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Three-Dimensional Location Estimation 
of Circular Features for Machine Vision 

Reza Safaee-Rad, Ivo Tchoukanov, Member, IEEE, Kenneth Carless Smith, Fellow, IEEE, and Bensiyon Benhabib 

Abstruct- Estimation of 3-D information from 2-D image 
coordinates is a fundamental problem both in machine vision 
and computer vision. Circular features are the most common 
quadratic-curved features that have been addressed for 3-D lo- 
cation estimation. In this paper, a closed-form analytical solution 
to the problem of 3-D location estimation of circular features is 
presented. Two different cases are considered: 1) 3-D orientation 
and 3-D position estimation of a circular feature when its radius 
is known, and 2) 3-D orientation and 3-D position estimation 
of a circular feature when its radius is not known. As well, 
extension of the developed method to 3-D quadratic features 
is addressed. Specifically, a closed-form analytical solution is 
derived for 3-D position estimation of spherical features. For 
experimentation purposes, simulated as well as real setups were 
employed. Simulated experimental results obtained for all three 
cases mentioned above verified the analytical method developed 
in this paper. In the case of real experiments, a set of circles 
located on a calibration plate, whose locations were known with 
respect to a reference frame, were used for camera calibration as 
well as for the application of the developed method. Since various 
distortion factors had to be compensated in order to obtain 
accurate estimates of the parameters of the imaged circle-an 
ellipse-with respect to the camera's image frame, a sequential 
compensation procedure was applied to the input grey-level 
image. The experimental results obtained once more showed 
the validity of the total process involved in the 3-D location 
estimation of circular features in general and the applicability 
of the analytical method developed in this paper in particular. 

I .  INTRODUCTION 

STIMATION of 3-D information from 2-D image coor- E dinates is a fundamental problem in both machine vision 
and computer vision. This problem exists in two forms: the 
direct and the inverse. When the camera parameters (the 
intrinsic: effective focal length, lens distortion factors, etc., and 
the extrinsic: 3-D position and 3-D orientation of the camera 
frame) are given in addition to the 2-D image coordinates, 
the problem is of the direct type. On the other hand, if 
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the 3-D coordinates are given in addition to the 2-D image 
coordinates, the problem is of the inverse type. In the first 
(direct) type, the objective is to estimate the 3-D location of 
objects, landmarks, and features. This type of problem occurs 
in many areas: for example, in automatic assembly, tracking, 
and industrial metrology. In the second (inverse) type, the 
objective is to estimate the relevant camera parameters: for 
a fixed camera, all the intrinsic and extrinsic parameters; for a 
moving camera, only the extrinsic parameters, namely, its 3-D 
location. This type of problem occurs in areas such as camera 
calibration, camera-robot calibration for eye-on-hand systems, 
and autonomous mobile robot guidance. 

The problem of 3-D location estimation of objects in a 
scene has been addressed extensively in the applied literature 
where it is referred to as feature-based 3-D location estimation 
of objects. The body of literature dealing with this general 
problem is concerned with developing mathematical methods 
for the estimation of an object's location based on point 
features, whether it is a 3-point problem (also called the 
triangle-pose problem [1]-[4]), a 4-point problem [l], [SI-[ 121, 
or an n-point problem [13]-[17]. Estimation of the object's 
location based on line features, whose mathematics is similar 
to that of point features, has also been studied [18]-[22]. As 
well, for quadratic-curved features, a general method has been 
developed [20]. However, this method is iterative and requires 
an initial estimate. 

A circular shape, representing a particular special case of 
quadratic-curved features, is the most common quadratic that 
has been addressed for 3-D location estimation, mainly due 
to the following reasons: 1) many manufactured objects have 
circular holes or circular surface contours; 2) a circle has the 
following properties from a mathematical point of view: its 
perspective projection in any arbitrary orientation is always an 
exact ellipse, and it can be defined with only three parameters 
due to its symmetry with respect to its center; 3) a circle 
has been shown to have the property of high image-location 
accuracy [23], [24]; and 4) the complete boundary or an arc 
of a projected circular feature can be used for 3-D location 
estimation without knowing the exact point correspondence. 

As a result of the above-mentioned properties, circular 
features have been used in various machine-vision-related 
problems. For example, they have been used for accurate es- 
timation of a mobile robot's position using circular landmarks 
[25]-[29], for recognition (identification and 3-D location 
estimation) of 3-D premarked objects using circular markers 
[30], [31], for feature estimation of 3-D objects using a tapered 
light beam [32], for 3-D orientation estimation of objects with 
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circular surface contours [33], for objects that have holes [34] 
and for cylindrical objects marked by two circular stripes that 
are placed radially around them [35], and for reconstruction 
of the 3-D structure and motion of a scene undergoing relative 
rotational motion with respect to the camera [36]. 

For 3-D location estimation based on circular features, 
approximate and exact solution methods have been proposed. 
In the approximate-solution methods [25]-[29], three difficul- 
ties remain in the mathematical solutions presented. The first 
concerns a set of simplifying assumptions made in order to 
reduce a complex 3-D problem to a simple 2-D problem, yet 
assumptions that lead to further complications. For example, 
researchers assume that the optical axis of the camera passes 
through the center of the circular feature and/or assume 
orthogonal projection instead of perspective projection. The 
second difficulty is evidence of an incorrect claim regarding 
the actual effect of perspective projection on the image of a 
circle, an ellipse, which states that the perspective projection of 
a circle is not an exact ellipse but, rather, a distorted one. The 
third difficulty is that, in general, authors do not discuss the 
error introduced by each approximation. A detailed analysis 
of the common approximate solutions are presented elsewhere 
P I .  

There have been several methods proposed to solve 
the circular-feature-based 3-D location estimation of objects 
(which we call the circular-feature problem in this paper) 
in a scene under general conditions without simplifying 
assumptions. An iterative method has been addressed in [38]. 
Closed-form solutions for the circular-feature problem have 
also been developed based on linear algebra [36], [39], but 
these methods are mathematically complex and, being algebra- 
based, do not provide a geometrical representation of the 
problem nor a geometrical interpretation of the resulting 
solutions. 

Recently, a closed-form mathematical solution, based on 3- 
D analytical geometry of circular and spherical features, was 
published [40]. This solution method has several advantages: 
it is a closed-form solution, it gives only the necessary number 
of solutions (with no redundant solutions), and it uses simple 
mathematics involving 3-D analytic geometry. 

We have previously addressed the circular-feature problem 
under the assumption that the optical axis of the camera 
is coplanar with the surface normal of the circular feature, 
and have derived a closed-form solution based on simple 
geometrical reasoning [31]. Also, we have derived another 
closed-form mathematical solution to the general form of the 
circular-feature problem based on 3-D analytical geometry 
[41]. The complete solution of this problem is presented in 
this paper. This closed-form solution provides all the above- 
mentioned advantages compared to all previous methods. But, 
as well, it has the following additional advantages: 1) it is 
based on simple mathematics, 2) it provides solutions for 
the case in which there does not exist a priori knowledge 
concerning the radius of the marker, 3) it can be extended and 
applied to general quadratic surfaces due to its more general 

In Section I1 of this paper, the analytical formulation of the 
problem is presented, which is based on decomposition of the 
3-D location problem into a 3-D orientation and a 3-D position 
estimation problem. In Section 111, the proposed analytical so- 
lution method is presented: To derive a closed-form analytical 
solution method for the 3-D orientation problem, we utilize 
an analytical method for reduction of the general equation of 
3-D quadratic surfaces to its central form (Section 111-A). For 
the 3-D position estimation problem, two cases are addressed: 
when the feature’s radius is known and when it is not known 
(Section 111-B). Extension of the developed method to 3-D 
quadratic features (as opposed to 2-D features) is addressed in 
Section IV, wherein, a closed-form analytical solution method 
specifically for spherical features is derived. Experimental 
results are presented in Section V, where simulated as well 
as real setups are employed. Simulated experimental results 
are obtained for three different cases (Section V-A): 1) 3-D 
orientation and 3-D position estimation of a circular feature 
when its radius is known; 2) 3-D position and 3-D orientation 
estimation of a circular feature when its radius is not known; 
and 2) 3-D position estimation of a spherical feature. For a 
real-case setup, the method developed has been applied to a set 
of circles located on a calibration plate (Section V-B) for 3-D 
orientation and 3-D position estimation purposes. Conclusions 
are presented in Section VI. 

