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Abstract—Many-valued switching systems have been of consider-
able academic interest, despite the apparent inability to use them in
practical applications. The main drawbacks, as pointed out by a num-
ber of authors, are the difficulties associated with the implementation
of the functional basic set and the lack of adequate simplification
techniques.

This paper describes a many-valued switching algebra based on a
basic set which is potentially implementable in the economic sense.

An algorithmic simplification technique is developed to facilitate

synthesis of nontrivial many-valued switching functions.
Feasibility of physical realization of the basic set is demonstrated
by an illustrative circuit.

Index Terms—Combinational circuits, compositional algebra,
many-valued logic, simplification, switching algebra.

I. INTRODUCTION

HE primary objective of much recent work [1]-[5]in
many-valued switching systems is to devise a set of
practically implementable basic functions, and to
develop an algebra such that functions of arbitrary com-
plexity may be represented in terms of simple algebraic
combinations of the basic functions. If, in addition, the
choice of basic functions and the algebra permits the devel-
opment of a technique to simplify in some useful sense the
complexity of the functional representations developed,
then these representations are of considerable additional
interest. Finally, it is potentially advantageous to devise a
system which is adaptable to any switching function, re-
gardless of the choice of integral base of the switching
variables involved.
The algebra presented in this paper is a generalization of
a previously developed ternary algebra [6]. It meets the
above requirements, since its basic set contains elementary
functions which are potentially implementable in the eco-
nomic sense, and has a well defined simplification technique.

II. DEFINITIONS AND NOTATION
Let T be a switching algebra with the following charac-
teristics.

1) It contains a set of variables (x, y, z, - - - ) which can as-
sume R logic values from the set 0={0,1,---, R—1},
O<l< - - <R-1.

2) There exists an equivalence (=) operation, that is,

xX=x
if x = y, theny = x,

if x=yandy = z,thenx = z.
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3) It has 2R+ 2 basic operations (basic set).
a) Two-Element Operations:

sum

x + y = max(x,y)

product x-y = min (x, y)

where max (x, y) and min (x, y) indicate the highest
and the lowest values of (x, y), respectively.
b) R Unary “Inverter”” Operations:

xk=Kiffx =0
= 0 otherwise

for Ke Q. .
¢) R Unary “Clockwise Cycling”” Operations:

X" = (x + M)mod R

where M e Q.

4) The two-element operations obey the idempotent,
commutative, associative, distributive, and absorption
laws.

Operations of the above basic set are a natural choice
because of their potentially simple implementation.

Discrete cycling operations (gates) are used, although an
M-order cycling gate x> can be implemented with M
Postian cycling gates [7] in cascade (M=1 in a Postian
cycling gate). Since the cycling gates differ only in the mag-
nitude of the step by which the truth levels are shifted, it is
reasonable to assume that the cost of all discrete gates is
approximately of the same order.

The total cost of a functional implementation is the sum
of the costs of all individual gates and all inputs. The cost
of an individual gate depends upon the physical realization
of the basic set.

It is apparent that in electronic implementation, the
cycling gates are the most difficult to construct. However,
satisfactory circuits have been designed as illustrated by the
example of a universal clockwise-cycling gate described in
the Appendix.

Post showed [7] that the cycling operation and the
product gate are a functionally complete set, and so this
expanded collection of gates is also functionally complete.

It is convenient to introduce counter-clockwise cycling
operations defined as

M
x~ = (x — M)mod R
where

MeQ.
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TABLE 1
THE TRUTH TABLE FOR EXAMPLE 1

x 000071 11122223333
y 01 2301230123071 23
fx, ) 22231230100021T1°0

They have no independent logical significance because

M R—-M
«— -

X =X

Standard notational liberties are taken. As in Boolean
algebra, the product operation need not be shown explicitly.
Unary operations are denoted with superscripts as indicated
in the definitions. If M =1 in the cycling operation, it may be
omitted. Note that clearly

