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Three-Dimensional Location Estimation
of Circular Features for Machine Vision

Reza Safaee-Rad, Ivo Tchoukanov, Member, IEEE, Kenneth Carless Smith, Fellow, IEEE, and Bensiyon Benhabib

Abstract— Estimation of 3-D information from 2-D image
coordinates is a fundamental problem both in machine vision
and computer vision. Circular features are the most common
quadratic-curved features that have been addressed for 3-D lo-
cation estimation. In this paper, a closed-form analytical solution
to the problem of 3-D location estimation of circular features is
presented. Two different cases are considered: 1) 3-D orientation
and 3-D position estimation of a circular feature when its radius
is known, and 2) 3-D orientation and 3-D position estimation
of a circular feature when its radius is not known. As well,
extension of the developed method to 3-D quadratic features
is addressed. Specifically, a closed-form analytical solution is
derived for 3-D position estimation of spherical features. For
experimentation purposes, simulated as well as real setups were
employed. Simulated experimental results obtained for all three
cases mentioned above verified the analytical method developed
in this paper. In the case of real experiments, a set of circles
located on a calibration plate, whose locations were known with
respect to a reference frame, were used for camera calibration as
well as for the application of the developed method. Since various
distortion factors had to be compensated in order to obtain
accurate estimates of the parameters of the imaged circle—an
ellipse — with respect to the camera’s image frame, a sequential
compensation procedure was applied to the input grey-level
image. The experimental results obtained once more showed
the validity of the total process involved in the 3-D location
estimation of circular features in general and the applicability
of the analytical method developed in this paper in particular.

I. INTRODUCTION

STIMATION of 3-D information from 2-D image coor-

dinates is a fundamental problem in both machine vision
and computer vision. This problem exists in two forms: the
direct and the inverse. When the camera parameters (the
intrinsic: effective focal length, lens distortion factors, etc., and
the extrinsic: 3-D position and 3-D orientation of the camera
frame) are given in addition to the 2-D image coordinates,
the problem is of the direct type. On the other hand, if
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the 3-D coordinates are given in addition to the 2-D image
coordinates, the problem is of the inverse type. In the first
(direct) type, the objective is to estimate the 3-D location of
objects, landmarks, and features. This type of problem occurs
in many areas: for example, in automatic assembly, tracking,
and industrial metrology. In the second (inverse) type, the
objective is to estimate the relevant camera parameters: for
a fixed camera, all the intrinsic and extrinsic parameters; for a
moving camera, only the extrinsic parameters, namely, its 3-D
location. This type of problem occurs in areas such as camera
calibration, camera-robot calibration for eye-on-hand systems,
and autonomous mobile robot guidance.

The problem of 3-D location estimation of objects in a
scene has been addressed extensively in the applied literature
where it is referred to as feature-based 3-D location estimation
of objects. The body of literature dealing with this general
problem is concerned with developing mathematical methods
for the estimation of an object’s location based on point
features, whether it is a 3-point problem (also called the
triangle-pose problem [1]—{4]), a 4-point problem (1], [5]-{12],
or an n-point problem [13]-[17]. Estimation of the object’s
location based on line features, whose mathematics is similar
to that of point features, has also been studied [18]-{22]. As
well, for quadratic-curved features, a general method has been
developed {20]. However, this method is iterative and requires
an initial estimate.

A circular shape, representing a particular special case of
quadratic-curved features, is the most common quadratic that
has been addressed for 3-D location estimation, mainly due
to the following reasons: 1) many manufactured objects have
circular holes or circular surface contours; 2) a circle has the
following properties from a mathematical point of view: its
perspective projection in any arbitrary orientation is always an
exact ellipse, and it can be defined with only three parameters
due to its symmetry with respect to its center; 3) a circle
has been shown to have the property of high image-location
accuracy {23], [24]; and 4) the complete boundary or an arc
of a projected circular feature can be used for 3-D location
estimation without knowing the exact point correspondence.

As a result of the above-mentioned properties, circular
features have been used in various machine-vision-related
problems. For example, they have been used for accurate es-
timation of a mobile robot’s position using circular landmarks
[25]-[29], for recognition (identification and 3-D location
estimation) of 3-D premarked objects using circular markers
[30], [31], for feature estimation of 3-D objects using a tapered
light beam [32], for 3-D orientation estimation of objects with
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circular surface contours [33], for objects that have holes [34]
and for cylindrical objects marked by two circular stripes that
are placed radially around them [35], and for reconstruction
of the 3-D structure and motion of a scene undergoing relative
rotational motion with respect to the camera [36].

For 3-D location estimation based on circular features,
approximate and exact solution methods have been proposed.
In the approximate-solution methods [25]-[29], three difficul-
ties remain in the mathematical solutions presented. The first
concerns a set of simplifying assumptions made in order to
reduce a complex 3-D problem to a simple 2-D problem, yet
assumptions that lead to further complications. For example,
researchers assume that the optical axis of the camera passes
through the center of the circular feature and/or assume
orthogonal projection instead of perspective projection. The
second difficulty is evidence of an incorrect claim regarding
the actual effect of perspective projection on the image of a
circle, an ellipse, which states that the perspective projection of
a circle is not an exact ellipse but, rather, a distorted one. The
third difficulty is that, in general, authors do not discuss the
error introduced by each approximation. A detailed analysis
of the common approximate solutions are presented elsewhere
[37].

There have been several methods proposed to solve
the circular-feature-based 3-D location estimation of objects
(which we call the circular-feature problem in this paper)
in a scene under general conditions without simplifying
assumptions. An iterative method has been addressed in [38].
Closed-form solutions for the circular-feature problem have
also been developed based on linear algebra [36], [39], but
these methods are mathematically complex and, being algebra-
based, do not provide a geometrical representation of the
problem nor a geometrical interpretation of the resulting
solutions.

Recently, a closed-form mathematical solution, based on 3-
D analytical geometry of circular and spherical features, was
published [40]. This solution method has several advantages:
it is a closed-form solution, it gives only the necessary number
of solutions (with no redundant solutions), and it uses simple
mathematics involving 3-D analytic geometry.