11. ANALYTICAL FORMULATION OF THE PROBLEM 

The analytical method proposed in this paper is based on 
the decomposition of the 3-D location estimation problem 
into two parts: first, the 3-D orientation (the surface normal) 
of the circular feature is estimated; subsequently, based on 
the estimated orientation, the 3-D position of the feature is 
calculated. The analytical formulation of the 3-D orientation 
problem is presented in this section. 

Given the effective focal length of a camera, and the five 
basic parameters of an ellipse in the image-coordinate frame 
(embodying the perspective projection of a circular feature in 
3-D object space onto a 2-D image space [37]), it is required 
to estimate the circular-feature’s 3-D orientation with respect 
to the camera frame. 

This problem is equivalent to the following: Given a 3-D 
cone surface defined by a base (the perspective projection of a 
circular feature in the image plane) and a vertex (the center of 
the camera’s lens) with respect to a reference frame, determine 
the orientation of a plane (with respect to the same reference 
frame) that intersects the cone and generates a circular curve. 

The equation of the cone whose vertex is the point (a .  P,  r) 
and whose base is defined by the ellipse 

F ( z ,  y) E a’x2 + 2 h ’ q  + b’y2 + 29’2 + 2 f’y + d’ = 0 

z = o  (1) 

can be expressed as [42]: 

z2F(a ,  P)-zy 2- + y- + t- +y2F(z, y) = 0 (2 )  (E : E) 
formulation, and 4) it provides both geometrical representation 
of the problem and geometrical interpretation of the resulting 
solutions. 

where 

F(x ,  y, t )  = a‘x2 + 2h‘xy + b‘y2 + 2g’xt + 2 f ‘ y t  + d‘t2 = 0. 



I 1 I ’ l l ’ ’  I 

626 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 8, NO. 5, OCTOBER 1992 

Consaucted Cone 

An Image of a 
Circular Feature: 

Fig. 1. Schematic representation of the problem for a circular feature. 

In (2),  t is an auxiliary variable by which F ( x , y )  is made 
homogeneous ( F ( x ,  y, t)). The terms ( d F / d z )  and ( d F / d y )  
are evaluated at x = Q and y = p. As well, the term t ( d f ’ / d t )  
is calculated by first taking the derivative of the homogeneous 
equation with respect to t and then evaluating it at x = a, 
y = p, and t = 1. The general form of the equation of a cone 
derived using the above equation is as follows (with respect 
to the image frame): 

az2+by2+cz2+2 f yz+2gzx+2hxy+2ux+2vy+2wz+d = 0 

where 
(3) 

a = y2a‘ 
b = y2b‘ 

c = U‘Q’ + 2h’ap + b‘P2 + 2 g ’ ~  + 2 f‘P + d’ 
d = r2d’ 
f = -y(b’,f? + h’Q + f’) 
9 = -r(h’@ + U’Q + 9’) 
h = y2 h’ 
U = y2g‘ 
‘I) = y2f’ 

211 = -y(f’P + g‘a + d’). 

The constructed 3-D cone surface is shown schematically in 
Fig. 1 for Q = 0, ,f? = 0, and y = -e, where e is the effective 
focal length of the camera. 

It can be proven [43] that all parallel planar sections of a 
conicoid are similar and similarly situated conics. Thus, an 
intersection plane can be defined by l x  + my + nz = 0. 
Therefore, the problem of finding the coefficients of the 
equation of a plane for which the intersection is circular can 
be expressed mathematically as finding I ,  m, and n such that 
the intersection of the conical surface (3) with the following 
surface is a circle: 

1x +my + nz  = 0 (4) 
where l 2  + m2 + n2 = 1. Having found the coefficients of the 
equation of the plane, the direction numbers (l’, m’, n’) of the 
orientation of the circular feature can be estimated from 

l m n  
1’ m‘ n” (5) - - _ _ - -  - 

111. A N  ANALYTICAL SOLUTION OF THE PROBLEM 

The solution of the 3-D orientation problem in its general 
form leads to a set of two highly nonlinear equations, whose 
solutions would require numerical methods (see Appendix A). 
Furthermore, this process would produce at least eight sets of 
solutions, though there exist, at most, two acceptable sets of 
solutions. In the following section, an alternative analytical 
solution method is presented, based on a reduction of the 
general equation of conicoids. 

A. 3-0 Orientation Estimation of a Circular Feature 

I )  Reduction of the General Equation of Conicoids: The first 
step in the proposed analytical solution to the circular-feature- 
orientation estimation problem is to reduce the general equa- 
tion of conicoids (3) to a more compact form [43] 

X1x2 + X2Y2 + X3z2 = p (6) 

where the XYZ frame is called the canonical frame of 
conicoids. It will be shown (in Section 111-A-2) that the 
reduction of the general equation of a cone to the above 
form (6)  will result in a closed-form analytical solution. In 
essence, this reduction is based on a transformation consisting 
first of a rotation and then a translation of the zyz frame to 
the canonical XYZ frame. 

Let the homogeneous equation of conicoids be defined as 

ax2 + by2 + cz2 + 2 f yz + 2gzx + 2hxy = 0. (7) 

The problem is to find the elements of a rotational transfor- 
mation (TI) 

such that (7) reduces to the following form: 

X12’2 + Xzy’2 + A 3 2 2  = p. (9) 

It has been proven in [43] that if X I ,  X2, and A3 are the roots 
of the following equation (called the discriminating cubic) 

X 3  - X2(a + b + C )  + X(bc + cu + ab - f 2  - g2  - h 2 )  
-(abc + 2 fgh - a f - bg2 - ch2) = 0 (10) 

then the elements of the rotational transformation would be 
obtained from the following equations: 

ali + hmi + gni  - hli + bmi + fni  - 
li mi 

gli  + fm i  + cni 
ni 

= X i ,  Z = 1,2,3.  (11) - - 

From (1 1) the following explicit relations are derived: 
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where 
tl = ( b  - Xi)g - f h  

t 3  = -(. - X;)(t,/t ,)/g - h/g. 

t 2  = (a - X,)f - gh 

The estimated values for l; ,  m,, and n2 must satisfy the 
right-hand rule. 

If (7) is expressed in the following matrix form: X t A X  = 0, 
where X t  is a row matrix [zyz] ,  then by applying the general 
method of diagonalization of quadratic forms [44], equivalent 
results can be obtained. That is, the column vectors of the 
rotational transformation (8) are the eigenvectors of matrix A, 
and its eigenvalues correspond to the coefficients of (6). 

Through the rotational transformation (8), the general equa- 
tion of conicoids (3) would reduce to the following form: 

~ 1 z ‘ ~  + X ~ Y ”  + ~ 3 2 ”  + 2(u11+ wm1 + wnl)z’+ 
2 ( ~ 1 2  + + ~ 7 ~ 2 ) y ’  + 2 ( d 3  + vm3 + ~ 7 2 3 ) ~ ’  + d = 0. 