R_ .8
X7 =x" =x

When a unary operation is performed on a composite
functional expression, the expression is parenthesized and
the appropriate superscript is placed outside the paren-
theses. It is not required to use parentheses for separation
of consecutive unary operations. In such cases the leftmost
superscript indicates the operation of the highest priority.
In this context the following expression can be written
concisely as shown, without any ambiguity :

(™51 =y,

Let Q, the basic space of the R values 0, 1,---, R—1, and
V=v,-,v, v;€Q, denote any point, “vertex,” in the
n-dimensional R-valued product space Q". An (incom-
~ pletely specified) n-variable R-valued switching function
f(x4, - -+, x,) is a mapping of (a subset of) Q" into Q. Such
a mapping is easily represented by an R-valued truth table.
One such truth table for a completely specified two-variable
four-valued function is given in Table 1.

Any n-variable R-valued switching function f(x, -
has a “‘sum of products of sums” canonical form :

- EL (5
k=1 (V|f")=k \i=1

"5 X)

f(xla. :

where

Y =logical sum (+ operation)
[ [=logical product (- operation)

V|f(V)=K is the set of vertices V =v,, - -
f(V)=K.

-, v, for which

Example 1: The canonical form for the function f(x, y)
given in Table I is

Feoy) = [+ N+ P + 90 + ]!
+Hx+w@+yﬂu+y%@“+yﬂuz+wr
+ [(x + yz)(x‘“ + y‘z')]3.
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II1. Basic THEOREMS AND RELATIONSHIPS

A number of important properties exhibited by the se-
lected basic set provide a means for algebraic manipulation.
In the following discussion let

1<K<(R-1)
1<M<(R-1)

unless specified otherwise.

The constants 0, 1, - - -, R — 1 may be generated as
(x-x¥)=0
(x- XXM = M.
Also,
2 R—-1
(x-x7-x7----- x~)=0

From the definitions of the chosen basic set there exist two
fundamental relationships.
Theorem 1: (x;+X,+ -+ +x,)5= xK-xK-.... xX,

Theorem 2: (xy X5« +" x)K = xK + xK 4+ - 4 xK

These are dual theorems the usage and significance of which
resemble that of De Morgan’s laws in Boolean algebra.
Their proofs, and those for the relationships below can be
found in [8].

Purposeful manipulation of general switching functions
should result in simplified functional expressions. Tools for
such process are provided by the following relationships.

f2f5+f“+fm””, (1)
where 1 <L <(R—M).

fJ +fK:fK

fJ . K =f.l

fl-f=r5rf=rr% )

where 1 <J <K.

(+ =0 o)
R e A AL B A

The possibility of simplifying functional expressions as
in (4) provides the main motivation for the simplification
procedure presented in the latter sections. Whenever a
“first stage” of an expression in a “‘sum of products of sums™
form can be simplified using (4), then this sum (correspond-
ing to an m-tuple in Section VI) is said to be “well formed.”

1 Py 112(1—1) I:II ',4-1‘]
SUALT A T (T Ty
+f<J_(J+1)+ +fR4_—2(R—1) L
-2 J R-2
_+_f - (1"1)+f"’.y+f‘—(1+1)+ +f - (R—I), (5)
where
I1<I<(R-1

I<J<R-1)
I<J.
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fHfo=f+f%0 (6)
AT A AR AL ™
R—1 ¥ or-a I M
5 teng [ S e @
I=0 I=0
where ) =logical sum (+ operation) and f, fi, ", fr—1

are arbitrary switching functions.

Example 2: From the canonical form for the function
f(x, y) of Example 1, a simplified expression for f may be
derived using the above relationships. Applying Theorem 2
followed by Theorem 1 we get

2 3 3 2
f(x, y) — x<—1yl + x*—lyl + x<—1y1—1 + x<—1y<—1
2
+ x2y% + x2y? + x2y? 4+ x72y 2
3 3 2

+ x72p? + x3y 73 4 x73y3,
Using (2) and rearranging the expression in an attempt to
achieve simplification by (4) we obtain

2 3
fooy) ="+ x72 + x°)?
3 2
+ T X+ xR+
2 3
+ X3y +y T+ y7d)

Finally, the simplified functional representation follows di-
rectly from (4):

2
feoy)=x"y* +x"y" + x%y.

