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Abstract-The organization and functional design of a parallel
radix-4 fast Fourier transform (FFT) computer for real-time signal
processing of wide-band signals is introduced.

Several machine oriented FFT algorithms obtained by factoring
the discrete Fourier transform (DFT) to an arbitrary radix and which
are well suited for the organization of parallel wired-in processers

are considered. This class of machine oriented algorithms is distin-
guished by the fact that it yields machine implementations ranging
from fully hard-wired serial sequential processors to partially wired-in
cascade processors with no feedback and with a level of parallelism
that is proportional to the radix of implementation. Moreover, this
class of algorithms can yield the computed Fourier coefficients in a

properly ascending order without the need for pre- or postordering
of data.
The organization of a system for digital-spectral and time-series

analysis implementing a high-speed algorithm is then outlined. It is
shown that doubling the processing speed by simultaneous process-

ing of two real-valued time series in such parallel wired-in computers
is possible. System considerations for reducing roundoff errors and
for performing other processes based on the Fourier transform are

discussed.
The organization and design of a radix-4 256-word synchronous

sequential FFT signal processor which has been constructed and
which performs real-time processing of signals sampled at a rate of
up to 1.6 million samples/s is described. Outlined are the basic
concepts which have been developed and used to minimize logic
circuitry in the different units of the machine. Oscilloscope displays
showing the whole sequence of computations involved in real-time
Fourier transformation at a sampling frequency of 1.6 MHz are,
included. The FFT of 256 complex samples is computed in 160 ss.

Finally, configurations of systems for signal processing using
other linear transforms of generalized spectral analysis are de-
scribed.

Index Terms-Computer architecture, convolution, correlation,
digital filtering, digital processing of signals, fast Fourier transform
(FFT), special-purpose computer, spectral analysis, time-series
analysis.

I. INTRODUCTION

THIS PAPER outlines the basic concepts which have
been developed and employed in the organization and

construction of a high-speed fast Fourier transform
(FFT) signal processing computer.

Manuscript received December 15, 1972; revised November 15,
1973. This work was supported in part by the National Research
Council of Canada under Grants A3148, A3951, and A8448.
M. J. Corinthios is with the Department of Electrical Engineering,

Ecole Polytechnique, Universite de Montreal, Montreal, P.Q.,
Canada.

K. C. Smith and J.-L. Yen are with the Department of Electrical
Engineering, University of Toronto, Toronto, Ont., Canada.

FFT algorithm is an efficient way of computing the
finite Fourier transform of a time series [2]. The computa-
tional saving introduced by the FFT algorithm has ren-
dered digital real-time signal processing potentially feasi-
ble in many areas of research including vibration analysis
[3], the detection and analysis of radio spectral lines [4],
speech processing and communication [5], seismic explora-
tion [6] and electroencephalogram and electrocardiogram
analysis [7]. In addition, the technique of factoring the
discrete Fourier transform (DFT) to obtain a "fast"
algorithm has been shown to be applicable to genreralized
spectral analysis [8], and to a more general and abstract
class of problems, as to finite Abelian groups [9].
The objective of the research reported in this paper has

been the organization of a processor for the spectral
analysis of wide-band signals (in the MHz range) in real
time. The high-processing speed thus called for necessitated
the search for algorithms which would be well adapted for
parallel machine architecture and wired-in organization
of a special purpose computer. The problem is then one of
computer architecture in which a proper match is sought
between the implemented algorithm and the building
blocks of the machine.

Several considerations have guided the search for FFT
algorithms suitable for implementation by a special pur-
pose machine. Among these considerations were the
emphasis on elimination or reduction of addressing of data,
the storage of data in long sequentially accessed queues,
the possibility of partitioning the memory into a number
of submemories, the words of which to be simultaneously
accessed for parallel processing, and the advantage of in-
corporating a properly ordered set of weighting coeffi-
cients and obtaining properly ordered Fourier coefficients
without preordering the input. In addition, a sequential
rather than cascade processor was believed to be of more
feasible cost, since the latter would incorporate a number
of arithmetic units (AU's) that is proportional to the num-
ber of iterations of the algorithms, i.e., proportional to
log, N, where N is the number of samples in the input
record. Moreover, it was considered important to employ
algorithms that can be easily implemented by a cascade
processor when higher speeds of processing are essential
enough to justify the cost. With these considerations in
mind several algorithms have been suggested by Corinthios
[1O]-[12].
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The processor described in this paper is a high-speed
radix-4 machine implementing one of a class of algorithms
that allows full-time utilization of the AU. A member
of this class of algorithms, which will be referred to as
the "high-speed algorithms" has been introduced in
[12]. This class of algorithms is described in Section II.
The organization of a system for on-line digital spectral
analysis is then outlined. System considerations for reduc-
ing round off errors and for performing other processes
based on Fourier transform are discussed.
The organization of the different units of the radix-4