(13) 

To reduce (13) to (6), the following translational transfor- 

1 0 0 - ( d 1  +wml +wnl) /X1 

mation (2 ’2)  is applied: 

0 1 0 - ( d 2  +wmz +wnz) /X ,  
0 0 1 -(u/3+wm3+wn3)/X3 
0 0 0  1 

(14) 
The set of equations obtained when the two transformations 
are combined is 

0 0 0  1 
(15) 

Thus, through the general transformation (15), the general 
equation of conicoids (3) would reduce to what is referred 
to as the equation of central conicoids (6). 

If the general transformation (15) is applied to the general 
equation of a cone, it has been proven [42] that its equation 
would be in the form of (6), where p = 0 and two of the 
three coefficients would be always positive with one always 
negative. If positive values are assigned to XI and X2, and a 
negative value to X3, then the principal axis of the central cone 
would be the Z axis of the X Y Z  frame. This case is shown 
in Fig. 2. The intersections of parallel planes 2 = k with the 
central cone would generally be ellipses of different sizes 

The major and minor radii of the ellipse (16) are functions of 
four parameters: X I ,  Xp, X 3 ,  and k. Parameter k is a function 

f . .  
. , e  I 

Fig. 2. The central form of a cone: an elliptical right cone. 

of the radius of the circular feature. The other three parameters 
are functions of the parameters of the base of the constructed 
cone (1) and the 3-D coordinates of the center of the camera’s 
lens (a , ,B,y);  refer to (10) and (3). 

2) Circular Section of a Central Cone: In this section, the 
3-D orientation problem will be solved analytically by con- 
sidering the equation of a cone in its central form. Thus, it is 
required to find the coefficients of the equation of a particular 
plane (with respect to the X Y Z  frame) 

l X + m Y + n Z = p  (17) 

whose intersection with a central cone (for which it is assumed 
that the first two coefficients are positive and the third one is 
negative) 

X1x2 + /\2Y2 + X3z2 = 0 (18) 

would be a circle. 
In order to find the equation of the intersection curve of the 

above two surfaces, the following rotational transformation 
(2’3) can be used: 

[7e% -m In 1 01 

1 0  0 0 11 

This transformation is defined such that the new Z axis (i.e., 
2’) would be normal to the plane ZX + mY + nZ = P. 
Applying the above rotational transformation, the equation of 
the plane would be of the form 2’ = p ;  thus, the equation of 
the intersecting curve would be of the following form: 
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On the other hand, the necessary and sufficient conditions 
for which a general quadratic equation of the form 

+ B~~ + cy2 + D~ + + F = 0 (21) 

A = C ,  B=O. (22) 

represents a circle would be 

Thus, for (20), the following two conditions must exist: 

Knowing that 12+m2 # 0 (except for the special case of a right 
circular cone, that is, for case IV below), (24) is simplified as 

( A i l 2  + A 2 m 2 ) n 2  + A3(Z2 + m2)2  = Aim2 + A212. (25) 

Furthermore, the general relationship between coefficients 
exists: 

l 2  + rn2 + n2 = 1. (26) 

Thus, there are three equations ((23), (25), and (26)) and three 
unknowns 1, m, and n. 

Considering (23), four possible cases exist. 
Case I-1 = 0: Based on (23), (25), and (26), the follow- 

ing solutions are derived: 

1 = 0. (27) 

The above solutions must be checked to determine whether 
they are acceptable. If it is assumed that the principal axis of 
the central cone is the 2 axis, then 

X I  > 0, A2 > 0, A3 < 0 (28) 

A1 - A3 > 0, X2 - A3 > 0. (29) 

which leads to the following inequalities: 

Based on these inequalities, one can check the solutions. The 
solutions for n are acceptable since the expression (A1 - 

X3)/(A2 - A,) is positive. The solution for m would be 
acceptable if A2 > A l .  

If it is assumed that A2 > AI, then there exist four solutions 
to the problem. But these are four symmetrical solutions 
with respect to the origin of X Y Z  frame and consequently 
represent only two unique solutions. If one takes the solutions 
on the positive section of Z axis, then the two solutions would 
be 

Case ZZ-m = 0: Following the same arguments for case 
I, two solutions can be derived that would be acceptable only 
if A1 > X2: 

m=O 

(31) 

Case ZZZ-n = 0: In this case, the following solutions for 
1 and m are derived: 

m = */p. 2 - A 1  (32) 

However, for the solutions of 1 to be acceptable, one must 
have A2 < Al.  For the solutions of m to be acceptable, on the 
other hand, one must have A2 > A l .  Thus, it can be claimed 
that an acceptable solution does not exist for this case. 

Case ZV-A1 = A2: This is a special case, since it imposes 
a constraint on the coefficients of the equation of a central 
cone. In this case, the equation of the central cone represents 
a right circular cone (which implies that the central surface 
normal of the circular feature passes through the origin of the 
camera frame), and thus, any plane Z = IC intersects it and 
generates a circular intersection curve. Thus, there exists only 
one solution: 

n = l  
m=O 

1 = 0. (33) 

In conclusion, one can state that, generally, there exist two 
acceptable solutions to the problem. Under special conditions, 
these two solutions reduce to a single solution. Once the 
coefficients of the equation of the desired plane have been 
estimated, the direction cosines of the surface normal of the 
circular feature can be estimated using (5). 

3) The Computation Procedure for Surface-Normal Estima- 
tion: The computation procedure for the proposed analytical 
method for surface-normal estimation of a circular feature 
consists of the following steps: 

Step 1 -Estimation of the coefficients of the general equa- 
tion of the cone: Estimate the coefficients a, b, c, f, g, h, 
U ,  U, w, and d as defined in (3), based on knowledge of 
the coefficients of the equation of the ellipse-the image of 
the circular feature - (in the image-coordinate frame) and the 
effective focal length of the camera. 

Step 2 -Reduction of the equation of the cone: Determine 
the coefficients AI, A2, and A3 in (IS), by solving the dis- 
criminating cubic equation (IO), such that A1 and A2 are 
positive. 

Step 3-Estimation of the coefficients of the equation of 
the circular-feature plane: Having estimated the coefficients 
of the central cone in step 2 (X i  in (IS)), three possible cases 
occur: 1) A 1  < A2, for which the solutions would be (30); 
2) A1 > A2, for which the solutions would be (31); and 3) 
A 1  = A2, for which the solutions would be (33). 
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Step 4 -Estimation of the direction cosines of the surface 
normal with respect to the camera frame: Since only the orien- 
tation of the circular feature is needed, one must consider only 
the rotational transformation involved in this method. Thus, 
first, estimate the elements of the rotational transformation 
between the z’y’z’ frame and the zyz frame (see (8)) by using 
(12); then the coefficients of the equation of the desired plane 
with respect to the camera zyz frame can be estimated by 
applying this rotational transformation. Following which, the 
direction cosines of the surface normal are estimated using (5). 

A numerical example for the above computation procedure 
is given in Section V-A-1. 

B. 3-0 Position Estimation of a Circular Feature 

As was noted earlier (see (21) and (22)), the coefficient of the 
X’Y’ term must be zero and the coefficients of XI2 and Y’2 
must be equal. Now, if 

A 
B E (Allin1 + A2l2n2 + X313n3) 

( A i l :  + X 2 l i  + X31:) 

The position of a circle is defined by its center coordinates 
(z,,,ycO,z,,) with respect to the z,yczc camera frame. It is 
noted that the transformation between the image frame (zyz) 
and the camera frame (To)  is defined as follows: 

C E (Xlmlnl f  X2m2n2 + X3m3n3) 

D (Xlnf + X2n; + X 3 4 )  (38) 

then the equation of the circle would become (in its standard 
form) 

. (39) 
p2B2 +--- p2C2 p2D 

A2 A2 A 

where e is the effective focal length of the camera. Depending 
on whether the radius of the circle is known or not known, 
two different methods can be applied. 

