ] be an eigendecomposition of Ĥ . Then, eH̄T =
V eΛ̄TV −1 where Λ̄ = Λ−1 + δI .

Proof. [V,Λ] is an eigendecomposition of Ĥ . Then

Ĥ = V ΛV −1. (31)

Formally, if Ĥ is of size k × k, then V is the k × k
matrix whose ith column is the eigenvector vi of Ĥ , and

Λ is the n × n diagonal matrix whose diagonal elements

are the corresponding eigenvalues Λii = λi. Once these two

matrices are available, an eigendecomposition of H̄ can be

easily obtained, as shown in the following

Ĥ = V ΛV −1 (32)

Ĥ−1 = V Λ−1V −1 (33)

Ĥ−1 + δI = V Λ−1V −1 + δI (34)

Ĥ−1 + δI = V (Λ−1 + δI)V −1 (35)

If we let

Λ̄ = Λ−1 + δI, (36)

then the eigendecomposition of H̄ can be expressed as

H̄ = V Λ̄V −1. (37)

Note that Λ̄ can be easily obtained from Λ, since the

inversion of the diagonal k × k matrix Λ is a simple O(k)
procedure corresponding to the inversion of each diagonal en-

try. The matrix Λ̄ is also a diagonal matrix, and it contains the

approximate k smallest-magnitude eigenvalues of the original

matrix A, whose corresponding eigenvectors are the same as

Λ.

Once the eigendecomposition in (37) is available, the com-

putation of the matrix exponential becomes a straightforward

procedure whose bottleneck is a matrix-matrix multiplication.

Since V is an orthogonal matrix, and H̄ = V Λ̄V −1, the matrix

exponential can be expressed as

eH̄T = V eΛ̄TV −1. (38)

which is a well-known result in linear algebra (and may be

derived from the definition of the matrix exponential as an

infinite sum). The matrix exponential eΛ̄T is obtained by ex-

ponentiating each diagonal entry of the matrix of eigenvalues,

pre-multiplying it by the matrix of eigenvectors, and post-

multiplying it by its inverse.

To sum up, once an eigendecomposition of Ĥ is available,

we can obtain an eigendecomposition of H̄ in O(k) time, and

we can then compute the matrix exponential of H̄ (multiplied

by the scalar T ) with two simple matrix-matrix multiplications.

This leads to the approximation

K ≈ (I − Q̃V eΛ̄TV −1Q̃∗)G+HMDM+. (39)

D. Approximation of s

Although the approximation from (29) can be used to

efficiently compute the s vector, we choose to compute it in a

different, and much faster way. We assume that the chip under

consideration is starting from a “resting state”, which means

that enough powered-down time has passed so that the initial

stress is the same everywhere, i.e., σ0 = σi1, where σi is a



scalar. We will show that under this assumption, the vector s
is equal to σcrit − σ0.

Recall that G is a conductance matrix, which means that

the sum of each one of its rows is 0. Formally, G1 = 0.

Now, let us look at the product eAT
1 = e−C−1GT

1. If we

use the definition of the matrix exponential as an infinite sum,

we can see that each term, except the initial I1 term, will

end with the product G1. This means that each term in the

infinite sum is equal to zero, except the first one. In other

words, eAT
1 = I1 = 1.

We now use this property to compute the matrix exponential.

Since the initial stress is the same everywhere, we can write

s = σcrit − eATσ0 as σcrit −σie
AT

1. It is then easy to see that

s = σcrit − σi1, leading to the final equation

s = σcrit − σ0. (40)

IV. SIMULATION RESULTS

We developed a C++ approach which implements the al-

gorithm presented in Section III. All computations were per-

formed on a hyperthreaded 12-core 3GHz Linux machine with

128GB of RAM. Since the input matrices G, C, M , H and

D are highly sparse, we used the CHOLMOD package [14]

from SuiteSparse [15] to store them and perform operations

on them. Finally, the C++ template library Eigen [16] was

used to find the eigenvalues, as needed in Section III-C. We

judge our approximation based on its accuracy and runtime,

when compared to the exact computation. Unless otherwise

stated, the computations are carried out for a target lifetime of

T = 10 year, with a constant Arnoldi parameter k of 100, and

a shift δ of 10−15 for the shift-and-invert Arnoldi procedure.

A. Accuracy Results

First, we present the accuracy results, which are central to

the quality of the approximation. The approximate K matrix is

generated according to (39), using the C++ procedure outlined

in Section III. The approximate K matrix is compared to

the exact K, which is computed by finding the exact matrix

exponential. Since developing an algorithm for exact matrix

exponential computation in C++ is an entirely separate task,

we chose to perform the exact computation in MATLAB®, in

two different ways:

• The first one using the built-in matrix exponential com-

mand expm provided by MATLAB®.