256-word synchronous sequential FFT processor which
has been constructed and which performs real-time proces-
sing of signals sampled at a rate of up to 1.6 million
samples/s is then described. Machine configuration and
test results are then outlined. Oscilloscope displays show-
ing the whole sequence of computations involved in real-
time Fourier transformation at a sampling frequency of
1.6 MHz are included.

II. HIGH-SPEED FFT ALGORITHMS

In the following, two high-speed algorithms are de-
scribed. The first is an "asymmetric algorithm" which
yields an asymmetric machine where a complex multiplier
is included in each but one of its parallel channels [11].
The second is a synunetric one which yields a higher
processing speed, but requires one more complex multiplier
than the asymmetric one.

Let f, denote the sth sample of the time series obtained
by sampling a generally complex time function f(t) for a
duration T. For N such samples the DFT is defined by

1 N-i
Fr - El (exp 2irjrs/N)f,

N8=90

place of wk. Then TN can be written as

TN =

O 00
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In this notation, multiplication of entries becomes addi-
tion.

In the following the number of samples N is restricted
to values that are multiples of an integer, referred to in
the following as the radix r, i.e., N = rn. Let PK(r) be the
ideal-shuffle-base-r permutation matrix of dimension K.
The finite Fourier transformation matrix TN can be parti-
tioned and factored yielding the high-speed ordered-input
ordered-output (0100) asymmetric algorithm [12]

n

TN = I| (jLm(7)Sm(t)).
M=1

(9)

The pertinent definitions of matrices as derived in [12]
are stated in the following, where the symbol x stands for
the Kronecker product of matrices and pm(r) is a permuta-
tion defined by

Pi(f) = Ir,-i X Pri(r)(1) (10)

where F, is the rth Fourier coefficient and j = (-1)1/2.
Both the time increment (s) and frequency increment
(r) range between 0 and N - 1.

If we denote the sets f, and F, respectively, by the
column vectors

f = col ( fo,fi, * * *,fv-l),
and

F = col (Fo,F,. ,- - IFN_1);
and if we define a matrix TN of coefficients given by

(TAr -= exp (2irjrs/N)
= wr8

where

(2)

(3)

(4)
(5)

and

PI = /41 = IN (11)

where the notation IK denotes the identity matrix of
dimension K. A,u(r) is the weighting or twiddle operator and
is given by

(12)

where

DNIk(r) = quasidiag (IN/,rk,KA,K2k,K3k ... yK(r,-l)k) (13)
and

Km = diag IO,m,2m,3m, . (-rk ) 4 (14)

w = exp (27rj/N)
then (1) can be written in the form

F = (1/N) TNf.

(6) in general

Sm_,(r) = S(r)p7(r); m = 2y3, ... n

(7) with

To simplify the notation, as in the papers [10]-E12],
we preserve only the exponent of w. That is, we write k in

Sl=r)- S(r) = (IN/r X Tr)

and

(15)

(16)
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An example of the high-speed OIOO asymmetric algorithm
for N = 8, r = 2 is shown in graph form in Fig. 1.