Case I-Radius is known: The radius of the circular fea- 
ture might be known. That is, either it is prespecified or it 
has been estimated through other sensory system. In this case, 
based on the knowledge of the orientation of a circle and its 
radius, one can solve the position problem as follows. The 
problem is simplified by first solving it in the X’Y’Z’ frame 
and then applying the total transformation, T = ToT1T2T3 
where 

Rotation > XyzTranslation 
X ’ Y ’ Z ’ P  

T3 T2 
Rotation Translation 

Tl T O  
> z’y’z’--- > xyz > z c y c z c  (35) 

to estimate the position with respect to the camera frame 
(z,y,z,). This is possible only because the radius of a cir- 
cular feature is invariant with respect to the rotational and 
translational transformations of a frame. 

The desired plane of intersection is defined as 2’ = p 
with respect to the X’Y’Z’ frame. The elements of the 
transformation (19) are already known (since the coefficients 
of the equation of the desired plane 1, m, n are known through 
application of the above-mentioned computation procedure in 
Section 111-A-3). Thus, if one defines the transformation as 

then the equation of the circle with respect to the X’Y’Z’ 

However, the radius ( r )  is known, and, therefore, one can 
estimate the value of the parameter p from the following 
equation: 

Ar 
p = f  

J B ~  + c2 - AD 

As can be seen, there exist two solutions, one negative and one 
positive: one on the positive z axis and one on the negative 
z axis. Since only the positive one is acceptable in our case 
(being located in front of the camera), the coordinates of the 
center of the circle with respect to the X’Y’Z’ frame are 

C y‘ = --z‘ 
A ”  

JB2 + C2 - AD (41) 
Ar z:, = f 

under the condition that the sign of the coordinate 2: is 
selected such that the coordinate z,, in the z,ycz, frame would 
be positive. 

To estimate the coordinates of the circle’s center with 
respect to the s,ycz, frame (the camera frame), one must 
apply the total transformation (T )  (35) 

2) Case II-Radius is not known: In order to solve this 
problem, one has to use information from two separate images 
of a circle. As was discussed earlier, there exist two solutions 
for the orientation (norm) of a circle. Thus, one must have two 
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images of the same circle (acquired at two distinct but known 
positions) in order to determine the unique and acceptable 
orientation of a circle. As well, one can use the same two 
images for position determination of the circle. However, 
the question is "how to move the camera from position 1 
to position 2?" in order to be able to solve this problem. 
In order to simplify the situation, it is proposed to move 
the camera only along its z axis. It is noted that, for an 
eye-on-hand system, the transformation between the camera 
frame and the robot's end-effector frame can be estimated 
in advance [45]. Furthermore, moving the camera along its 
optical axis by the robot, generally, involves five degrees 
of freedom. Thus, the degree of accuracy of this specific 
motion would be the same as the overall degree of accuracy 
of the robot for any motion that requires all six degrees 
of freedom. As a result of this specific choice of camera 
motion, only the z coordinate of the circle's center would 
change (with respect to the camera frame). It is noted that, by 
applying the translational transformation (34), the equation of 
the cone (3)-which is defined initially with respect to the 
image frame - can be obtained with respect to the camera 
frame. 

Let the camera displacement h be in the positive direction 
of the z, axis. Furthermore, let the initial and final coordinates 
of the feature's center with respect to the camera frame be 

Note that the value of h is known (since the extent of the 
displacement of the camera is under control). Knowing the 
coefficients of the equation of the plane of a circular feature 
with respect to the camera frame, (l ,m,n),  one can estimate 
the following transformation (2'4) using (19) as: 

This transformation is valid for both camera positions, since 
the orientation of the camera does not change during reloca- 
tion. Using (43) and (44), the following relation is obtained: 

K is defined at the bottom of this page. Now, if one defines 
both and z:2 in terms of T (the unknown radius of the 
circle), then one can solve (45) and find T ,  as a result of which 
the problem reduces to a problem of the kind identified as the 
first case. 

It has been shown that zr1 can be expressed by the following 
equation (see Appendix B): 

where A; and Bi  have constant values and are defined in terms 
of the coefficients of the equation of the cone and the elements 
of the rotational transformation (44). A similar equation can 
be derived for z:~ 

(47) 

Using (46) and (47), (45) becomes 

(48) 
-h 

T =  K k d m * d m ] '  
Based on physical conditions, there must be only one accept- 
able solution for T .  Such physical conditions are manifested 
in the following constraints: the acceptable value of T has to 
be real and positive, and it must satisfy (45) while and 
zt2 have the same sign (see (46) and (47)). These constraints 
on the four possible solutions of T are sufficient to determine 
the uniquely acceptable one. Having estimated T ,  can be 
calculated using (46). It is noted that the acceptable solution 
for must also satisfy the last constraint mentioned above. 
Based on the estimated value for zt1, one can estimate the 
other two coordinates of the feature's center 

where A I ,  B1, and Cl have constant values and are defined 
in terms of the coefficients of the equation of the cone and the 
elements of the rotational transformation (44); see Appendix 
B. These are the center coordinates with respect to the xt'y"z" 
frame. Applying the transformation (44), one can get the center 
coordinates with respect to the xcyczc frame (the camera 
frame). 

Iv.  APPLICATION OF THE METHODOLOGY 
TO 3-D QUADRATIC SURFACES 

There exist two possible ways to extend the mathematical 
method developed above to other 3-D surfaces or 3-D features 
(as opposed to 2-D features). On the one hand, a problem can 
be defined as: given a quadratic surface (ellipsoid, paraboloid, 
hyperboloid, and cylindroid), find the orientation of the plane 
that intersects the given surface and generates a circular curve. 
It can be shown that applying the general transformation (15), 
and following the same procedure formulated in Section 111, a 
set of unique solutions can be obtained for each of the above 
surfaces. However, since this problem and its solution do not 
seem to be applicable to the general problem of 3-D object 
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Fig. 3. Schematic representation of the problem for a spherical feature. 

recognition, though otherwise having mathematical merit, the 
details of the solution are not presented here. 

On the other hand, a problem can be defined as: given a 
perspective projection of a 3-D feature (as opposed to a 2-D 
planar feature that was addressed in the preceding sections), 
and the effective focal length of the camera, find the feature's 
location with respect to the camera frame. One such feature of 
importance in 3-D model-based vision is a spherical feature 
[40]. Spherical features have also been used for positioning 
of a mobile robot under a special simplifying condition, 
namely, that the camera's optical axis passes through the 
center of the spherical feature [25]. Thus, the problem can 
be defined more specifically as: given the radius of a sphere, 
its perspective projection, and the effective focal length of a 
camera, determine its 3-D position with respect to the camera 
frame. This problem is shown schematically in Fig. 3. 

Let 

F ( x ,  y, z )  E ax2 + by2 + cz2 + 2 f yz + 2922 + 
2hzy + 2uz + 2vy + 2wz + d = 0 (50) 

be the equation of a quadratic surface. Furthermore, let the 
equations of the straight lines through a point P(a ,  p, y), 
whose direction numbers are I , ,  mi, n; and are tangent to the 
above quadratic surface, be 

In this equation, the terms ( d F / a z ) ,  (dF/dy), and ( a F / d z )  
are evaluated at z = a, y = p, and z = y. 