IV. MECHANIZATION OF THE SIMPLIFICATION PROCESS

Algebraic manipulation of switching functions can be
channelled to lead to simplified forms. However, it is often
difficult to direct the manipulation in the proper direction,
without excessive trial and error attempts. The difficulties
increase rapidly as the number of variables and the radix
increase. Thus, it is of upmost importance to have a well
defined, automated simplification procedure, even if it does
not always yield absolutely minimal forms.

The procedure presented in this paper extends some con-
cepts of Roth’s binary covering methods [9], [10] to a gen-
eral multivalued case and introduces a new concept of
transfer covers. It seeks simplification with respect to cost
‘and leads to expressions of the “sum of products of sums”
type. These expressions are a particular class of “sum of
products of sums” expressions, where 1) first stage sums
involve only unary operations on a single variable, and
2) constant factors may appear at all three stages.

In order to facilitate the subsequent discussion it is neces-
sary to define several frequently used terms.

Implicant (W): Let m;=Q, i=1, 2, - - -, n be n nonempty
subsets of Q, called m-tuples; and denote by W=mm, - --m,
the set of vertices in Q" included in the Cartesian product of
subsets m;. For example W =m;m,m;=1(02)2 represents
the set of vertices ¥; =102 and V, =122. With reference to an
n-variable R-valued switching function f(x,---,Xx,) we
will say that such a set W=mm, - - - m, is an implicant of
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f if for some vertex Ve W the value f(V) is specified and
greater than zero. In this case, let K be the minimum value
of f(V)in the vertices Ve W where f is specified ; then we will
say that W is an implicant of f of rank K.

Given two implicants W, =m, m,, - --m,, and W,
=mg mg, - - - M, the inclusion relation is defined so that
W.= W, if every vertex VeW, is also included in W,. Thus,
W, W, if m,;Sm; for all i.

Order of implicants: The lowest (zero) order implicant is
an n-tuple of 1-tuples. Each additional truth value (in any
m-tuple) increases the order of the implicant by 1. Examples
of third-order implicants are

01) 1 (02) (13)
2 (0123) 1 2.

The concept of the order of implicants is a generalization of
the concept of dimension of binary cubes. But, unlike the
binary case, there exists no direct relation between the order
of an implicant and the number of vertices it includes.

Complex (Com(K)): A set of implicants W,, W,---, W,
constitutes a “complex” Com(K) having rank K equal to
the minimum rank of implicants in the complex.

Cover (Cov(K)): If every vertex V for which f(V)=K is
included in at least one implicant of Com(K), then such
Com(K) is called a ““‘cover” Cov(K).

Transfer implicant (Z): Let an implicant W of rank K
include vertices V;, V,, -, ¥, such that K< f(V})< f(V2)
< +++ < f(V,). Then W includes implicants Wy, W,, - - -, W,
of rank Ky =f(V}), K, =f(V2), - - -, K, =f(V3), and Wo W,
S W, > - -+ o W,.Suchaset ofimplicants, with the informa-
tion about their respective ranks retained, will be called a
“transfer implicant” of f and may be represented by the
following shorthand notation. Let

W,=m,m, ---m W, is of rank A,

W, is of rank B,

pn>

I/Vr =M My " My,

W, = m,ymy, - my, W, is of rank C,
where A>B>--->C and W,cW,c---cW,. Then
Z=m,m,, - - m,, where m,; is the set of truth values of
m,;, subscripted so that for each Eem,; there corresponds an
Exem,;, where K is the rank of the highest ranked implicant
W,,u=p,r, -, t, for which Eem,; and m,eW,.

As an example consider the following 3-variable impli-
cants:

W, = 33(05),
W, = (123) 3 (05),
W, = (0123) 3(025),

W, is of rank 4,
W, is of rank 3,
W, is of rank 1.