In a way similar to that which has been utilized in [12]
for obtaining the high-speed asymmetric algorithm we

can arrive at the high-speed OIOO symmetric algorithm
which yields higher speed at the expense of an additional
multiplier

n

TN = H (mUm) (18)

mn=l

where

Ui = Iri-' X DNfri-1

o = Rn-iS,

and

Rm = ITm-1 X PIN/rrm-i;

A. Automatic Array Scaling

Truncation or roundoff errors may occur as a result of
performing cumulative fixed-point arithmetic in a machine
of limited word length. Array scaling, a compromise
between fixed-point and floating-point computation, em-
ploys a feature that is similar to normalization in floating-
point arithmetic. By shifting the bits of a word to the left
until all leading zeros are eliminated when the word is
positive, and all one's eliminated when the word is nega-
tive and two's complement representation is employed,
normalization helps preserve least significant bits resulting
from arithmetic operations followed by a truncation
operation.
As shown in Fig. 2, the control unit includes two

boxes for detecting the number of leading zeros at the
input to IB and the output of the AU. The first detects
the size of data in the input time series, such that when
the Nth point has been observed the number of lead-
ing zeros in the word of maximum size is determined.
The second detector performs a similar function through-
out the processing iterations. Thus at any iteration, other
than the last, the words of the array at the output of the
arithmetic unit are monitored and the leading zeros in the
maximum word recorded. The control unit, moreover,
includes an accumulator for summing the number of left
shifts performed at each iteration and presenting it at the
end of processing as a scale factor associated with the out-
put array.

where

PK' = PK 1.

III. SYSTEM ORGANIZATION OF J

SPECTRUM ANALYZER

(22)

A DIGITAL

Fig. 2 shows in block form a possible configuration of a

global system for digital spectral analysis. The system
incorporates a high-speed processor as its basic central
processing unit. In addition, the system comprises an

A/D converter, an input buffer memory and means for
simultaneous processing of two real records [1], for ob-
taining averaged power spectra and performing other
processes of time-series analysis. Means for automatic
array scaling is incorporated in the control unit.
The input function is fed to the system at the input

terminal marked IN in the figure.- It is sampled and quan-

tized using the A/D converter the output of which is
stored sequentially into the input buffer memory marked
IB in the figure. IB thus accumulates the elements of
the input vector f to be transformed. When N samples
have been accumulated, IB contains the N-word input
record ready for processing.
The contents of IB are then unloaded into memory

MEM1 of the central processor. The central processor

performs a high-speed FFT algorithm and yields the
output Fourier coefficients at the terminal marked OUT
in the figure.

B. Machine Organization for Performing Other Processes
Based on Fourier Transforms

As shown in Fig. 2, the Fourier coefficients at the output
marked OUT of the central processing unit are fed into
an auxiliary memnory. In order to perform operations
which call for the multiplication of two transforms in real
time such auxiliary memory would be added to the central
processing unit. Operations such as cross correlation and
convolution can thus be performed in real time using the
auxiliary memory for temporarily storing the first trans-
form until the second is computed.
The remaining part of Fig. 2 shows a method for simul-

taneous processing of two real-valued time series and
obtaining averaged power spectra. The algorithm for
processing two real-valued functions simultaneously and
obtaining their transforms separately is developed in [1].

This algorithm calls for simultaneous accessing of pairs of
words in the F array that are symmetrically located
around its middle point. The auxiliary memory is thus
divided into two halves, into the first of which the Fourier
coefficients Fo,F1 ,FN/2-1 are stored; the second stores
FN/2,FN/2+1,3 FFN_1. The decoder in the figure includes
simply two adders and two subtractors, each of which is
followed by a division by 2 in the form of one-bit shift-
right operation. Separation of the components of the two
transforms is accomplished by successively performing
the addition, subtraction, and division operations on the
real and imaginary components of each pair of words of the

0
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Fig. 1. High-speed OIOO asymmetric algorithm for N = 8, r = 2.

IN

Fig. 2. System for digital spectrum analysis.

array F. Simultaneous accessing of the proper pairs of
words is achieved by right-shift signals applied to the
first half of the auxiliary memory simultaneously with
left-shift signals applied to the second half. The second
half of the auxiliary memory should allow such left-shift
operation in addition to the right-shift operation utilized
in storing the second half of the array F. Right-shift left-
shift registers or random access memories can be used in
constructing the second half of the auxiliary memory.

Fig. 2 shows interconnections for computing averaged
power spectra. The real and imaginary components a and
b, respectively, of each of the decoder outputs are squared
and added and the resulting power spectra accumulated
into an N/2-word memory, P.S. MEM in the figure, which

may be in the form of recirculating shift registers. The
accumulated power spectrum may then be divided by the
number of accumulated power spectra to yield the aver-
aged power spectrum, or this number may be associated
with the assumulated power spectrum as a scale factor.