For the special case under consideration, that for a sphere, 
the general equation of the surface is defined (with respect to 
the camera frame) as follows: 

~ ( x ,  y, z )  zz (zc-x,)2+(yc-yo)2+(zc-zo)2-r2 = 0. (53) 

Furthermore, if we consider the origin of the camera frame as 
the point P, then its coordinates with respect to the camera 
frame would be (0, 0,O). Correspondingly, the equation of the 
enveloping cone (with respect to the camera frame) becomes 

.((xC - G)' + (yc - yo)' + (zc - 2,)' - r2 )  
(z2 + y,2 + 2," - r 2 )  

= (-x,xc - y,yc - 202, + (xi + y: + 2," - P))2. 
(54) 

Now, if the camera frame is rotated such that the new z' 
axis passes through the center of the sphere, then the sphere's 
center coordinates would be (0, 0, z:), and the equation of the 
enveloping cone with respect to the new x'y'z' frame would 
be (noting that z: > r )  

(55) 

This is the equation of a cone in its central form. Thus, the 
above-mentioned rotation of the camera frame is the same 
as the rotational transformation (8). Furthermore, two of the 
three coefficients in (55) are equal, which corresponds to case 
IV in Section III-A. As was noted earlier, this case results 
in a right circular cone, i.e., the principal axis of the cone is 
perpendicular to its circular base. From a geometrical point of 
view, this conclusion was expected. 

Thus, the analytical solution for the problem would be as 
follows: 

1) Given the effective focal length and the parameters 
of the perspective projection of a spherical feature - an el- 
lipse-(Fig. 3) with respect to the image frame (the zyz 
frame), the coefficients of the equation of the constructed 
cone with respect to the image frame can be obtained using 
(3). By applying the transformation (34), one can estimate the 
coefficients of the cone with respect to the camera frame. 

2) A i  can be estimated using the parameter values obtained 
in step 1 and solving (10). 

3) Normalizing the first two coefficients of (9) to 1, and 
equating the third coefficients of (9) and (59, the unknown 
value z: is derived 

These tangent lines generate a cone that envelopes the 
quadratic ~ r f a c e .  It has been Proven 1421 that the equation 
of such an enveloping surface (an enveloping cone) is 

The positive solution, being in front of the camera, is the 
unique acceptable solution for the z: coordinate. Thus, the 
center coordinates with respect to the rotated frame would be 

4) The 3-D coordinates of the center of the spherical feature 
d F  d F  aF with respect to the camera frame is determined by applying the 

(O,O, 4. 

rotational transformation (8) to the 3-D coordinates estimated 

4F(a, P,  y ) F ( z ,  Y, = 

((. - ")z + (' - -t (' - "dz + 2F(a' " ') ' 

dY 
(52) in step 3. 
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V. EXPERIMENTAL RESULTS 

A. Simulated Experimental Results 

Three different cases are considered in this section: 1) 3-D 
orientation and 3-D position estimation of a circular feature 
when the radius is known, 2) 3-D orientation and 3-D position 
estimation of a circular feature when the radius is not known, 
and 3) 3-D position estimation of a spherical feature. For each 
case, first, the simulated experimental setup is presented, and 
subsequently, the experimental results are given. Finally, the 
results obtained are compared with the initial setup. 

1) Radius Is Known 
a) Simulated experimental setup: Let the transformation 

between the world reference frame and the camera frame be 

of the feature is determined using the method proposed in 
Section 111-B-1. 

1) The coefficients of the general equation of the cone (with 
respect to the image frame) are 

a = 204.024 
b = 225.000 
c = 66.976 

2f = -177.452 
29 = -127.567 
2h = -102.452 
2~ = -127.567 
2v = 177.452 
2w = 133.952 

d = 66.976. 
-10 

m 

2) Reduction of the equation of the cone leads to 1 

and let the equation of a circular feature with respect to the 
world reference frame be (without loss of generality) 

A 1  = 274.281 
A2 = 225.000 
A3 = -3.281. 

X: + Y E  - 16 = 0 

zw = 0. 3) Surface normal parameters are 

Then the equation of the cone with the circular feature being 
its base and its vertex at the center of the camera frame (that 
is, at the point (-10,10,30)) would be 

1 = f0.421367 
m=O 
n = 0.906890. 

225~:" + 2 2 5 ~ 2  + 462: - 150y,z, 
As was explained earlier, there exist, in general, two 
possible solutions. To determine the acceptable one, we + ~ ~ O X , Z ,  + 2402, - 3600 = 0. 
must have a second image. In this section we take the 
positive value for 1 .  In Section V-B we will show that 
this solution is the acceptable solution based on a second 

Correspondingly, the equation of the cone with respect to the 
camera frame would be 

204.024~: + 225.000y,2 + 66.9762; 
image. 

4) The rotational transformation (see (8)) is 
-177.452~~2, - 127 .5672 ,~~  - 102.452~Cyc = 0. r -0.413957 0.836516 -0.358998 0 1 I 0.875989 0.258819 -0.407009 0 

-0.247554 -0.482963 -0.839919 0 
0 0 0 1 

Assuming that the image plane is at 2, = $1 (with respect 
to the camera frame), then the perspective projection of the 
circular feature would be (with respect to the image frame 

Applying this transformation to the surface's normal XYZ) 

2 0 4 . 0 2 4 ~ ~  - 1 0 2 . 4 5 2 ~ ~  + 2 2 5 . 0 0 0 ~ ~  
-127.567~ - 177 .45~  + 66.976 = 0. 

vector obtained in step 3 will give us the surface-normal 
vector with respect to the camera frame 

-0.421367 -0.5 
Thus, we can formulate the problem as follows: If the equation 
of the projection of a circular feature with respect to the image 
frame is given as above, the effective focal length of the 
camera is 1, and the radius of the feature is 4, then it is required 
to estimate the surface normal of the feature and subsequently 
to determine the 3-D position of the feature. 

b) Experimental results: First, the parameters of the sur- 
face normal are estimated using the computational procedure 
proposed in Section 111-A-3. Subsequently, the 3-D position 

vll = " [ 0.9{890 ] = [ -0.8:6025] ' 

Checking the solution: To check the solution obtained, we 
apply the rotational part of the transformation T, (R,) to 
the vector V11: V, = R,V11 = [0011It. This result is what 
we expected, since the feature's surface normal vector with 
respect to the world reference frame is [OO1l]t. 
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For 3-D position estimation, the estimation process is as 

5) Based on the estimated parameters in step 3, the rota- 
follows: 

tional transformation (36) is obtained 

0 -0.906890 0.421367 

0 0.4213567 0.906890 
0 0 0 

T3= [' 0 

6) Parameters A,  B,  C ,  and D are estimated using the 
elements of the above transformation (T3) based on (38) 

A = 225.0 
B=O 
C = -106.066 
D = 46.0. 

7) The 3-D position coordinates with respect to the X'Y'Z' 
frame are estimated using (41) 

x:, = 0 
Yd = f14.142 
2: = k30.000. 

8) To obtain the 3-D position of the feature with respect 
to the camera frame, we must apply the total trans- 
formation as defined in (35). First, the translational 
transformation (14), T2, is estimated using the parameter 
values obtained in steps 1, 2, and 4: 

1 0 0 0.247554 
0 1 0 0.482964 
0 0 1 0.839915 ' . = [ ,  0 0 1 1 

The transformation between the image frame and the 
camera frame is 

r l  0 0 01  
0 1 0 0  

0 0 0 1  
T o =  lo 0 1 1 1 .  

Then the total transformation would be 

T = ToTiT2T3 
0.836516 0.224144 

= [ 0 . 2 5 y l 9  -0.965926 0 
-0.482963 -0.12941 -0:1:025 !] ' 

0 0 1 

The 3-D position of the feature with respect to the 
camera frames is obtained as 

0 11.830 

Note that we take the negative sign for 2: in order to 
get the positive value for z, in the camera frame. 

Checking the solution: To check the solution, we estimate the 
3-D position with respect to the world reference frame using 
T,: P, = T,P, = [0001It. This is exactly what we expected, 
since, initially, the feature was placed at (O,O,O) with respect 
to the world reference frame. 