We have previously addressed the circular-feature problem
under the assumption that the optical axis of the camera
is coplanar with the surface normal of the circular feature,
and have derived a closed-form solution based on simple
geometrical reasoning [31]. Also, we have derived another
closed-form mathematical solution to the general form of the
circular-feature problem based on 3-D analytical geometry
[41]. The complete solution of this problem is presented in
this paper. This closed-form solution provides all the above-
mentioned advantages compared to all previous methods. But,
as well, it has the following additional advantages: 1) it is
based on simple mathematics, 2) it provides solutions for
the case in which there does not exist a priori knowledge
concerning the radius of the marker, 3) it can be extended and
applied to general quadratic surfaces due to its more general
formulation, and 4) it provides both geometrical representation
of the problem and geometrical interpretation of the resulting
solutions.
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In Section II of this paper, the analytical formulation of the
problem is presented, which is based on decomposition of the
3-D location problem into a 3-D orientation and a 3-D position
estimation problem. In Section III, the proposed analytical so-
lution method is presented: To derive a closed-form analytical
solution method for the 3-D orientation problem, we utilize
an analytical method for reduction of the general equation of
3-D quadratic surfaces to its central form (Section III-A). For
the 3-D position estimation problem, two cases are addressed:
when the feature’s radius is known and when it is not known
(Section III-B). Extension of the developed method to 3-D
quadratic features (as opposed to 2-D features) is addressed in
Section IV, wherein, a closed-form analytical solution method
specifically for spherical features is derived. Experimental
results are presented in Section V, where simulated as well
as real setups are employed. Simulated experimental results
are obtained for three different cases (Section V-A): 1) 3-D
orientation and 3-D position estimation of a circular feature
when its radius is known; 2) 3-D position and 3-D orientation
estimation of a circular feature when its radius is not known;
and 2) 3-D position estimation of a spherical feature. For a
real-case setup, the method developed has been applied to a set
of circles located on a calibration plate (Section V-B) for 3-D
orientation and 3-D position estimation purposes. Conclusions
are presented in Section VI

II. ANALYTICAL FORMULATION OF THE PROBLEM

The analytical method proposed in this paper is based on
the decomposition of the 3-D location estimation problem
into two parts: first, the 3-D orientation (the surface normal)
of the circular feature is estimated; subsequently, based on
the estimated orientation, the 3-D position of the feature is
calculated. The analytical formulation of the 3-D orientation
problem is presented in this section.

Given the effective focal length of a camera, and the five
basic parameters of an ellipse in the image-coordinate frame
(embodying the perspective projection of a circular feature in
3-D object space onto a 2-D image space [37]), it is required
to estimate the circular-feature’s 3-D orientation with respect
to the camera frame.

This problem is equivalent to the following: Given a 3-D
cone surface defined by a base (the perspective projection of a
circular feature in the image plane) and a vertex (the center of
the camera’s lens) with respect to a reference frame, determine
the orientation of a plane (with respect to the same reference
frame) that intersects the cone and generates a circular curve.

The equation of the cone whose vertex is the point (., 8,7)
and whose base is defined by the ellipse

Flz,y)=dz?+2hzy + b2 +2¢z + 2f'y+d =0

z=0 1)
can be expressed as [42]:
oF OF OF
2 _ bl el el 2 —
2°F(a, B) Z’\/(zax+y8y+tat>+’y F(z,y) =0 (2)

where

Flz,y,t) = d'z® + 2k zy + V'y? + 2¢'zt + 2f yt + d't* = 0.
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Schematic representation of the problem for a circular feature.

In (2), t is an auxiliary variable by which F(x,y) is made
homogeneous (F(z,y,t)). The terms (0F/0x) and (OF/dy)
are evaluated at z = o and y = [3. As well, the term ¢(9F/dt)
is calculated by first taking the derivative of the homogeneous
equation with respect to ¢ and then evaluating it at z = q,
y = (3, and t = 1. The general form of the equation of a cone
derived using the above equation is as follows (with respect
to the image frame):

az?+by*+ez? +2fyz+2gzz+2hay+2uz+2vy+2wz+d = 0

3
where
a=~%d
b= ’yzb'
c=da? +2Waf+ V2 +2da+2f B+ d
d= 72(1’

f==¥8+ha+f)
g=—-WB+da+yg)

h=~%h
u = ’729/
v="2f

w=—y(f'B+ga+d)

The constructed 3-D cone surface is shown schematically in
Fig. 1 for a = 0, § =0, and v = —e, where e is the effective
focal length of the camera.

It can be proven [43] that all parallel planar sections of a
conicoid are similar and similarly situated conics. Thus, an
intersection plane can be defined by lz + my + nz = 0.
Therefore, the problem of finding the coefficients of the
equation of a plane for which the intersection is circular can
be expressed mathematically as finding [, m, and n such that
the intersection of the conical surface (3) with the following
surface is a circle:

lz+my+nz=0 4)

where 12 + m? +n? = 1. Having found the coefficients of the
equation of the plane, the direction numbers (I',m’, n’) of the
orientation of the circular feature can be estimated from

l m n

===, )

m/ ,nl

III. AN ANALYTICAL SOLUTION OF THE PROBLEM

The solution of the 3-D orientation problem in its general
form leads to a set of two highly nonlinear equations, whose
solutions would require numerical methods (see Appendix A).
Furthermore, this process would produce at least eight sets of
solutions, though there exist, at most, two acceptable sets of
solutions. In the following section, an alternative analytical
solution method is presented, based on a reduction of the
general equation of conicoids.

A. 3-D Orientation Estimation of a Circular Feature

1) Reduction of the General Equation of Conicoids: The first
step in the proposed analytical solution to the circular-feature-
orientation estimation problem is to reduce the general equa-
tion of conicoids (3) to a more compact form [43)]

MXZ 4 0Y2 40322 =y (6)

where the XY Z frame is called the canonical frame of
conicoids. It will be shown (in Section III-A-2) that the
reduction of the general equation of a cone to the above
form (6) will result in a closed-form analytical solution. In
essence, this reduction is based on a transformation consisting
first of a rotation and then a translation of the zyz frame to
the canonical XY Z frame.
Let the homogeneous equation of conicoids be defined as

az? + by? + c2® + 2fyz + 2gzz + 2hay = 0. @)

The problem is to find the elements of a rotational transfor-
mation (T})

~

z L & I3 0 z
yl _|m m2 mg 0] |y
2| " |m mg na O 2 ®)
1 0 0 0 1 1
such that (7) reduces to the following form:
Mz + Xyt + X3 = . ®

It has been proven in [43] that if A1, Ao, and A3 are the roots
of the following equation (called the discriminating cubic)

M= 22a+b+c)+ Abc + ca+ab— f2 — g% — h?)
—(abc+ 2fgh — af? —bg® —ck?) =0 (10)

then the elements of the rotational transformation would be
obtained from the following equations:
al; + hm; +gn; _ hl; +bm; + fn;
l; - m;
_gli+ fm; +cn;
=T

=X, i=1,2,3. (11

From (11) the following explicit relations are derived:

m; = 1/4/1+ (t1/t2)2 + 3
l; = (t1/t2)my
n; = ta3m;

(12)
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where

ti=(b-Xi)g— fh

to = (a— X)) f —gh

ts = —(a = X)(t1/t2)/g9 - h/g.
The estimated values for [;, m;, and n; must satisfy the
right-hand rule.