They can be combined into a transfer implicant
Z = (0, 132534 3,042, 54)-

Note that the transfer implicant contains all of the in-
formation contained in the implicants from which it was
formed. Our interest in transfer implicants stems from the
fact that they may lead to simplifications based on the
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identities of Section III. It is particularly advantageous
when the m-tuples m,; of subscripted truth values composing
transfer implicant Z=m,,m,, " - - m,, can be implemented
in the simplified form based on (4).

Transfer complex (T, is any set of transfer implicants.

Transfer cover (T,,,) is a transfer complex which specifies
the given switching function.

Inclusion of transfer implicants: Let Z, and Z; be two
transfer implicants. Then Z, = Z if every vertex V' com-
posing Z, is also included in Z; and if the logical product
of the subscripts associated with ¥ in Z, is not greater than
the logical product of the subscripts associated with V'in Z.

Cover implicant : Given a particular Cov (K), an implicant
in it which cannot be included in, or combined with any
other implicant (to yield a higher order implicant) in the
same cover is called a cover implicant. The cover implicant
corresponds to the binary “‘prime implicant.” However,
unlike the binary prime implicants, the cover implicants
are not necessarily the components for any minimal normal
form.

The simplification procedure that follows starts with a
given switching function defined in terms of R covers. It
generates the cover implicants using the %-product opera-
tion similar to Roth’s binary [9], [10] method. It then
utilizes the concept of transfer implicants to generate a
cover of such transfer implicants which are particularly
suitable for implementation in terms of the chosen basic
functions. Final selection of the required transfer implicants
for the simplified representation may be done in several
ways, e.g., by means of a McCluskey table [11].

V. GENERATION OF COVER IMPLICANTS

Successful derivation of cover implicants requires sys-
tematic development of high-order implicants from the
low-order ones. To accomplish this a *-product is defined.

Let

I/I/r =My My ot My

I/Vs = Mgy Mgy © Mgy
Then
44 W, =mymg - my,
I/Vu . I/Vu =MyyMyy 0 My,
Wxs W, =19 - 3, :
W: VVU = MyiMyz "7 My

where for p=t,u, - -, v have

) m, = m,; U mg; for exactly one i
P \m,; N myg for all other i,
2) W, = ¢ifm,=¢ for any i.

Some examples of the *-product are
{(02) 1 0} = {2 (01)(23)} = {2 1 (023)}
_j(124) 0 3
{(01)(34) 0} * {3001) 0} = .

967

A *-product of two n-variable implicants may yield as many
as n new implicants, although some are likely to be directly
included in one of the original implicants. The *-product is
commutative:

Wox W, = Wex W,

The following algorithm generates all cover implicants
from any set of initial covers which specify the given func-
tion. There are R initial covers, denoted Cov, (X),
0<K<R-—1, which may either directly correspond to the
truth table, or contain higher order implicants. A cover
may be empty, e.g., if the function never attains a truth
value greater than or equal to K, then Cov (K)=¢.

1) Let the function be defined by the initial covers
Cov, (R—1), Cov, (R-2), -+, Cov, (0). Note that
Cov, (0) will have no effect on the final implementation
of the function. Also, let all DON’T CARE vertices be
specified in a DON’T CARE complex Com,. Then, let
K=R—1 and form

Cov, (K) =€om,; U Cov; (X).

2) Generate Cov, (K) which consists of cover implicants,
formed by successive applications of the *-product on
Cov, (K) as well as the subsequently formed higher
order implicants.’

3) If K>1 then include Cov, (K) into the next lower
ranked cover as DON’T CARE conditions:

Cov; (K — 1) = Cov, (K) u Cov, (K — 1),

set K=K—1 and go to step 2; else all cover implicants
have been found in Cov, (R—1), - - -, Cov, (1).

It is evident that this algorithm results in sets of cover
implicants which are uniquely dependent on the given
switching function.

Example 3: Find the cover implicants for the function
defined in Table II. From the truth table, the initial covers

are
21
Cov,(3) = {31}

00
03
Cov,(2) ={20
30
33

02
10
11
13
22
23
32

Com, = ¢.