2) Radius Is Not Known 
a) Simulated experimental setup: We once more consider 

the simulated setup in Section V-A as the setup for the first 
camera position and add a simulated setup for the second 
camera position as follows: 

Let the transformation between the world reference frame 
and the camera frame be 

zW 
1 
& & -1 -15 
"I 

4 2  

0 0 0  1 

[I]. 
This transformation is equivalent to a displacement of the 
camera frame (from the first camera position to the second 
camera position) 20 units along the positive direction of the 
zc axis of the camera frame. 

The equation of the circular feature with respect to the 
world frame would be the same as before. Then the equation 
of the cone with the circular feature being its base and its 
vertex at the center of the camera frame (that is, at the point 
(-15,lO - 5&, 30 - lo&)) would be 

160.7702$ + 160.7701~2 + 210.795~: - 3 3 . 9 7 5 ~ ~ ~ ~  
+380.3852,~, + 450.7442, - 2572.312 = 0 

and the equation of the cone with respect to the camera frame 
would be 

103.661~:~ + 160.770~:~ + 267.904~:~ 
-3OO.OOOy~z: - 37.062~:~: - 173.205xLy:. = 0. 

Then the perspective projection of the feature (the effective 
focal length is assumed to be equal to 1) would be (with 
respect to the image frame xyz) 

1 0 3 . 6 6 1 ~ ' ~  - 173 .205~ '~ '  + 1 6 0 . 7 7 0 ~ ' ~  
-37.0622' - 300.000~' + 267.904 = 0. 

Thus, we can formulate the problem as follows: If the equa- 
tions of the two projections of a circular feature with respect 
to the image frame are given, the effective focal length of the 
camera is 1 and the displacement of the camera frame along 
its optical axis is equal to +20, then it is required to estimate 
the radius and the 3-D orientation and the 3-D position of the 
feature with respect to the camera frame. 
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b) Experimental results: Following similar steps as in 
Section V-A, we would get the following: 

1) 

a = 103.661 
b = 160.770 
c = 267.904 

2f = -300.000 
29 = 37.062 
2h = -173.205 
2~ = -37.062 
2~ = -300.000 

2w = 535.801 
d = 267.904. 

3) 

4) 

Tl = 

Xi = 378.363 
A2 = 160.770 
XJ = -6.799. 

1 = 3~0.751624 
m=O 
n = 0.659592. 

-0.135343 -0.785548 0.603818 0 
0.598296 0.420974 0.681779 0 

-0.789762 0.453536 0.413014 0 
0 0 0 1 

There exist two possible solutions 

0.296545 
0.899389 

-0.321185 

r 0.50 i 

vi2 = I 0.866025 ; J ' 
For the first image, the second possible solution is 

-0.1511 
-0.7382 

= [ -0.;574] . 

Thus, the acceptable surface-normal vector of the feature 
would be the common one, that is 

Note that the above two vectors are equivalent since we are 
interested in 3-D orientation, not the direction. 

5 )  The transformation (44) would be 
y o  0.866025 -0.5 01 

0 -0.5 
1 0  

t o  0 0 11 
6) The values of the parameters defined in Appendix B are 

as follows: 
First camera position: 

A1 = 225.000 
B1 = 102.452 
C1 = -27.452 
D1 = 46.000 
A', = 900.000 
Bi = -50625.000. 

Second camera position: 

A2 = 160.770 
B2 = 173.205 
C2 = 80.385 
0 2  = 210.795 
Ah = 2572.322 
B; = -25846.832. 

7) Based on (48), the two possible (positive) values for 
the feature's radius are (note that h = 20 and K = 
- 1.154701) 

7-1 = 4.000 
1-2 = 1.623. 

Corresponding to these two values, we can estimate ztl 
and zIr, using (46) and (47): 

r1 = 4.000: 

First view: 30.000 and - 30.000 
Second view: 12.680 and - 12.680 

1-2 = 1.623: 

First view: 12.175 and - 12.175 
Second view: 5.146 and - 5.146. 

As was indicated in Section 111-B-2, the acceptable solution 
for T must yield values for zLl and zL2 with the same sign 
and must satisfy (45). Based on these two constraints, the 
acceptable solutions for r ,  z t l ,  and zt2 would be 

r = 4.000 
zrl = -30.000 
z:2 = -12.680. 

8) The other two coordinates are (using (49)): 

= 13.660 
~ 1 1  = -3.660. 
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Applying the rotational transformation (44), (T4), the 3-D 
position coordinates with respect to the camera frame are 

Using (56), the feature’s 3-D-position with respect to x’ y’z’ 
is estimated 

obtained: xb = 0 

y:, = 0 
z:, = 43.875. 

x,, = 11.830 
yco = 13.660 
z,, = 27.810. -- 

The rotational transformation (8) is estimated using (12) and Checking the solution: The estimated r is equal to the one 
initially assumed. As well, the 3-D-position coordinates of the the parameter values obtained in steps 1 and 2 

I feature are correct, since by applying the transformation T,,,, 0.427144 0.427144 0.455842 0 
0.533930 0.533930 0.569803 0 we get [0, O,O,  lit. This is equal to the position vector of the 

feature with respect to the world reference frame. -0.729704 -0.729704 0.683763 0 ’ 
T1= [ 

3)  3-0 Position of a Spherical Feature 0 0 0 1  
a) Simulated experimental setup: Let the 3-D position of 

the feature be (20,25,30) with respect to the camera frame, 
and let its radius be r = 5. Then the equation of the feature 

Then the 3-D position coordinates of the spherical feature 
with respect to the camera frame is obtained as follows: 

would be (using (53)) 

(x, - 20)2 + (yc - 20)2 + ( z ,  - 30)2 - 25 = 0. 

Furthermore, let the vertex of the enveloping cone be at the 
origin of the camera frame (O,O,O); Then the equation of the 
enveloping cone would be (using (54)) 

3002: + 255~: + 2002; 
- 3 0 0 ~ ~ ~ ~  - 2 4 0 . ~ ~ ~ ~  - 2 0 0 ~ ~ ~ ~  = 0. 

Assuming the image plane is at z ,  = 3, then the perspective 
projection of the spherical feature would be (with respect to 
the image frame xyz) 

300x2 - 200xy + 255y2 - 7202 - 9OOy + 1800 = 0 
z = 0. 

Thus, we can formulate the problem as follows: If the equation 
of the projection of a spherical feature with respect to the 
image frame is given as above, the radius of the feature is 
equal to 5, and the effective focal length of the camera is 
equal to 3, then it is required to estimate the 3-D position of 
the feature. 

b) Experimental results: The coefficients of the equation 
of the cone with respect to the camera frame are: 

a = 300 
b = 225 
c = 200 

2f = -300 
2g = -240 
2h = -200 
2u = 0 
2v = 0 

2w = 0 
d = 0 .  

The coefficients of the central cone equation are obtained 
using (10) 

A 1  = 380 
A2 = 380 
A3 = -5. 

r 0 1 r20.0001 

The estimated coordinates are correct, since they are equal to 
the initial 3-D position of the spherical feature with respect 
to the camera frame. 

B. Experimental Results Based on a Real Image 

The accurate estimation of the 3-D location of a circular 
feature from an input grey-level image requires processes to 
compensate for various types of distortion. In a real process, 
as opposed to a simulated process, various sources of noise 
affect the input image and thus distort it. The experimental 
results in this section report the total process of accurate 
estimation of the 3-D location of a circular feature, which 
in part, involves the general 3-D analytical-solution method 
derived in this paper (without any simplifying assumptions). 
This section consists of two parts: 1) A brief discussion on a 
distortion-compensation procedure previously developed and 
2)  experimental results based on a real image. 