If (7) is expressed in the following matrix form: X’ AX = 0,
where X' is a row matrix [zyz2], then by applying the general
method of diagonalization of quadratic forms [44], equivalent
results can be obtained. That is, the column vectors of the
rotational transformation (8) are the eigenvectors of matrix A,
and its eigenvalues correspond to the coefficients of (6).

Through the rotational transformation (8), the general equa-
tion of conicoids (3) would reduce to the following form:

Az 4 Aoy? + Xa2'? 4 2(uly + vmy + wny )z’ +
2(uly + vma + wna)y' + 2(uls + vmz +wna)z’ +d = 0.
(13)

To reduce (13) to (6), the following translational transfor-
mation (73) is applied:

T’ 1 0 0 —(uly+vmi+wn)/M7X
y/ _ 010 '—(ulg + vme + ’w’rLz)//\g Y
Z0 710 0 1 —(uls+vmz+wn3)/rs|| Z
1 0 0 0 1 1

(14)
The set of equations obtained when the two transformations
are combined is

z 11 12 l3 *(ull + vmi +wn1)/)\1 X
y| _|m1 mo mg —(ulp+vme+wng)/r||Y
z| T im mne n3 —~(uls+vmg+wnz)/As A
1 0 0 0 1

1
(15)
Thus, through the general transformation (15), the general
equation of conicoids (3) would reduce to what is referred
to as the equation of central conicoids (6).

If the general transformation (15) is applied to the general
equation of a cone, it has been proven [42] that its equation
would be in the form of (6), where u = 0 and two of the
three coefficients would be always positive with one always
negative. If positive values are assigned to A; and A,, and a
negative value to A3, then the principal axis of the central cone
would be the Z axis of the XY Z frame. This case is shown
in Fig. 2. The intersections of parallel planes Z = k with the
central cone would generally be ellipses of different sizes

X2 Y?
N Y =

The major and minor radii of the ellipse (16) are functions of
four parameters: Aq, Ao, A3, and k. Parameter k is a function

1. @16)

Aol?
2 +m?
2)\11m

[ /\1m2

2 M2 dom2n
2 +m2 +

24+m?2 P24+m

2)\2lm 2/\1l2n

2
S+ A+ mz)J Y2+ [
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Fig. 2. The central form of a cone: an elliptical right cone.

d

of the radius of the circular feature. The other three parameters
are functions of the parameters of the base of the constructed
cone (1) and the 3-D coordinates of the center of the camera’s
lens (a,3,7); refer to (10) and (3).

2) Circular Section of a Central Cone: In this section, the
3-D orientation problem will be solved analytically by con-
sidering the equation of a cone in its central form. Thus, it is
required to find the coefficients of the equation of a particular
plane (with respect to the XY Z frame)

X+mY+nZ=p 17)
whose intersection with a central cone (for which it is assumed
that the first two coefficients are positive and the third one is
negative)

MXZ 4 AY240322=0 (18)
would be a circle.

In order to find the equation of the intersection curve of the
above two surfaces, the following rotational transformation
(T3) can be used:

T Ty L0
X l mn 0 X'
Y _ 2+tm?2  Ji2+tmZ m Y’ (19)
Z| - 5 3 z'|
1 0 P2+m?2 n 0 1
0 0 0 1

This transformation is defined such that the new Z axis (i.e.,
Z'y would be normal to the plane X + mY + nZ = P.
Applying the above rotational transformation, the equation of
the plane would be of the form Z’ = p; thus, the equation of
the intersecting curve would be of the following form:

2/\11771’[1 _
{2 + m2

2 2lmn

82 + m2] lel

+ —_——
p[ VIZ+m?

’ 2/\2m2n ) 7 2 2 2 21 _
ﬁ+m2]X+p[‘m‘ B g T 2V EAmA VAP Il Aem A = 0. (20)

2
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On the other hand, the necessary and sufficient conditions
for which a general quadratic equation of the form

Az’ + Bry+ Cy* + Dz + Ey+ F =0 (1)
represents a circle would be

A=C, B=0. (22)

Thus, for (20), the following two conditions must exist:

Imn
2(M1 = X2)5—— =0 23
(M 2)l2 +m2 (23)
1 )\11272,2 /\2m2n2

———s(Mm? + Al?) = As(12+m?).
12+1n2( i+ A2l) 12 + m? 12+m2+ 3 +T?2:)

Knowing that 124-m? # 0 (except for the special case of a right
circular cone, that is, for case IV below), (24) is simplified as

(A% 4+ Aom®)n? 4+ A3(12 + mB)? = Aym? + Xl (25)

Furthermore, the general relationship between coefficients
exists:

P+m?4n®=1. (26)

Thus, there are three equations ((23), (25), and (26)) and three
unknowns [, m, and n.

Considering (23), four possible cases exist.

Case [—I = 0: Based on (23), (25), and (26), the follow-
ing solutions are derived:

B
N T
Aa = Ap
A2 — Az

m==+
1 =0.

(27

The above solutions must be checked to determine whether
they are acceptable. If it is assumed that the principal axis of
the central cone is the Z axis, then

A1>0, A2>0, A3<0 (28)
which leads to the following inequalities:
Al=A3>0, A—2A3>0. (29)

Based on these inequalities, one can check the solutions. The
solutions for n are acceptable since the expression (A; —
A3)/(A2 — As) is positive. The solution for m would be
acceptable if Ay > Ap.

If it is assumed that Ao > A1, then there exist four solutions
to the problem. But these are four symmetrical solutions
with respect to the origin of XY Z frame and consequently
represent only two unique solutions. If one takes the solutions
on the positive section of Z axis, then the two solutions would

be
Y LSt
n=-+ N — As
Ay — Ay
==
Hia Vi v

=0

(30)

Case II—m = 0: Following the same arguments for case
I, two solutions can be derived that would be acceptable only
if A1 > As:

_ Ao — A3
n=+ A = A
m=20
A1 — Ay
| = . 31
+ N (31

Case Il —n = 0: In this case, the following solutions for
[ and m are derived:

L e
== Y
L [A— s
m== N

However, for the solutions of [ to be acceptable, one must
have Ay < A;. For the solutions of m to be acceptable, on the
other hand, one must have Ay > A;. Thus, it can be claimed
that an acceptable solution does not exist for this case.