Cov, (1)

! The detailed procedure is given in [8].
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TABLE II
THE TRUTH TABLE FOR EXAMPLE 2

x 00001 11122223333
y 01 2301230123012 3
19 201 2110123112312

Then

Cov, (3) = Cov,(3)
Cov, (3) = {(23)1}

2)1
Cov, ) = {(CO)V (2)}

(23) (01
023) 0
3 (013)
03) (03)
Cov,(2)
Covs(l)}
(123)
(0123)
(23)
(023)

Cov,(2) =

Cov, (1) = {

(013)
(03)
0123)(
(023)

Cov,(1) =

VI. TRANSFER COVER ALGORITHM

Formation of transfer implicants normally leads to sim-
plified functional forms. Cover implicants can often be
merged into “‘well formed” transfer implicants which pro-
duce simplification of the type expressed in the identities of
Section II1.

Straightforward implementation of an m-tuple may be
achieved by one literal appearance (usually necessitating
one cycling and one inverting gate) of the corresponding
variable for each truth value in the m-tuple. For example,
at 5-valued m-tuple (0, 1, 25 3,) may be implemented as

2 3
(x2+x72+x73+ x79).

However, often it is possible to implement the mapping
indicated by two or more truth values of an m-tuple with a
single literal appearance of the corresponding variable,
based on the simplifying identities of Section III. This can
be done with the above S5-valued m-tuple, which has a

simpler implementation as (x“t +x2).

For some m-tuples, we can implement the mapping re-
quired by several truth values with a single literal appear-
ance of the variable, only if a limiting constant is introduced
to ensure proper mapping. For example, a 5-valued m-tuple
(0, 1, 25 3;) can be implemented as either

4 4
(x“-3+x%) or (x4 x?)-3,

where both alternatives are simpler than the straightforward
implementation.
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The m-tuples where such simpler implementations are
possible will be called “well formed.”” A transfer implicant
will be called “well formed” if at least one of its m-tuples is
“well formed.”

“Well formedness” of m-tuples is easily tested using the
conditions given below. It is convenient to place a subscript
G (as a result of the test) outside the parentheses of the
m-tuple, where G indicates the “well formedness™ of the
m-tuple and also serves as an indication of the limiting
constant. For “well formed” m-tuples G=1, 2,---, R—1,
while G = ¢ otherwise. )

Consider an m-tuple m; with subscripted truth values.

Condition 1: If m; contains fewer than R —1 truth values,
itis not “‘well formed” and G = ¢.

Condition 2: If m; contains exactly R—1 truth values,
where P is the “missing” truth value, i.e., P¢m;, then

a) if all subscripts in m; are the same, say H, then G=H ;
otherwise
b) if for any truth value Dem; which has the lowest sub-

P
script, say H, we have D™ > H then G = ¢ ; otherwise
c) iffor some truth value Eem; with subscript M, we have

Ef>Mm then G is equal to the smallest such M ; other-
wise G=R—1.

Condition 3: If m; contains R truth values, then if all sub-
scripts in m; are the same, say H, then G=H ; otherwise
G =¢. Note that if G=¢ as a result of this condition, it may
still be possible to have a simpler implementation for m; in
cases where m; contains a ‘“well formed” m-tuple of exactly
R — 1 truth values. Such cases are dealt with in the algorithm
given below.

From the identities in Section III, it is evident that the
most significant simplification can be attained for m-tuples
containing R—1 truth values. The Condition 2c leads to
simplification of the type indicated in (4), while 2b shows
whether or not such implementation is advantageous. Other
conditions indicate simplified implementations for m-tuples
where all subscripts are the same, based on Theorem 2 and
).

From Condition 2c, it follows that G=3 for the above
5-valued m-tuple, which is then written as (0, 1,25 35).

When G = ¢ the subscript G is normally not shown. Note
that m-tuples for which G=¢ are, in general, difficult to
implement. In contrast, m-tuples for which G=R—1 can
often be implemented with a single literal appearance of the
corresponding variable, e.g., a 4-valued m-tuple (1, 2, 33)5
is implemented simply as x.