1)  A Distortion-Compensation Procedure: The details of 
the various steps required for this purpose, which have already 
been addressed in other papers (as mentioned below) are not 
presented here. However, for completeness, a brief review of 
these steps is presented below: 

Camera calibration: The camera is calibrated by applying 
the mono-view noncoplanar-points technique [ 161, as a result 
of which, the 3-D location of the camera frame with respect 
to a predefined world frame of reference is estimated. Fur- 
thermore, the effective focal length of the camera, the radial 
distortion factor of the camera’s lens, and the uncertainty 
scale factor for the x axis (due to timing mismatches that oc- 
cur between camera-scanning hardware and image-acquisition 
hardware) are also obtained. 

Subpkel edge detection: After an image of a circular feature 
is acquired, a new subpixel edge detector is applied [46]. 
This edge operator is based on the sample-moment-preserving 
transform (SMPT) and assumes a circular-arc geometry for 
the boundary inside the detecting area. The result of the edge 
detector is a set of subpixel edge-point data. The subpixel edge 
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detector compensates for quantization error and estimates the 
boundary of a circular feature more reliably. 

Coordinate transformation: Computer-image coordinates are 
expressed in terms of pixel units. To define the edge-points in 
terms of units of absolute length (in millimeters) and also to 
compensate for timing mismatches, a set of transformations are 
applied [ 161. These are implemented by using the uncertainty 
factor estimated in step 1 and technical specifications of the 
camera’s CCD chip and the digitizer board. 

Lens-radial-distortion compensation: The estimated lens- 
radial-distortion factor in step 1 is applied to all edge points 
to compensate for lens radial distortion [16]. 

Elliptical-shape-parameters estimation: An interpolation 
technique based on the optimization of an error function is 
applied to accurately estimate the five basic parameters of 
an ellipse - the perspective projection of a circle onto the 
image plane. It has been shown that, through the application 
of a newly developed error function, an accurate estimation of 
elliptical shape parameters can be obtained (even if only an 
arc of the projected circle is present) [47], [48]. 

Circular-feature 3-D-orientation estimation: Using the es- 
timated effective focal length in step 1 and the estimated 
values for the five basic parameters of an ellipse in step 5 ,  
and applying the analytical method developed in Section III- 
A, the orientation of the circular feature with respect to the 
camera frame is estimated. 

Circular-feature 3-D-position estimation: Using the esti- 
mated orientation of a circular feature in step 6 and its 
known radius, and applying the analytical method developed 
in Section 111-B-1, the 3-D position of the feature is estimated 
with respect to the camera frame. Applying the transformation 
from the camera frame to the world frame of reference 
obtained in step 1, to the estimated 3-D position of the circle 
yields the 3-D position with respect to the world-reference 
frame. 

For a comprehensive explanation of the above sequential 
distortion-compensation procedure, refer to [49]. 

2) Experimental Setup: The experimental setup consisted 
of the following major components: a color video camera: 
JVC (model TK-870U) with 2/3-in CCD and effective pixels 
510H x 492V; a Canon CI-TV lens: 25 mm f/1.4; an 8-bit 
B/W video digitizer: PIP-640B (MATROX Electronic Systems 
Limited) with 640 x 480 resolution that resided in an IBM- 
compatible PC-AT; a back-lighting system; an optical table 
with a gantry-type frame for positioning the camera; and two 
standard (x - y) translation stages with 40 mm of travel and 
repeatability better than 2 pm for positioning a calibration 
plate (thickness: 6 mm) consisting of 30 uniformly spaced (6 
x 5 )  accurately machined through holes (diameter: 25 * 0.01 
mm). 

For experimentation on the total process, only 6 of the 
30 holes on the calibration plate were used. The selected 
holes were located on the extreme right and left sides of the 
calibration plate (i.e., first and last columns of holes). The 
plate of the circular features, in an inclined orientation with 
respect to the camera image plane, was positioned such that 
the field of the selected circles extended over the entire field 
of view. These conditions provided the most general camera- 

TABLE I 
ESTIMATED ORIENTATION ANGLES OF THE SURFACE 

NORMALS OF A SET OF CIRCULAR FEATURES 

Angles a (degrees) /3 (degrees) y (degrees) 

Reference Angles 89.72 76.73 13.27 
Circle 1 88.73 76.06 13.99 
Circle 2 89.61 74.99 15.01 
Circle 3 88.75 76.54 13.52 
Circle 4 89.87 76.39 13.61 
Circle 5 89.11 76.43 13.60 
Circle 6 87.46 77.93 12.34 
Average Angles 88.92 76.39 13.68 
Average Deviations 0.80 0.34 0.41 

Note: a,  p, and y are the angles that the furface normal of a circle makes 
with the s, y, and z axes of the camera frame, respectively. 

circular-feature configuration. In order to obtain sharp images 
of all circles, this plate was located within the approximated 
existing depth of field of the camera [50]. 

3) Experimental Results for the Total Process: The applica- 
tion of the seven-step procedure (Section V-B-2) to the six 
coplanar circles resulted in two sets of data, tabulated in Tables 
I and 11. Through camera calibration, the orientation angles 
of the normal to the circles’ plane was estimated. These are 
referred to as “Reference Angles” in Table I. The estimated 
orientation angles of each circle’s norm are also presented 
in this table. Note that since the circles were coplanar, they 
must have the same orientation angles. The average orientation 
angle is defined as the mean value of the orientation angles 
of the six circles, while the average deviation is defined as 
the absolute value of the difference between a reference angle 
and an average angle. The average deviations for the three 
orientation angles were determined as, 0.80°, 0.34’, and 0.41’, 
respectively. As can be seen, the results show only a small 
error indicative of the good performance of the total process. 

In Table 11, the results of the position-estimation process are 
presented. The coordinates, estimated with respect to the world 
reference frame, are given under the column “Estimated.” The 
exact 3-D coordinates of the circles’ centers are known a 
priori and are given in Table I1 under the column “Reference.” 
The differences between the reference and the estimated 
coordinates of all the circles are calculated, and the means 
of these values are given under “Average Deviations.” The 
results can be better appreciated when the size of the field 
of view (275 mm x 200 mm) and the focused distance (864 
mm) are taken into consideration. The 1.28-mm average error 
for the depth estimation in an approximately 864-mm focused 
distance is less than 1.5 parts in 1000 average accuracy. As 
a whole, both sets of results show the validity of the total 
process involved in the 3-D-location estimation in general, 
and the applicability of the analytical method developed in 
this paper in particular. 