Case IV—)\, = Ao: This is a special case, since it imposes
a constraint on the coefficients of the equation of a central
cone. In this case, the equation of the central cone represents
a right circular cone (which implies that the central surface
normal of the circular feature passes through the origin of the
camera frame), and thus, any plane Z = k intersects it and
generates a circular intersection curve. Thus, there exists only
one solution:

(32)

n=1
m=20
1 =0. 33)

In conclusion, one can state that, generally, there exist two
acceptable solutions to the problem. Under special conditions,
these two solutions reduce to a single solution. Once the
coefficients of the equation of the desired plane have been
estimated, the direction cosines of the surface normal of the
circular feature can be estimated using (5).

3) The Computation Procedure for Surface-Normal Estima-
tion: The computation procedure for the proposed analytical
method for surface-normal estimation of a circular feature
consists of the following steps:

Step 1 —Estimation of the coefficients of the general equa-
tion of the cone: Estimate the coefficients a, b, ¢, f, g, h,
u, v, w, and d as defined in (3), based on knowledge of
the coefficients of the equation of the ellipse —the image of
the circular feature — (in the image-coordinate frame) and the
effective focal length of the camera.

Step 2 —Reduction of the equation of the cone: Determine
the coefficients A, Az, and Az in (18), by solving the dis-
criminating cubic equation (10), such that A; and A, are
positive.

Step 3—Estimation of the coefficients of the equation of
the circular-feature plane: Having estimated the coefficients
of the central cone in step 2 (); in (18)), three possible cases
occur: 1) Ay < Ag, for which the solutions would be (30);
2) A1 > Ag, for which the solutions would be (31); and 3)
A1 = Ag, for which the solutions would be (33).
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Step 4 —Estimation of the direction cosines of the surface
normal with respect to the camera frame: Since only the orien-
tation of the circular feature is needed, one must consider only
the rotational transformation involved in this method. Thus,
first, estimate the elements of the rotational transformation
between the 2'y’ 2’ frame and the zyz frame (see (8)) by using
(12); then the coefficients of the equation of the desired plane
with respect to the camera zyz frame can be estimated by
applying this rotational transformation. Following which, the
direction cosines of the surface normal are estimated using (5).

A numerical example for the above computation procedure
is given in Section V-A-1.

B. 3-D Position Estimation of a Circular Feature

The position of a circle is defined by its center coordinates
(Zco, Yeos Zco) With respect to the z.y.2. camera frame. It is
noted that the transformation between the image frame (zyz)
and the camera frame (T,) is defined as follows:

T 1 00 O T

Ye| [0 1 0 O Y

ze| 10 0 1 +e z (34
1 000 1 1

where e is the effective focal length of the camera. Depending
on whether the radius of the circle is known or not known,
two different methods can be applied.

Case I—Radius is known: The radius of the circular fea-
ture might be known. That is, either it is prespecified or it
has been estimated through other sensory system. In this case,
based on the knowledge of the orientation of a circle and its
radius, one can solve the position problem as follows. The
problem is simplified by first solving it in the X'Y’Z’ frame
and then applying the total transformation, T = T,T1T513
where

Rotation Translation

—_— > XY ——

Ts T,

, ,Z,Rotation S ZTranslation
T

YETT v,

X/Y,Z,

>x

> zYeze (35)
to estimate the position with respect to the camera frame
(zcyczc)- This is possible only because the radius of a cir-
cular feature is invariant with respect to the rotational and
translational transformations of a frame.

The desired plane of intersection is defined as 2/ = p
with respect to the X'Y’Z’ frame. The elements of the
transformation (19) are already known (since the coefficients
of the equation of the desired plane [, m, n are known through
application of the above-mentioned computation procedure in
Section III-A-3). Thus, if one defines the transformation as

X l] mi1 N 0 X’
Y| lo mg mnp O Y’
Z - lg ms3 N3 0 Z/ (36)
1 0 0 0 1 1

then the equation of the circle with respect to the X'Y’'Z’
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frame (20) would be (Z' = p)

82 4 Xal2 + 2312 X2 + (Aym?2 + Aom] + Agm3)Y"?
+2(\1lima + Asloma + Aslams) X'Y”
+ 2p(A1ling + Aalong + Aslang) X’
+ 2p(A1mang + Aemang + Agmanz)Y’

+ p2(An? + Agnd + M\and) = 0. (37)

As was noted earlier (see (21) and (22)), the coefficient of the

X'Y' term must be zero and the coefficients of X’2 and Y2
must be equal. Now, if

A= (ME 4 A2 4 2l3)

B = (Ailing + Azlong + Aslsng)
C= (/\1m1n1 + Aamang + A3m3n3)
D = (An? 4 Xan2 4 Aand) (38)
then the equation of the circle would become (in its standard
form)

2 2 2p2 202 2
,, PB , , pC p’B%? p?’C* p°D
— Y+—) =——+——-—. (39
(X+A)+(+A) A2+A2 A()
However, the radius (r) is known, and, therefore, one can
estimate the value of the parameter p from the following

equation:
-t Ar
- oy

As can be seen, there exist two solutions, one negative and one
positive: one on the positive z axis and one on the negative
z axis. Since only the positive one is acceptable in our case
(being located in front of the camera), the coordinates of the
center of the circle with respect to the X'Y'Z’ frame are

(40)

B
X! = — f
o AZO
C
[ 44
Y:)“ AZO

.
° VB2+C?2 - AD

under the condition that the sign of the coordinate Z, is
selected such that the coordinate z., in the z.y.2. frame would
be positive.

To estimate the coordinates of the circle’s center with
respect to the z.y.z. frame (the camera frame), one must
apply the total transformation (T') (35)

(41)

Teo X!