The following algorithm generates a transfer cover for
the given function, with the goal of finding a simplified
implementation.

1) Find all transfer implicants from the cover implicants
(according to the definition in Section IV) in the covers
.Cov;(R—1), Cov,(R-=2),---, Cov,(1).

2) Apply the above conditions to each Z found in 1) to
determine if it is “well formed.”

3) Include all “‘well formed™ Z, for which all m-tuples
containing R truth values (if any) are “‘well formed,”
into a transfer complex T,

om*
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4) For each Z that has at least one m-tuple containing R
truth values which is not “well formed,” try to gen-
erate new “well formed” transfer implicants as follows.
Let m;eZ be such an m-tuple with R truth values.
Exclude one truth value with the lowest subscript,
say Dem; with a subscript H, from m; and consider it
as being missing. Thus P=D and m;=m;—D. Then
test m; according to the Conditions 2a, b, and ¢ to
determine whether or not it is “well formed.” If G # ¢,
then replace m; in Z by m;}, otherwise m; remains un-
changed.

This process is performed on all m;e Z which have
R truth values and are not “well formed,” and the
resultant transfer implicant is included in T,,,,.

It may be possible to generate more than one m-
tuple m; where G # ¢, when several truth values in m;
have the same lowest subscript. All such possibilities
must be considered. Thus a string of cover implicants
may be combined to form several transfer implicants,
although this is rarely the case.

5) Append subscripts to all truth values of cover impli-
cants to indicate their ranks, and designate the ensuing
covers as Cov,(R—1), Cov,(R—2), - - -, Cov,(1).

6) Form a transfer cover

T::r.wl = ’I::om v Cévl (R - 1) Y C(,)vl (R - 2)
U -+ u Cov(1).
7) Remove the redundant transfer implicants from T,

T = T:;ovl - {Zr|Zr S Zs’ Zr, Zse T;:ovl}‘

cov2

Example 4: Find the transfer cover T, for the cover
implicants of Example 3. The first transfer implicant is
formed by combining

W, =(23) 1,

W, = (23) (01),

W, = (123) (013),
Then Z=(1, 25 35) (0, 15 3,).

From Condition 2c it follows that G = 3 for both m-tuples;
hence

W, is of rank 3,
W, is of rank 2,
W, is of rank 1.

Z = (1; 23 33); (0, 15 3))s, ZeT .
Next consider
W, = (023) 0, W, is of rank 2,

W, = (0123) (03),  W,is of rank 1,

Then
Z=mm, =(0, 1, 2, 3;) (0, 3,).

Clearly, G =¢ for both m-tuples. But m, has R truth values,
thus (according to step 4 of the algorithm) exclude 1, from
m, ; hence m;=(0, 2, 3,). From Condition 2a it follows
that G=2 for m/ ; therefore form Z'=(0, 2, 3,), (0, 3,) and
Z' € T,,,,- The third transfer implicant results from

W, =(023) O,
W, = (023) (023),

W, is of rank 2,
W, is of rank 1.
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TABLE III
SELECTION OF TRANSFER IMPLICANTS FOR THE FUNCTION OF TABLE 11

x vy | z, z, zy 2z, Zs Z
A 2 @)
f(x,Ji =3 O
o 0 v v
0o 3 @)
foey =2 2 0 v
N N AV N
3 3 N2V
0 2 v J
oo Y i i
1 1 J v
foey=1 1 3|V J V
2 2 i i i
N N N N N N
302 J i v,

Then Z=(0, 2, 3,), (0, 2, 3,) and Z€eT,,,. Observe that
Z includes the above generated transfer implicant Z'.