Finally, we should observe that the scale factor asso-
ciated with the output array F has to be accounted for in
all the operations described in this section.

IV. FUNCTIONAL DESIGN OF A RADIX-4
HIGH-SPEED FOURIER PROCESSOR

The organization and functional design of a radix-4
real-tinme high-speed Fourier processor which has been
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Fig. 3. Radix-4 high-speed processor.

INPUTS, 4 COMPLEX WORDS

ARRAY SCALING
COMMANDS FROM
CONTROL UNIT

ARRAY SCALING
INFORMATION

(TO CONTROL UNIT )

OUTPUTS, 4 COMPLEX WORDS

Fig. 4. Schematic of an arithmetic unit for an asymmetric radix4
processor. Circles including plus sign indicate 4-word adders;
squares with X sign indicate complex multipliers.

constructed will now be described. The processor is an

asymmetric type machine designed to compute Fourier
transforms of 256-word input records in real time.

A. Basic Organization of High-Speed Processors

The Appendix shows the speed of machines implement-
ing the high-speed algorithm relative to those implement-
ing the fully wired-in algorithms described in [11]. Since
the difference in implementation cost is minor, a high-
speed algorithm was chosen for implementation. The
sequential operation of a basic processor will now be
described. Reference is made to Fig. 3 which shows a block
diagram of an example of a radix-4 machine, even though
the description applies to a general-radix machine. As
shown in Fig. 3 the machine includes two memories
MEM1 and MEM2, -each storing N words, an AU
and two switches. The AU includes preweighters and
weighters as is shown schematically in Fig. 4. Both
MEM1 and MEM2 are divided into r submemories
(SM), each of which is again divided into r equal length

queues. Switch S2 gates r words at each clock pulse to the
AU. In all but the first iteration these words constitute
the data at the topes of the r queues of a selected SM. In
the first iteration, the queues of each SM are connected to
for-m a long queue, and the r wo'rds at the tops of the thus
formed queues are fed to AU through S2. When the input
data to the AU are selected from MEM1, designated then
as a "source," the output r words of the AU are stored in
MEM2, designated "sink," and vice versa. When either
MEM1 or MEM2 is in the "sink" mode, the r queues in
each of its SM's are connected to form one long queue, to
the "rear" of which data is fed.
The nth iteration calls for preweighting only. Thus the

data at the output of the preweighter are gated out of the
processor during the nth iteration, and the Fourier coeffi-
cients are in proper order. We also note that, since the
last iteration includes no multiplication the power spec-
trum can be evaluated during the nth iteration by making
use of the otherwise idle multipliers. Power spectra can
thus be computed in the same time as that reqquired to
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perform the Fourier transformation. The power spectrum
is also obtained in proper order which eliminates the need
of reordering that may be otherwise be necessary.

B. The AU

The AU shown in Fig. 4 performs the preweighting
and weighting operations which involve mainly complex
addition, complex subtraction and complex multiplica-
tion. In addition, the AU comprises means for perform-
ing right- and left-shifts, for avoiding overflow and for
array scaling. Each complex number, coded in two's
complement is 24-bits long and comprises a real and an
imaginary component of 11 bits plus a sign bit each.

In the following we assume the MEM1 contains the
input record, the machine is ready to perform the first
iteration of the algorithm and the input buffer memory
IB is accumulating the samples of the subsequent record.
The processor implements the 0100 asymmetric
algorithm given by (9) above with r = 4. We note that
for this value of the radix the operator T, has the value

respectively, for k = 0,1,2,3 and T4 is given by (23).
It is possible to implement the transformation given by

(26) directly. However, a more efficient implementation
can be achieved by a factorization of the matrix T4 that is
identical to the original factorization that has been per-
formed on the matrix TN. This is a further application
of the FFT algorithm to the computation of the preweight-
ing transformation matrix. It can be shown that the result
of factorization of T4 may be written in the form

T4= C4E2(12 X T2)

1 1

1

1

:1

[1
1 1

1 -1

1 -1

(27)