Yeo | _ Yol

| = T 7z (42)
1 1

2) Case Il —Radius is not known: In order to solve this
problem, one has to use information from two separate images
of a circle. As was discussed earlier, there exist two solutions
for the orientation (norm) of a circle. Thus, one must have two
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images of the same circle (acquired at two distinct but known
positions) in order to determine the unique and acceptable
orientation of a circle. As well, one can use the same two
images for position determination of the circle. However,
the question is “how to move the camera from position 1
to position 2?” in order to be able to solve this problem.
In order to simplify the situation, it is proposed to move
the camera only along its z axis. It is noted that, for an
eye-on-hand system, the transformation between the camera
frame and the robot’s end-effector frame can be estimated
in advance [45]. Furthermore, moving the camera along its
optical axis by the robot, generally, involves five degrees
of freedom. Thus, the degree of accuracy of this specific
motion would be the same as the overall degree of accuracy
of the robot for any motion that requires all six degrees
of freedom. As a result of this specific choice of camera
motion, only the z coordinate of the circle’s center would
change (with respect to the camera frame). It is noted that, by
applying the translational transformation (34), the equation of
the cone (3)—which is defined initially with respect to the
image frame —can be obtained with respect to the camera
frame.

Let the camera displacement h be in the positive direction
of the 2. axis. Furthermore, let the initial and final coordinates
of the feature’s center with respect to the camera frame be

Zcoly Tco2 = Teol
Yeol, Yco2 = Yeol
Zcoly Zco2 = Zcol — h. (43)

Note that the value of h is known (since the extent of the
displacement of the camera is under control). Knowing the
coefficients of the equation of the plane of a circular feature
with respect to the camera frame, (/,m,n), one can estimate
the following transformation (Ty) using (19) as:

T i mi ny 012"

Yl _|la ma mna 0} ]|¢"

ze| " |z m3 n3 Of[2"] 44
1 0 O 0 1 1

This transformation is valid for both camera positions, since
the orientation of the camera does not change during reloca-
tion. Using (43) and (44), the following relation is obtained:
K(zlh - 2lh) = —h. 5)
K is defined at the bottom of this page. Now, if one defines
both 2/, and 2J, in terms of 7 (the unknown radius of the
circle), then one can solve (45) and find r, as a result of which

the problem reduces to a problem of the kind identified as the
first case.

It has been shown that 2!/, can be expressed by the following
equation (see Appendix B):

2 = i\/ -By/Ay T

where A} and B have constant values and are defined in terms
of the coefficients of the equation of the cone and the elements
of the rotational transformation (44). A similar equation can
be derived for z[,

(46)

2o = +4/—BL/AL 1. 47
Using (46) and (47), (45) becomes
T —h (48)

" K& /B £ B

Based on physical conditions, there must be only one accept-
able solution for r. Such physical conditions are manifested
in the following constraints: the acceptable value of 7 has to
be real and positive, and it must satisfy (45) while z/; and
2!, have the same sign (see (46) and (47)). These constraints
on the four possible solutions of r are sufficient to determine
the uniquely acceptable one. Having estimated r, 2J; can be
calculated using (46). It is noted that the acceptable solution
for 2, must also satisfy the last constraint mentioned above.
Based on the estimated value for z.;, one can estimate the
other two coordinates of the feature’s center

Blz"
"o _ ol
Tor = A1
Clz(’,"
Yor = -4 “9)

where A;, B, and C; have constant values and are defined
in terms of the coefficients of the equation of the cone and the
elements of the rotational transformation (44); see Appendix
B. These are the center coordinates with respect to the ="'y" 2"
frame. Applying the transformation (44), one can get the center
coordinates with respect to the z,y.z. frame (the camera

frame).

IV. APPLICATION OF THE METHODOLOGY
TO 3-D QUADRATIC SURFACES

There exist two possible ways to extend the mathematical
method developed above to other 3-D surfaces or 3-D features
(as opposed to 2-D features). On the one hand, a problem can
be defined as: given a quadratic surface (ellipsoid, paraboloid,
hyperboloid, and cylindroid), find the orientation of the plane
that intersects the given surface and generates a circular curve.
It can be shown that applying the general transformation (15),
and following the same procedure formulated in Section III, a
set of unique solutions can be obtained for each of the above
surfaces. However, since this problem and its solution do not
seem to be applicable to the general problem of 3-D object

K =

_ —lsmani + lsming + lamany — lymgns + lymang — laming

lyms — lomy
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Fig. 3. Schematic representation of the problem for a spherical feature.

recognition, though otherwise having mathematical merit, the
details of the solution are not presented here.

On the other hand, a problem can be defined as: given a
perspective projection of a 3-D feature (as opposed to a 2-D
planar feature that was addressed in the preceding sections),
and the effective focal length of the camera, find the feature’s
location with respect to the camera frame. One such feature of
importance in 3-D model-based vision is a spherical feature
[40]. Spherical features have also been used for positioning
of a mobile robot under a special simplifying condition,
namely, that the camera’s optical axis passes through the
center of the spherical feature [25]. Thus, the problem can
be defined more specifically as: given the radius of a sphere,
its perspective projection, and the effective focal length of a
camera, determine its 3-D position with respect to the camera
frame. This problem is shown schematically in Fig. 3.

Let

F(z,y,2) = az® + by® + c2® + 2fyz + 2922 +
2hzy + 2ux + 2vy + 2wz +d =0 (50)

be the equation of a quadratic surface. Furthermore, let the
equations of the straight lines through a point P(a,3,7),
whose direction numbers are [;, m;, n; and are tangent to the
above quadratic surface, be

x—a:y—ﬂ:z—"/. 1)

l; m; n;

These tangent lines generate a cone that envelopes the
quadratic surface. It has been proven [42] that the equation
of such an enveloping surface (an enveloping cone) is

4F(a,ﬁ,7)F(w,y, Z) =
2
(o3 + -0 + - +2F(@p) -
52
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In this equation, the terms (0F/0z), (OF/dy), and (0F/0z)
are evaluated at z = o, ¥y = 3, and z = 7.

For the special case under consideration, that for a sphere,
the general equation of the surface is defined (with respect to
the camera frame) as follows:

F(2,9,2) = (2c—T0)?+(Ye—Yo) +(2.—20)* —1% = 0. (53)

Furthermore, if we consider the origin of the camera frame as
the point P, then its coordinates with respect to the camera
frame would be (0, 0, 0). Correspondingly, the equation of the
enveloping cone (with respect to the camera frame) becomes

(@3 +y5 +2 —1%)
.((l‘c - mo)z + (yc - ya)z + (zc - 20)2 - 7'2)
2.\ 2
= (_-Tozc — YolYc — ZoZc + (Z'g + yg + zf - 7‘2)) .
(54

Now, if the camera frame is rotated such that the new 2z’
axis passes through the center of the sphere, then the sphere’s
center coordinates would be (0,0, z), and the equation of the
enveloping cone with respect to the new z’'y’z’ frame would
be (noting that z,, > )

o +y% - (————Tz )z’2 =0.