Following the same procedure for other transfer impli-
cants and performing steps 5-7, the following transfer cover
is obtained:

Z,) (1123 02133y
Z| 0223, (0,243
1% |0h23) 013,
2712 [T10:2,3: 0,23,
Zs| ]0,1,2,3,) (0 3)
Z6 (21 31) (01 11 21 31)

VII. TRANSFER COVER SELECTION

Some vertices for which f(x, - - -, x,)= K may be covered
by several transfer implicants in T, ; hence it is important
to select a limited number of Z;e T, ,, sufficient to specify
the given function without unnecessary duplication. This
can be done in a variety of ways. One method which is easily
programmed is given in [8]. For simple functions, such as
the one used for illustrative purposes in Examples 3 and 4,
a customary McCluskey table [11] is easily constructed.

Table III shows such a table for the transfer cover T,,,
found in Example 4. It indicates that transfer implicants
Z, and Z, are essential (because of encircled vertices), and
they also constitute a complete cover. Therefore, the
optimized transfer cover is

{(11 23 33)3 (02 13 31)3}.
022, 32); 022, 32);

T;ovf -



970

One additional point should be emphasized. It can occur
that a vertex for which f(x,, -, x,)=K is covered by
more than one Z;,€T,,,;, which may result in duplication.
For example, consider the transfer implicants

Zr = (11 31)215 Z,.E Tc,ovfa
Zs = 11 (01 21)3 ZseTc,ovfs

Clearly, both Z, and Z specify that f(1, 2)=1. Since there
is no need for this double coverage, either Z, or Z, (but not
both) can be modified as follows:

Z; = 31 21’ Zs = 11 (01 21),
Z, = (11 31024, Zy=1,0;,.

Elimination of these redundancies may simplify the im-
plementation of the function. In fact, it is best to treat them
as DON’T CARE conditions. A special procedure called the
B-product method which determines such redundancies and
handles them as DON’T CARE cases is given in [8]. However,
the resultant additional simplification of the functional ex-
pressions often may not be sufficient to justify the extra
work involved.

VIII. IMPLEMENTATION OF THE TRANSFER COVER

Each m-tuple represents a function of a single variable,
which can be realized as a sum of the unary functions of its
truth values. A complete transfer implicant is implemented
as the product of its m-tuples, with the upper limit that the
function may attain (for the particular transfer implicant)
restricted by the lowest value of G in any m-tuple. Thus, the
transfer implicant is implemented as

fxn 2 x) = G;- [I"] fi(xi)]
i=1

where G is the lowest value of G in any m-tuple for which
G # ¢. However, G; need not be included if

1) G;=R-1,

2) G=¢ for all m-tuples,

3) any m-tuple consisting of fewer than R —1 truth values
ensures that the output levels of its inverter gates do
not exceed Gj.

The eftects of the identities of Section III are incorporated
into the following procedure for implementation.

1) For m-tuples where G = ¢, it is necessary to implement
the mapping specified by each truth value (and the asso-
ciated subscript) individually.

If m;=(A; B, - - - C.), then

4, % ¢
j;'(xi)=xi +xi +"'+x,«L.

2) For an m-tuple containing R—1 truth values, where
G # ¢, let P be the missing truth value.

Ifm1 =(AIBJ ot CL)G’ then

fiw) = xi + [Z x?“];
D
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where Dem,; is a truth value with a subscript M=1,J,---, L,
such that

D P
xi K& x5

where K=min(M, G;).
3) An m-tuple containing R truth values, where G # ¢,
represents a constant. Thus if

m; = [OGlG ---(R — 1)G]G9 then fi(x;) = G.

4) In the implementations arising from 1) and 2), it is
possible to have several terms with the same second super-
script (indicating the same inverter gate level). Such terms
can be grouped using Theorem 2, e.g., if m;=(4,B,C}), then

4 B, <, 4 B C
fi) =x77 + x4 x7T = (7 X7 x0)

A very convenient realization occurs for the m-tuples that
have R —1 truth values with the same subscripts, e.g., if

P
m; = (AgBy -~ Dy) then fi(x;) = x;**

where K is any integer < K<R-—1.

5) The final functional expression is obtained by combin-
ing the transfer implicants in a logical sum. If the optimized
transfer cover consists of Z,, Z, - - -, Z,€ T, ;, then

<=3 {G[n fi(x.-)]}-

6) Further simplification of the resultant expression may
be possible in isolated cases by application of the funda-
mental relationships of Section III.

f(xl,...