C.  Discussion of Results 

We have shown through experimentation that the method 
developed in this paper works reliably under various camera- 
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ESTIMATED POSITIONS OF A SET OF CIRCULAR FEATURES 
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Coordinates x (mm) Y (mm) z (mm) 

Circle No. Reference Estimated Reference Estimated Reference Estimated 

1 0.00 0.38 0.00 0.63 10.00 8.05 
2 185.00 184.78 0.00 -0.03 10.00 11.01 
3 0.00 0.24 37.00 37.27 10.00 9.31 
4 185.00 184.64 37.00 37.43 10.00 9.15 

5 0.00 0.26 74.00 74.34 10.00 8.92 
6 0.00 0.46 148.00 148.60 10.00 1.92 

Average Deviations 0.32 0.38 1.28 

Note: All the coordinates are with respect to the world reference frame. 

feature configurations (three for simulated and six for real 
experimental setups). However, there exist limitations: From 
a mathematical point of view, the method developed fails 
when the feature’s plane passes through the center of the 
camera’s lens, that is, when the vertex point and the base of 
the cone are coplanar (this is a rare case for a camera-feature 
configuration). From a practical point of view, however, 
there exists a stronger limitation. In general, the degree of 
accuracy of the estimated feature’s 3-D location depends 
on how accurate we can estimate the parameters of the 
ellipse - the image of a circular feature -from a grey-level 
image. Some of the factors involved are addressed in the 
distortion-compensation procedure mentioned in Section V- 
B-1. However, there exist two other factors: the size of the 
feature in the image plane and the relative orientation of 
the feature plane with respect to the camera image plane 
(say angle a). The first factor combines the true size of 
the feature, the distance between the camera and the feature, 
and the camera’s focal length. The second factor concerns 
the amount of change or deformation of a feature in the 
image plane with respect to the change of the angle a. For 
circular features, the ratio of minor to major radii (T and R, 
respectively) of the ellipse (the image of a circular feature) 
is roughly equal to cosa. Now, if the difference between the 
major and minor radii of the ellipse is used as a measure 
of deformation of a circular feature in the image plane, it 
would be equal to R(l - cosa). Thus, it can be concluded 
that for small angles a (for example, up to lSo), the amount 
of deformation is quite small, and as a result it would be very 
difficult to detect this change from a grey-level image (note 
that accurate estimation of the ellipse’s parameter depends on 
how accurate the deformation of the ellipse can be detected). 
This fact can be more appreciated if it is noted that there 
exists a limit on the accuracy of edge detector operators. As 
a result, errors in the estimation of 3-D orientation and 3- 
D position of a feature for small angles a would be more 
significant. In order to determine the exact limitation of the 
method from a practical point of view, a complete analysis 
is required to determine the sensitivity of the parameters of 
the imaged circular feature in terms of the above-mentioned 
factors. This is, in fact, a universal problem for all feature- 
based pose-estimation techniques. Addressing this problem 
constitutes part of our future work. 

VI. CONCLUSIONS 

In this paper, the general problem of 3-D location estimation 
of a circular feature was addressed. This problem has wide 
applications in machine vision, such as estimation of a mobile 
robot’s location using circular landmarks, for recognition 
(identification and 3-D location estimation) of 3-D premarked 
objects using circular markers, for 3-D location estimation 
of objects that have holes or circular surface contours, for 
reconstruction of the 3-D structure and motion of a scene 
undergoing relative rotational motion with respect to the 
camera, etc. The proposed analytical method is based on 
decomposition of the 3-D location-estimation problem into two 
parts: the 3-D orientation estimation of the circular feature and 
the 3-D position estimation of the feature. For 3-D orientation 
estimation, a closed-form analytical solution was derived by 
reducing the general equation of a cone to its central form. For 
3-D position estimation of a circular feature, two closed-form 
solution methods corresponding to two possible cases, whether 
the radius of the feature is known or not known, were de- 
rived. Furthermore, extension of the developed method to 3-D 
quadratic features (as opposed to 2-D features) was addressed 
and a closed-form analytical solution method specifically for 
spherical features was derived. In order to verify the method 
developed, simulated as well as real experimental setups were 
employed. Simulated experimental results were obtained for 
three different cases: 1) 3-D orientation and 3-D position 
estimation of a circular feature when its radius is known, 
2) 3-D position and 3-D orientation estimation of a circular 
feature when its radius is not known, and 3) 3-D position 
estimation of a spherical feature. The results obtained in all 
three simulated cases support the analytical method developed 
in this paper. As well, to demonstrate real experimental results, 
the method developed was applied to a set of circles located 
on a calibration plate. The camera was calibrated prior to the 
application of the method. Also, in order to obtain accurate 
estimation of the parameters of the imaged circle (that is the 
corresponding ellipse), a sequential compensation procedure 
was applied to the input grey-level image. The experimental 
results obtained for the real case show the validity of the total 
process involved in the 3-D location estimation of circular 
features in general, and the applicability of the analytical 
method developed in this paper in particular. 
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APPENDIX A 
AN ITERATIVE SOLUTION METHOD 

Subsequent to application of the rotational transformation 
(19) to the general equation of conicoids (3) and the plane 
1x + my + nz = 0,  the equation of the curve of intersection 
with respect to the new frame can be derived as 

[am2 + b12 - 2hlm]xt2 + [a12n2 + bm2n2 + c(12 + m2)’ 
+ 2hlmn2 - 2gln(12 + m2) - 2fmn(12 + m2)] y” 
+ [2ulmn - 2blmn - 2h12n + 2hm2n 
- 2gm(l2 + m2)+ 2 1 f ( P  + m2)]x’yI 

+ 2 [ - u m J F T Z + v l J F G Z ] z l  

+ 2 [ - u l n J W  - v m n J F T Z  

APPENDIX B 
DERIVATION OF AN EXPRESSION FOR zzl 

Let the equation of the first cone corresponding to the first 
camera position be (with respect to the camera frame) 

2 alx:, + bClY,, + Cl.,”l + 2 f l Y c l Z c l  

+2g12c1xc1 + 2 ~ 1 X c l Y c l  = 0. 

Note that since the vertex of the constructed cone is at the 
origin of the camera frame, the coefficients of x,, yc ,  zc, and 
the constant term are all equal to zero. That is, U = w = 
w = d = 0. Applying the transformation (44) to the above 
equation, the equation of a circle with respect to the xc:‘y:‘z:‘ 
frame would be obtained. As was shown earlier (see (22)), in 
the derived equation, the coefficients of XI’ and y” are equal, 
and the coefficient of the xl’y” term is equal to zero. Thus, if 

Ai E ail ;  + b i l ;  + ~ 1 1 :  + 2 f 1 &  + 2g11113 + 2h11112 + w(12 + m2)3/2] y‘ + (1’ + m2)d = 0. 

B1 

Ci 

alllnl + bllznz + c113n3 + f l l ~ n 3  + f113n2 
+ gl13nl + gin311 + hllln2 + h l h l  
a1m1n1+ blmznz + c1m3n3 + flmzn3 + flm3nz 

The above equation would represent a circle if the following 
two conditions exist (using conditions (22)): 

( a  - b)lmn + f ( P  + m2)1 - g ( P  + m2)m 
- h12n + hm2n = 0 

am2 + b12 - 2hlm = a12n2 + bm2n2 + c(12 + m2)’ then the equation of the circle becomes (in its standard form) 

- 2 f ( P  + m2)mn - 2 g ( P  + m2)ln 
+ 2hlmn2. [,;+ (?)I2+ [y;+ (?)I2 

Considering these two equations together with the third equa- 
tion, 1’ + m2 + n2 = l, three nonlinear equations with three 
unknowns 1, m, and n are obtained. From the first equation, n 
can be expressed in terms of the other two unknowns, based 
on which, two nonlinear equations (of higher degree) with two 

From the above equation, one can get the radius of a circle 
in terms of & (where x : ~ ,  yz l ,  and zz1 are denoted as the 
coordinates of the center) 

unknowns 1 and m are obtained: 

um2 + b12 - 2hlm = c(12 + m2)’ + (a12 + bm2 + 2hlm) 

Ai =: B; + Cf - AID1 

Bi -A: .  
l 2  -f(P + m2)1 + g ( P  + m2)m 

alm - blm - h12 + hm2 

- 2 [ f ( P  + m2)m + g ( P  + m2)1] 

Then the above equation becomes 

Aiz:: + Bir2 = 0 
1 -f(P + m2)1 + g ( P  + m2)m 

alm - blm - h12 + hm2 

alm - blm - h12 + hm2 l 2  ’ from which one can derive an explicit expression for zzl 
- f ( P  + m2)1 + g(Z2 + m2)m 

12 + m2 - 1 = - 

The variables 1 and m are of degree eight in the first equation 
and of degree six in the second equation. Numerical methods 
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