P (59)

This is the equation of a cone in its central form. Thus, the
above-mentioned rotation of the camera frame is the same
as the rotational transformation (8). Furthermore, two of the
three coefficients in (55) are equal, which corresponds to case
IV in Section III-A. As was noted earlier, this case results
in a right circular cone, i.e., the principal axis of the cone is
perpendicular to its circular base. From a geometrical point of
view, this conclusion was expected.

Thus, the analytical solution for the problem would be as
follows:

1) Given the effective focal length and the parameters
of the perspective projection of a spherical feature—an el-
lipse — (Fig. 3) with respect to the image frame (the zyz
frame), the coefficients of the equation of the constructed
cone with respect to the image frame can be obtained using
(3). By applying the transformation (34), one can estimate the
coefficients of the cone with respect to the camera frame.

2) A; can be estimated using the parameter values obtained
in step 1 and solving (10).

3) Normalizing the first two coefficients of (9) to 1, and
equating the third coefficients of (9) and (55), the unknown
value 2, is derived

2=+ “1+ /A 1/27".
As/ A

The positive solution, being in front of the camera, is the
unique acceptable solution for the z/, coordinate. Thus, the
center coordinates with respect to the rotated frame would be
(0,0,2,).

4) The 3-D coordinates of the center of the spherical feature
with respect to the camera frame is determined by applying the
rotational transformation (8) to the 3-D coordinates estimated
in step 3.

(56)
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V. EXPERIMENTAL RESULTS

A. Simulated Experimental Results

Three different cases are considered in this section: 1) 3-D
orientation and 3-D position estimation of a circular feature
when the radius is known, 2) 3-D orientation and 3-D position
estimation of a circular feature when the radius is not known,
and 3) 3-D position estimation of a spherical feature. For each
case, first, the simulated experimental setup is presented, and
subsequently, the experimental results are given. Finally, the
results obtained are compared with the initial setup.

1) Radius Is Known

a) Simulated experimental setup: Let the transformation
between the world reference frame and the camera frame be

3 3 -1
T 3 z —-107 rz.
3 =1 3
T, = Yo | _ i 2 T4 10 Ye
Zw -1 0 £ 30 Ze
1 0 0 0 1 1

and let the equation of a circular feature with respect to the
world reference frame be (without loss of generality)

22 +y2 -16=0

Zw = 0.

Then the equation of the cone with the circular feature being
its base and its vertex at the center of the camera frame (that
is, at the point (—10,10,30)) would be

22522 + 22592 + 4622 — 150y, 2,
+1502 4,2, + 2402z, — 3600 = 0.

Correspondingly, the equation of the cone with respect to the
camera frame would be

204.024z2 + 225.000y2 + 66.97627
—177.452y .z, — 127.567z.2, — 102.452z.y. = 0.

Assuming that the image plane is at z. = +1 (with respect
to the camera frame), then the perspective projection of the
circular feature would be (with respect to the image frame

zYz)

204.024z2 — 102.452zy + 225.000y2
—127.567x — 177.45y + 66.976 = 0.

Thus, we can formulate the problem as follows: If the equation
of the projection of a circular feature with respect to the image
frame is given as above, the effective focal length of the
camera is 1, and the radius of the feature is 4, then it is required
to estimate the surface normal of the feature and subsequently
to determine the 3-D position of the feature.

b) Experimental results: First, the parameters of the sur-
face normal are estimated using the computational procedure
proposed in Section III-A-3. Subsequently, the 3-D position

of the feature is determined using the method proposed in
Section III-B-1.
1) The coefficients of the general equation of the cone (with
respect to the image frame) are

a = 204.024

b = 225.000

¢ = 66.976
2f = —177.452
2g = —127.567
2h = —102.452
2u = —127.567
20 = 177.452
2w = 133.952

d = 66.976.

2) Reduction of the equation of the cone leads to

AL = 274.281
A2 = 225.000
A3 = —3.281.

3) Surface normal parameters are

| = 1+0.421367
m=10
n = 0.906890.

As was explained earlier, there exist, in general, two
possible solutions. To determine the acceptable one, we
must have a second image. In this section we take the
positive value for [. In Section V-B we will show that
this solution is the acceptable solution based on a second
image.

4) The rotational transformation (see (8)) is

—0.413957 0.836516 —0.358998 0

T = 0.875989  0.258819 —0.407009 O
—0.247554 —0.482963 —0.839919 0O

0 0 0 1

Applying this transformation to the surface’s normal
vector obtained in step 3 will give us the surface-normal
vector with respect to the camera frame

—0.421367 -0.5
0 0

Viu=Ti| (906890 | = | —0.866025
1 1

Checking the solution: To check the solution obtained, we
apply the rotational part of the transformation T,, (Ry) to
the vector Vi: Vi, = R, Vi1 = [0011]. This result is what
we expected, since the feature’s surface normal vector with
respect to the world reference frame is [0011]F.
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For 3-D position estimation, the estimation process is as
follows:
5) Based on the estimated parameters in step 3, the rota-
tional transformation (36) is obtained

0 —0.906890 0.421367 O

- |1 0 0 0
3T 10 04213567 0.906890 0
0 0 0 1

6) Parameters A, B, C, and D are estimated using the
elements of the above transformation (73) based on (38)

A=2250
B=0

C = —-106.066
D = 46.0.

7) The 3-D position coordinates with respect to the X'Y’'Z’
frame are estimated using (41)

X! =0
Y, = +14.142
Z! = £30.000.

8) To obtain the 3-D position of the feature with respect
to the camera frame, we must apply the total trans-
formation as defined in (35). First, the translational
transformation (14), 7%, is estimated using the parameter
values obtained in steps 1, 2, and 4:

1 0 0 0.247554

T, = 0 1 0 0.482964
0 0 1 0.839915
0 00 1

The transformation between the image frame and the
camera frame is

1 0 0 0
0100
L= 0 01 1
0 0 0 1
Then the total transformation would be
T=T,11T>T;
0.836516  0.224144 -05 0
0.258819  —0.965926 0 0
—0.482963 —0.12941 —0.866025 0
0 0 0 1

The 3-D position of the feature with respect to the
camera frames is obtained as

0 11.830

—14.142 13.660

Pe=T —-30.000 | — | 27.811
1 1

Note that we take the negative sign for Z) in order to
get the positive value for z. in the camera frame.
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Checking the solution: To check the solution, we estimate the
3-D position with respect to the world reference frame using
Ty: Py = T, P. = [0001]*. This is exactly what we expected,
since, initially, the feature was placed at (0,0,0) with respect
to the world reference frame.