In view of the above, the simplified transfer cover T,
derived in Section VII may be implemented as

2. 2
floy)=(x+x73" +2-x7y".

IX. CONCLUSIONS

The developed algebra allows synthesis of general many-
valued switching functions. It has a well defined mecha-
nized simplification procedure, which yields functional ex-
pressions of the “sum of products of sums” type.

The described procedure is readily programmed.-Such a
program was written and used for synthesis of nontrivial
many-valued functions, with satisfactory results.

APPENDIX

CIRCUIT IMPLEMENTATION OF A UNIVERSAL
CYCLING GATE

From a circuit point of view, cycling of a multi-valued
signal may be thought of as equivalent to retransmission of
the signal with an added offset corresponding to an integer
digit interval. The value of the offset applied is made to
depend simply on the range of the input signal. In a base R
system an offset of value M is added when the signal level
is less than (R— M) and an offset of value (R— M) is sub-
tracted when the signal equals or exceeds the level (R— M),
as evident from Table IV.
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TABLE IV
CLOCKWISE CYCLING GATE

X 0 1 - —-—-R-M----R-2 R-1
M
x~ M M+1--- 0 -———--M-2 M-1

Ref. Level =

®R-M) ©

Ip>1,
[cowt}- -
ez + M
INz=x OP AME
_ ouT=%

I CD A

Fig. 1. Conceptual representation of a cycling gate.

A conceptual implementation of the cycling operation
for any value of M in a system with base R is shown in
Fig. 1. The fundamental idea is that of using a feedback
follower, a familiar operational amplifier technique, to
achieve the tracking of output and input levels. To provide
the required value of offset between input and output,
calibrated currents are arranged to flow in the feedback
resistor R;. The values of current available are either /; or
(I, — L) depending on the state of the switch S;. When I;
alone flows, the output follows the input but offset by I, R,
volts; when both 1, and I, flow the net current in R, is
(I, — L) and the offset is (I; —L)R,. Since L >, the two
offsets are of opposite sign.

For the operation corresponding to Table III, the values
of Ry, I,, and I, are chosen so that the voltage offset I, R,
corresponds to a level change of M and (I, —I,)R, corre-
sponds to (R — M). Simple manipulation indicates that

IR, = M,
I,R, =R,
and
I,/1, = M/R.

These relations may be applied to the particular design
as follows. Once the order of magnitude of currents to be
used is established, 1, can be chosen. Then, R, is defined by
virtue of the choice of base R. Finally, current Z, is adjusted
to set the required value of M and a reference level corre-
sponding to (R— M) is selected.

Note that the cost of implementation is independent of
the value of M used and that adjustment for M can be made
as a special final step for an otherwise universal cycling
gate.

A more detailed circuit realization is shown in Fig. 2.
Here the operational amplifier is formed by transistors 7;,
T,, T; [12], T,, and Ts; the comparator is composed of Tg

971

;RZ 1R3 Rgq Re

Dy
—{ 1 T,
o K L -
N T /T{?_
2Ry
T
4 Ref.Level
ouT Te | T7
I T
®1s ISCP 5 I|<P O}

Fig. 2. Circuit realization of a cycling gate.

and 75; and the switched constant current source uses 7T
alone. One circuit implemented from this pattern for base
10 uses 0.5-volt level separation for a complete signal range
of 0 to 4.5 volts. In all, 11 transistors are used including
realization of the current sources.

It is important to note that although the number of
transistors required in this straightforward implementation
is quite large, this number is totally independent of the base
value R over a fairly wide range. In the described circuit, for
example, a trivial increase in power supply voltage would
allow the range to be extended to accommodate larger bases
such as R=32.

Another interesting feature of the circuit is that the pa-
rameter M is controlled entirely by changes outside the
direct path of the signal flow. In fact, changes in M may
be made remotely by means of static voltage levels either
as a particularizing operation for individual cycling mod-
ules, or as a system parameter on all modules at once.
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