1 1

1 1

1 -1

1 -1

(28)
1

1

1

1 1 1

j -1 -j

-1 1 -1

LI -j -1 A]
The Preweighting Unit: The preweightini

four input complex words, 24 bits each, an

output four complex words of the same lenj
the preweighting operator Sm of (15) and
input operands. The preweighting unit i
four-word adders/subtractors the inputs to
inputs to the arithmetic unit after being wE

values ±4j.
We adopt a binary fraction representatio

Array scaling decisions are based in the
upon scanning of the array words upon entr2
In any of the subsequent iterations the de(
upon the result of scanning the array wor

preceding iteration.
Let us denote the four selected and prc

input words by

Zk = Zkr + jZki; k = 0,1,2,3

where the subscripts r and i stand for real E

components, respectively. Let us further d(
puts of the preweighters by

Vk = Vkr + jVki; k = 0,1,2,3

The input-output transformation performe
weighting unit can be written in the matrix

v = T4z

where z and v are vectors whose elements

It can be shown that through such factorization only four
two-word adders/subtractors are needed to compute out-

(23) puts such as v2, and V4r, as compared to six such units had
straightforward evaluation without the factorization of
T4 been performed. This applies for the real and imaginary
components of each of the four channels.

The Weighting Unit: The weighting unit comprises three
g unit accepts complex multipliers for multiplying the input complex
Ld yields at its words v1, v2, and V3 by the input weighting coefficients w1,
gth. It applies w2, and W3, respectively. Each of these complex multipliers
1 (16), to the calls for four multipliers for real numbers, an adder and a
includes eight subtractor.
which are the The word lengths in the different units of the machine is
eighted by the selected to yield an absolute output error relative to full-

scale input amplitude of less than 1 percent. Results of an
in of numbers. error analysis using a computer simulation program of the
first iteration machine with a set of different word lengths were compared
y into MEMl. to floating point computation of the transform on the
cision is based 360/65 IBM machine for different input functions such as
'ds during the the random, sine, square, and ramp functions. It was

found that with a quantization to 8 bits of the input
)perly ordered function, with the particular array scaling mechanism

utilized, the error criterion was satisfied when the memory
of the machine has a word length of 12 bits for each of the

(24) real and imaginary components. Hardware and feasibility
and imaginary considerations have shown that a word length of 11 bits
enote the out- (10 bits + sign) for the operands to the multiplier were

a convenient choice. With such constraints, and with the
20.bit plus sign output of the multipliers kept at that

(25) double precision length until after the addition and sub-
traction operations were performed to yield the complex

d by the pre- outputs of the weighting unit, the error criterion was
form found to be still satisfied. These word lengths were there-

(26) fore utilized in the construction of the machine.
A Multiplier for Real Numbers: The real-numbers multi-

are zk and Vk, plier has a three-dimensional form in the form of parallel
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planes, as has already been described in [11]. Its structure
is that of a binary tree each node of which contains a

parallel n-bit adder, where n is the word length. Higher
speeds could be achieved by synchronizing the arrival of
sums and carries to each 4-bit parallel adder, through
propagation of carries between planes.

It is noted that the multiplier organization lends itself
well to pipelining. Thus by the incorporation of latches
between the multiplier's planes we can obtain speeds of
multiplication approaching the speed of addition within a

plane.
The Real-To-Complex (RTC) Unit: The inputs to the

RTC unit are the outputs of the four multipliers, namely
vrWr, viwi, Vrwi, viwr. The inputs are thus four words, each
represented by 20 bits plus a sign bit and a control
signal for conditional left shift, constitute the inputs to the
RTC unit. The outputs of the RTC unit are monitored
for the detection of the number of leading zeros as a

means for forming the array sdaling decisions of the sub-
sequent iteration. The RTC unit completes the complex
multiplication operation by adding and subtracting the
outputs of the real-numbers multipliers.

C. The Storage and Switching Units
The storage and switching units contain memories

MEM1 and MEM12 used for the storage of data, and the
switching units incorporated in the processor, namely,
units Si and S2 in Fig. 2 above. The storage unit receives
the arithmetic unit outputs AU01 to AU04. Its output is
fed to the switching unit S2. The storage units queues

were implemented as long-shift registers. Multiplexers
were used for implementing the switching unit.

D. The Weighting Coefficients Storage Unit

The weighting coefficients Wi, W2, and W3 are stored
in three read-only memories. Each of the real and imagin-
ary component is quantized to 10 bits plus a sign bit. One
extra bit is added to some component, to act as a flag that
commands bypassing the multiplier.