• The second one using fastExpm, a function initially

written by I. Kuprov [17] [18] in 2011 and later adapted

by F. Mentink-Vigier [19]. It leverages the sparsity of

the matrix by setting very small entries to 0, and uses

scaling, Taylor series and squaring to preserve matrix

sparsity over the different iterations.

In practice, expm is very slow, and it is thus not scalable

for large matrices, whereas fastExpm makes for a fairer

comparison with our approximation. Note that expm and

fastExpm produce the exact same output, so accuracy is not

affected by the use of the faster user-defined function for

comparison.

The first error metric is the normalized root-mean-square

(RMS) error, which is effectively the standard deviation of the

residuals (prediction errors) between each approximate entry

of K and its exact counterpart. It is calculated by summing

the squares of the residuals of all the entries, dividing the

sum by the number of entries, and then taking the square

root of the result. The RMS error is then normalized by

dividing by the average value of all the entries in the exact K
matrix. The second error metric we report is the normalized

maximum error. This is simply the maximum absolute value

of the difference between an approximate value and its exact

counterpart, divided by the average value of all the entries in

the exact K. Finally, we also report the normalized average

value of the residuals, i.e., the normalized average prediction

error. It is obtained by taking the mean of all the residuals,

and then dividing this value by the average value of all the

entries in the exact K matrix.

For all three error metrics, normalization is essential because

the values of K are often of the order of magnitude of 106

or larger. The results are compiled in Table I for increasing

values of m.

TABLE I
ACCURACY MEASURES FOR THE APPROXIMATE CURRENT CONSTRAINTS

MATRIX K FOR SAFETY AT T = 10 YEARS AND k = 100.

Junction
count m

Node
count n

Normalized
RMS Error

Normalized
Maximum
Error

Normalized
Average
Prediction
Error

300 5981 0.06% 0.37% 0.04%

700 13,981 0.31% 4.15% 0.19%

1500 29,981 1.14% 27.46% 0.52%

From Table I, we see that the errors increase with circuit

size, but no circuit has a normalized RMS error larger than

1.2%, indicating very good agreement between the approxi-

mate and exact matrices. This shows that keeping a very small

number of the smallest eigenvalues (in magnitude) is enough

to capture the action of the matrix exponential on the product

G+HMDM+, for circuits of reasonable size. Note that the

decrease in accuracy with circuit size was expected, because

we are keeping the size of the reduced subspace constant, even

for increasingly large matrices.

B. Timing Results

We now evaluate the speed of the approximation by com-

paring the time it takes to compute the approximate K matrix

in C++, and the exact K in MATLAB® (by the two different

methods mentioned in Section IV-A), for different circuits with

increasing values of m.

Fig. 1 shows the measurements for circuits having between

100 and 900 junctions (n between 1981 and 17,981), with

the interpolated polynomial lines. Fig. 2 shows measurements

for the approximation for circuits having m up to 5500 (n =
109,981), with the interpolated line, and the extrapolations of

the lines from Fig. 1 for the exact computations. The largest

circuits for which we actually measured the runtime of the



exact solution had m = 900 (n = 17,981) for the built-

in expm and m = 1500 (n = 29,981) for fastExpm. For

larger circuits, inherent MATLAB® limitations and very large

simulation times make it impractical to compute the exact

solution; and for these same reasons, the largest circuit tested

for accuracy in Section IV-A has m = 1500 junctions (n =
29,981).
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Fig. 1. Runtime of the exact and approximate methods for computing K for
different circuits with m up to 900 (n up to 17,981), and k = 100.
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Fig. 2. Runtime of the exact and approximate methods for computing K

(with extrapolated lines) for m up to 5500 (n up to 109,981), and k = 100.

In addition to the figures, the timing results for some circuits

with up to m = 900 junctions are shown in Table II. Clearly,

computing the exact solution takes significantly more time,

and is inherently limited by the capabilities of MATLAB®,

whereas the approximate solution can be computed for much

larger circuits, with up to 5500 junctions.

From Figs. 1 and 2, we can see that the approximation offers

a considerable speedup compared to both exact methods. For

instance, for m = 900, the approximation took 5 min 29 sec,

the computation of the exact K using fastExpm took 24 min 7

sec, and the exact K using expm took 48 min 24 sec. For the

largest test case (m = 5500), the approximate computation

took 19 hrs 13 min. Based on the extrapolated polynomial

lines, the exact computation would take 4 days 23 hrs with

fastExpm and 8 days 23 hrs with expm.