2) Radius Is Not Known

a) Simulated experimental setup: We once more consider

the simulated setup in Section V-A as the setup for the first
camera position and add a simulated setup for the second
camera position as follows:

Let the transformation between the world reference frame
and the camera frame be

Ty
T/ — yw
w Zaw
L1
N . }
T 7 71 -15
3 1 V3 A
c
§ -3 —% 10-5/4 Y
= 1
1 3 2
-3 0 - 30-10v3| | T
L0 0 0 1]

This transformation is equivalent to a displacement of the
camera frame (from the first camera position to the second
camera position) 20 units along the positive direction of the
2. axis of the camera frame.

The equation of the circular feature with respect to the
world frame would be the same as before. Then the equation
of the cone with the circular feature being its base and its
vertex at the center of the camera frame (that is, at the point
(~15,10 — 5v/3,30 — 10+/3)) would be

160.770z2 + 160.770y2, + 210.79522, ~ 33975y, 24
+380.3852,, T, + 450.7442,, — 2572.312 = 0

and the equation of the cone with respect to the camera frame
would be

103.661z7% + 160.770y’? + 267.904272

c

—300.000y" 2, — 37.062z.¢. — 173.205z"y/. = 0.

Then the perspective projection of the feature (the effective
focal length is assumed to be equal to 1) would be (with
respect to the image frame zyz)

103.661x"2 — 173.205z"y’ + 160.770y"
~37.062¢" — 300.000y’ + 267.904 = 0.

Thus, we can formulate the problem as follows: If the equa-
tions of the two projections of a circular feature with respect
to the image frame are given, the effective focal length of the
camera is 1 and the displacement of the camera frame along
its optical axis is equal to +20, then it is required to estimate
the radius and the 3-D orientation and the 3-D position of the
feature with respect to the camera frame.



634

b) Experimental results: Following similar steps as in

Section V-A, we would get the following:

1

a = 103.661
b =160.770
¢ = 267.904
2f = —300.000
2g = 37.062
2h = —173.205
2u = —37.062
2v = —300.000
2w = 535.801
d = 267.904.
2)
A1 = 378.363
A2 = 160.770
A3 = —6.799.
3)
| = +0.751624
m=20
n = 0.659592.
4)

—0.135343 -0.785548 0.603818

0.598296  0.420974 0.681779

—0.789762  0.453536  0.413014
0 0 0

T =

_ O OO

There exist two possible solutions

[ 0.296545
0.899389
—0.321185

L 1

r 0.50

0

0.866025

L 1

!
Vll -

! —_—
V12 -

For the first image, the second possible solution is

—0.1511

—0.7382

—0.6574
1

Via =

Thus, the acceptable surface-normal vector of the feature

would be the common one, that is

-0.5
0
—0.866025
1

Vll =V1,2=
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Note that the above two vectors are equivalent since we are
interested in 3-D orientation, not the direction.

5) The transformation (44) would be

0 0.866025 —0.5 0
T, = 1 0 0 0
T 10 -05 —0.866025 0
0 0 0 1
6) The values of the parameters defined in Appendix B are
as follows:
First camera position:
A; = 225.000
B; =102.452
Cp = —27.452
D; = 46.000
A} = 900.000

B} = —50625.000.

Second camera position:

Ay = 160.770
B, = 173.205
C, = 80.385

D = 210.795

Al = 2572.322
B} = —25846.832.

7) Based on (48), the two possible (positive) values for
the feature’s radius are (note that ~ = 20 and K =
~1.154701)

1 = 4.000
7o = 1.623.

Corresponding to these two values, we can estimate z;
and 2z, using (46) and (47):

r1 = 4.000:
First view: 30.000 and — 30.000
Second view: 12.680 and — 12.680
ro = 1.623:
First view: 12.175 and — 12.175
Second view: 5.146 and — 5.146.

As was indicated in Section III-B-2, the acceptable solution

for r must yield values for z),; and z/, with the same sign
and must satisfy (45). Based on these two constraints, the
acceptable solutions for r, 2//;, and 2., would be

r = 4.000
2/ = —30.000
2/ = —12.680.

8) The other two coordinates are (using (49)):
2!} = 13.660
Yl = —3.660.
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Applying the rotational transformation (44), (7}), the 3-D
position coordinates with respect to the camera frame are
obtained:

Teo = 11.830
Yeo = 13.660
Zeo = 27.810.

Checking the solution: The estimated r is equal to the one
initially assumed. As well, the 3-D-position coordinates of the
feature are correct, since by applying the transformation T,
we get [0,0,0,1]". This is equal to the position vector of the
feature with respect to the world reference frame.
3) 3-D Position of a Spherical Feature

a) Simulated experimental setup: Let the 3-D position of
the feature be (20,25,30) with respect to the camera frame,
and let its radius be r = 5. Then the equation of the feature
would be (using (53))

(ze = 20)% + (ye — 20)% + (2. — 30)2 —=25=0.

Furthermore, let the vertex of the enveloping cone be at the
origin of the camera frame (0,0,0); Then the equation of the
enveloping cone would be (using (54))

300z2 + 255y2 + 20022
—300y.2. — 240z.z, — 200z .y. = 0.

Assuming the image plane is at 2. = 3, then the perspective
projection of the spherical feature would be (with respect to
the image frame zyz)

3002 — 200zy + 25512 — 720z — 900y + 1800 = 0
z=0.

Thus, we can formulate the problem as follows: If the equation
of the projection of a spherical feature with respect to the
image frame is given as above, the radius of the feature is
equal to 5, and the effective focal length of the camera is
equal to 3, then it is required to estimate the 3-D position of
the feature.

b) Experimental results: The coefficients of the equation
of the cone with respect to the camera frame are:

a = 300
b =225
¢ =200
2f = =300
2g = —240
2h = —200
2u=0
20=0
2w=0
d=0.

The coefficients of the central cone equation are obtained
using (10)

A1 =380
A9 = 380
Az = —5.

[T
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Using (56), the feature’s 3-D-position with respect to z'y’2’
is estimated

z, =0
Yo =0
2, = 43.875.

The rotational transformation (8) is estimated using (12) and
the parameter values obtained in steps 1 and 2

0.427144  0.427144 0.455842 O

T = 0.533930  0.533930 0.569803 0
1= 1 -0.729704 —0.729704 0.683763 0
0 0 0 1

Then the 3-D position coordinates of the spherical feature
with respect to the camera frame is obtained as follows:

0 20.000
0 25.000

Fe=T11 43875( = | 30.000
1 1

The estimated coordinates are correct, since they are equal to
the initial 3-D position of the spherical feature with respect
to the camera frame.