E. The Input Buffer Memory

The input buffer memory IB is divided into four sub-
memories in the form of long queues, each of which is in
turn divided into four shorter queues. It accepts input
data quantized to 11 bits plus a sign bit.
The four outputs of IB, denoted IB1, IB2, IB3, and

IB4, are connected to the switching unit Si.

F. Sequencing and Control Signals

The sequencing operations called for by the imple-
mented algorithm and the scaling of data throughout
processing are performed by signals generated by the
control unit. In [1] a concise description of the different
events that occur sequentially in the processor and the
control signals employed for achieving them is outlined.

In addition to generating signals for moving data be-
tween the memories, the arithmetic unit generates signals

for writing and reading data into and out of the input
buffer memory, for generating the addressing signals of the
ROM's and for array scaling.
The addressing for the ROM's is obtained through

the utilization of the six least significant bits of the
machine's master counter, to the input of which the main
clock is connected. These least significant bits are gated
into a weighting-coefficients-address latch at intervals
during processing, as specified by the operator gm of the
high-speed asymmetric algorithm. An accumulator in-
corporated in the control unit adds the number of shifts
performed during one transform and stores the result as a
scale factor associated with the output array.

V. MACHINE CONFIGURATION AND
PERFORMANCE

A. Machine Configuration

Except for memories MEM1 and MEM2 the circuits
of the machine employ SSI and MSI TTL integrated cir-
cuits. Bipolar random access memories are used in imple-
menting the input buffer memory circuitry, and bipolar
programmable read only memories (PROM's) are used
as the storage medium for the weighting coefficients.
MEM1 and MEM2 utilize MOSFET shift registers.

Fig. 5 shows a photograph of the different circuits of
the machine before final assembly. These include 12 real-
number multipliers, memories MEM1, MEM2, switches
Si and S2 and the preweighting unit. In addition, the
figure shows the weighting coefficients unit, the control
unit, the input buffer memory, and three RTC units. The
processor employs a total number of 1800 integrated cir-
cuit packages. Figs. 6 and 7 show different views of the
assembled processor.

B. Performance of the Assembled Fourier Processos-

In this section the performance of the assembled
processor when performing Fourier transformation in real
time is described. A periodic ramp function the samples of
which have the values 0,1,2,*- .,255 is the input testing
function. The outputs of the AU were observed through-
out the four iterations and compared bit-by-bit with
the results of a computer simulation program. The test
was carried at different sampling frequencies ranging
from static conditions to the frequency 1.6 MHz which
was observed to be nearly the maximum sampling fre-
quency for correct operation. The shift registers employed
in the machine are specified to have a maximum cutoff
frequency of 2 MHz. Their response to a shifting clock is
delayed by 120 to 160 ns, but delays as large as 200 ns
were observed. It is the belief of the authors that this
varying amount of delay between registers is the main
reason for the cutoff frequency of the machine not being
closer to 2 MHz. The total computation time per clock
pulse is estimated not to exceed 350 ns. Thus the arithmetic
unit would allow a sampling frequency that is near to 3
MHz.
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Fig. 5. Top view of all the panels in the machine before final
assembly.

Fig. 6. Front view of the radix-4 high-speed Fourier processor.

Fig. 7. Side view of the high-speed Fourier processor.

Figs. 8 and 9 show the sequence of rotations and
attenuations undergone by the two AU outputs AUOl
and AU04 in the complex plane during each of the
256 clocks of real-time operations. These displays have
been obtained by attaching D/A converters to the real
and imaginary component of each AU output and feed-

ing these two components to the X and Y deflections,
respectively, of the oscilloscope. Fig. 8(a) shows the
fourth iteration of AUO1, while Fig. 8(b) is a simultaneous
display of all iterations of AUO1. Similarly, Fig. 9(a) and
(b) show respectively the fourth iteration and a superposi-
tion of all iterations of AU04.
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(a)

(b)
Fig. 8. (a) Iteration 4 of AUO1. (b) All iterations of AUO1.

(a)

(b)
Fig. 9. (a) Iteration 4 of AU04. (b) All iterations of AU04.