TABLE II
RUNTIME OF THE APPROXIMATE (IN C++) AND EXACT (IN MATLAB

WITH THE BUILT-IN FUNCTION AND FASTEXPM) CURRENT CONSTRAINTS

COMPUTATION, FOR CIRCUITS WITH 100 JUNCTIONS UP TO 900
JUNCTIONS, FOR SAFETY AT T = 10 YEARS AND WITH k = 100.

Junction
count m

Approximate
Solution
runtime (in
C++)

Exact solution
runtime
(fastExpm

in MATLAB)

Exact solution
runtime
(built-in in
MATLAB)

100 1 sec 3 sec 6 sec

200 5 sec 21 sec 43 sec

300 14 sec 56 sec 2 min

400 31 sec 2 min 47 sec 5 min 15 sec

500 1 min 1 sec 4 min 56 sec 8 min

600 1 min 46 sec 7 min 10 sec 15 min

700 2 min 37 sec 12 min 22 min

800 3 min 51 sec 15 min 32 min

900 5 min 29 sec 24 min 48 min

C. Choice of the Arnoldi Parameter k

In this section, we explain our choice of the Arnoldi parame-

ter k. We used a fine-tuning process by running simulations on

different circuits while varying k, and monitoring the accuracy

measures.

The parameter k is one of the most important “knobs”

of our approximation: it determines the size of the reduced

subspace, namely, the dimension of the reduced matrix whose

exponential will have to be computed. It also determines how

much “information” will be retained by the approximation (by

specifying how many eigenpairs should be approximated), and

by extension, how much will be dropped. The smaller k is,

the faster the approximation will be, but also the worse the

overall accuracy. Choosing an appropriate value for k is thus

a tradeoff between speed and accuracy: we wish to choose

the smallest value of k which provides an accurate enough

approximation.

Fig. 3 shows the normalized RMS error and the normalized

average prediction error for a circuit with m = 700 junctions

(n = 13,981). In both cases, k is varied between 40 and 400.

For both error metrics, we see downward curves which start

at a relatively high error level (albeit still quite low - less than

1.2% in all cases), and reach very low error values. Note that

values of k less than 40 are not shown in the graph for clarity,

because they produce much higher errors. For instance, for

m = 700 and k = 20, the normalized RMS error is 4.5 %.

For values of k greater than 50, it seems that the error is

already quite low for both circuits tested, and that there is no

point in increasing k above a certain point, because the gain

in accuracy is minimal and it causes a significant increase

in compute time. Note, however, that for a specific value of

k, the errors seem to increase with circuit size. For instance,

for k = 200, the normalized RMS error was 0.0214% for

m = 300 (n = 5981), and 0.1286% for m = 700 (n =
13,981). For this reason, one of the options we considered



was to vary k with m, so that the accuracy stays relatively

constant no matter the circuit size. In fact, this is the strategy

we recommend for very large circuits having tens of thousands

of junctions.

In our case, however, circuit size was capped at about 5500
junctions, and we chose to have a constant value of k equal

to 100, since it provided reasonable accuracy for all circuit

sizes: the normalized RMS error was 0.0577% for m = 300,

0.3138% for m = 700, and 1.1444% for m = 1500. Since

the RMS error seems to be increasing linearly with circuit

size, a simple linear extrapolation gives an error of 4.685%
for m = 5500 (n = 109,981). To put things into perspective,

this is still an error of less than 5%, for a system matrix of size

109,981 × 109,981, and a reduced matrix of size 100× 100.
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Fig. 3. Plot of the normalized RMS and average prediction errors between
the approximate and exact current constraints, for a circuit with m = 700

junctions (n = 13,981), and for different values of the Arnoldi parameter k.

V. CONCLUSION

Power grid reliability is a major concern in chip design,

and it can be significantly affected by electromigration. The

effects of electromigration threaten the integrity of the chip’s

power grid and its ability to provide the desired voltages to

the underlying circuitry. In this work, we have developed a

tool to guarantee chip safety from voids until a target lifetime,

by efficiently generating constraints on the underlying source

currents. The computation of the constraints relies on a model

order reduction scheme based on Arnoldi’s algorithm, in order

to efficiently compute a large matrix exponential, which is the

bottleneck of the constraints generation process. Our tool can

handle much larger test cases compared to existing methods,

with error metrics lower than 5% in all test cases.
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