B. Experimental Results Based on a Real Image

The accurate estimation of the 3-D location of a circular
feature from an input grey-level image requires processes to
compensate for various types of distortion. In a real process,
as opposed to a simulated process, various sources of noise
affect the input image and thus distort it. The experimental
results in this section report the total process of accurate
estimation of the 3-D location of a circular feature, which
in part, involves the general 3-D analytical-solution method
derived in this paper (without any simplifying assumptions).
This section consists of two parts: 1) A brief discussion on a
distortion-compensation procedure previously developed and
2) experimental results based on a real image.

1) A Distortion-Compensation Procedure: The details of
the various steps required for this purpose, which have already
been addressed in other papers (as mentioned below) are not
presented here. However, for completeness, a brief review of
these steps is presented below:

Camera calibration: The camera is calibrated by applying
the mono-view noncoplanar-points technique [16], as a result
of which, the 3-D location of the camera frame with respect
to a predefined world frame of reference is estimated. Fur-
thermore, the effective focal length of the camera, the radial
distortion factor of the camera’s lens, and the uncertainty
scale factor for the z axis (due to timing mismatches that oc-
cur between camera-scanning hardware and image-acquisition
hardware) are also obtained.

Subpixel edge detection: After an image of a circular feature
is acquired, a new subpixel edge detector is applied [46].
This edge operator is based on the sample-moment-preserving
transform (SMPT) and assumes a circular-arc geometry for
the boundary inside the detecting area. The result of the edge
detector is a set of subpixel edge-point data. The subpixel edge



! [ |

636 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 8, NO. 5, OCTOBER 1992

detector compensates for quantization error and estimates the
boundary of a circular feature more reliably.

Coordinate transformation: Computer-image coordinates are
expressed in terms of pixel units. To define the edge-points in
terms of units of absolute length (in millimeters) and also to
compensate for timing mismatches, a set of transformations are
applied [16]. These are implemented by using the uncertainty
factor estimated in step 1 and technical specifications of the
camera’s CCD chip and the digitizer board.

Lens-radial-distortion compensation: The estimated lens-
radial-distortion factor in step 1 is applied to all edge points
to compensate for lens radial distortion [16].

Elliptical-shape-parameters estimation: An interpolation
technique based on the optimization of an error function is
applied to accurately estimate the five basic parameters of
an ellipse —the perspective projection of a circle onto the
image plane. It has been shown that, through the application
of a newly developed error function, an accurate estimation of
elliptical shape parameters can be obtained (even if only an
arc of the projected circle is present) [47], [48].

Circular-feature 3-D-orientation estimation: Using the es-
timated effective focal length in step 1 and the estimated
values for the five basic parameters of an ellipse in step 5,
and applying the analytical method developed in Section III-
A, the orientation of the circular feature with respect to the
camera frame is estimated.

Circular-feature 3-D-position estimation: Using the esti-
mated orientation of a circular feature in step 6 and its
known radius, and applying the analytical method developed
in Section III-B-1, the 3-D position of the feature is estimated
with respect to the camera frame. Applying the transformation
from the camera frame to the world frame of reference
obtained in step 1, to the estimated 3-D position of the circle
yields the 3-D position with respect to the world-reference
frame.

For a comprehensive explanation of the above sequential
distortion-compensation procedure, refer to [49].

2) Experimental Setup: The experimental setup consisted
of the following major components: a color video camera:
JVC (model TK-870U) with 2/3-in CCD and effective pixels
510H x 492V; a Canon CI-TV lens: 25 mm f/1.4; an 8-bit
B/W video digitizer: PIP-640B (MATROX Electronic Systems
Limited) with 640 x 480 resolution that resided in an IBM-
compatible PC-AT; a back-lighting system; an optical table
with a gantry-type frame for positioning the camera; and two
standard (z — y) translation stages with 40 mm of travel and
repeatability better than 2 pm for positioning a calibration
plate (thickness: 6 mm) consisting of 30 uniformly spaced (6
x 5) accurately machined through holes (diameter: 25 = 0.01
mm).

For experimentation on the total process, only 6 of the
30 holes on the calibration plate were used. The selected
holes were located on the extreme right and left sides of the
calibration plate (i.e., first and last columns of holes). The
plate of the circular features, in an inclined orientation with
respect to the camera image plane, was positioned such that
the field of the selected circles extended over the entire field
of view. These conditions provided the most general camera-

TABLE 1
ESTIMATED ORIENTATION ANGLES OF THE SURFACE
NORMALS OF A SET OF CIRCULAR FEATURES

Angles o (degrees) /3 (degrees) ~ (degrees)
Reference Angles 89.72 76.73 13.27
Circle 1 88.73 76.06 13.99
Circle 2 89.61 74.99 15.01
Circle 3 88.75 76.54 13.52
Circle 4 89.87 76.39 13.61
Circle 5 89.11 76.43 13.60
Circle 6 87.46 77.93 1234
Average Angles 88.92 76.39 13.68
Average Deviations 0.80 0.34 0.41

Note: «, 3, and 7 are the angles that the furface normal of a circle makes
with the z, y, and z axes of the camera frame, respectively.

circular-feature configuration. In order to obtain sharp images
of all circles, this plate was located within the approximated
existing depth of field of the camera {50].

3) Experimental Results for the Total Process: The applica-
tion of the seven-step procedure (Section V-B-2) to the six
coplanar circles resulted in two sets of data, tabulated in Tables
1 and 1. Through camera calibration, the orientation angles
of the normal to the circles’ plane was estimated. These are
referred to as “Reference Angles” in Table I. The estimated
orientation angles of each circle’s norm are also presented
in this table. Note that since the circles were coplanar, they
must have the same orientation angles. The average orientation
angle is defined as the mean value of the orientation angles
of the six circles, while the average deviation is defined as
the absolute value of the difference between a reference angle
and an average angle. The average deviations for the three
orientation angles were determined as, 0.80°, 0.34°, and 0.41°,
respectively. As can be seen, the results show only a small
error indicative of the good performance of the total process.

In Table II, the results of the position-estimation process are
presented. The coordinates, estimated with respect to the world
reference frame, are given under the column “Estimated.” The
exact 3-D coordinates of the circles’ centers are known a
priori and are given in Table II under the column “Reference.”
The differences between the reference and the estimated
coordinates of all the circles are calculated, and the means
of these values are given under “Average Deviations.” The
resu