To verify these results the outputs of a radix-4 FFT
computer program employing floating point arithmetic
were plotted in the complex plane and proved identical
with the oscilloscope photographs. Figs. 10 and 11 show
two of these computer outputs for AU01 and AU04 and
are seen to be identical to the oscilloscope displays of these

generally complex samples in real time has been shown to
equal 160 As reducible to 128 AS and to even less time if
fast memory is used. For 1024 samples the corresponding
time equals 640 Ms.

A. The Class of Machines as General Signal Processors

outputs [Figs. 8(b) and 9(b)]. The class of algorithms and implementing machines
outlined above has been discussed in relation to Fourier

VI. CONCLUSION transforms and power spectrum computation of signals.
Such a limitation needs not be imposed on the scope of

By choosing a value of four for the radix of factorization applications of these processors, however. In fact, these
of the DFT, and by implementing a high-speed machine processors should be able to perform the general task of
oriented algorithm, we were able to combine parallel applying a highly symmetric transformation matrix to an
machine architecture with wired-in design. Algorithms input vector. The machines are thus array processors in
obtained by factorization to higher radices call for a fewer which the input is a vector in the form of an array which
number of multiplications. Moreover, the reduction of has to be transformed into a new vector through the appli-
truncation or roundoff errors associated with them, due cation of some particular transformation, such as the
to the reduction in the number of iterations or stages of Walsh, Hadamard, or other transforms of generalized
precessing, constitutes an additional advantage which is spectral analysis. This transformation matrix is highly
significant in determining the word length and hence the symmetric and can be factored into a series of matrix
size of the machine. Kronecker products, in a similar way to that applied in
The time of computing the Fourier transform of 256 factoring the DFT to obtain FFT algorithms. The fac-
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CORINTHIOS et al.: PARALLEL RADIX-4 FFT COMPUTER

Fig. 12. Generalized high-speed signal processor.

TABLE I
COMPUTATION TIME t, AND MAXIMUM SAMPLING FREQUENCY fmax FOR REAL-TIME FOURIER TRANSFORMATION OF N = 4096 SAMPI,E,S

Fully Wired-In Machines
High-Speed Asymmetric

Asymmetric Machines Symmetric Machines Machines

Radix r t, (ins) tm z (samples/s) t" (ins) fmax (samples/s) tp (ms) fmax (samples/s)

2 15.32 265 000 12.84 316 000 6.43 637 000

4 5.63 714 000 5.37 748 000 1.64 2 500 000

8 3.04 1 303 000 3.01 1 317 000 0.69 5 970 000

The assumptions made in this table are as follows.
Assumption 1: 48h = 0.20 )As.
Assumption 2: For r = 2, tp = 0.06 ,As, tm = 0.28 la.
Assumption 3: For r = 4, tp = 0.10 ,us, tm = 0.30 /As.
Assumption 4: For r = 8, tp = 0.20 ps, tm = 0.38 ,uS.

torization produces. an iterative computation algorithm
in the form of a product of matrices. The weighting coeffi-
cients involved in the computation are related to the
original transformation matrix before factorization, and
need be generated according to the implemented algorithm
and fed to the arithmetic unit of the processor. Fig. 12
shows the organization of the high-speed signal processor
for general spectral analysis. Design and sequencing of
operations of these machines should be similar to the ones
described in here in relation to the particular application
of Fourier transformation.

APPENDIX

Comparison of Maximum Sampling Frequency for Different
Machine Organizations

We summarize here the results of a comparison that has
been made [1] to evaluate the relative speed between the
fully wired-in machines and the high-speed machines.
Table I lists the results of this comparison for a record
length of 4096 samples. Equations defining the maximum
speed for each machine organization can be found in [1].
The assumptions made in Table I involve the following
symbols: the time t8G indicates the reciprocal of the maxi-
mum frequency of shifting data in memory; the time t,

indicates the preweighting time; tm indicates the total
arithmetic time, i.e., the time of preweighting followed by
weighting.

Table I shows the higher processing speeds possessed
by machines of higher radices. The table also shows the
higher sampling frequencies associated with high-speed
machines as compared to the fully wired-in machines, for
the same radix of factorization of the DFT. The high-
speed symmetric machines are not included in the table.
Their speed of processing is higher than the asymmetric
ones, and this difference in processing speed reduces for
higher radices; as is the case for fully wired-in machines.
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