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Abstract—RAP—a Relational Associative Processor—is a back-
end or peripheral device to augment a general purpose computer for
implementing a database management system (DBMS). Its
architecture is based on the fact that database operations are
inherently set-oriented and that data base addressing is best accom-
plished through associative reference to achieve high data indepen-
dence. RAP utilizes these characteristics by combining the features
of associative and array processors. Previous publications on RAP
have dealt separately with the details of the first version of its
architecture [1]-[4] language interface [5], [6] and performance
evaluation [7]-[9]. This paper provides details on a recently evolved,
faster, and more flexible architecture for RAP called RAP.2 [17].

Index Terms—Access methods, array processors, associative
memories, associative processors, bubble memory, cellular mem-
ories, charge-coupled device (CCD) memory, computer architec-
ture, database machines, database management systems, disk
memory, microprocessors, parallel processors, random access
memory (RAM), secondary storage devices.

I. INTRODUCTION

AP—a Relational Associative Processor—is a device

designed to act as an attached, peripheral, or back-end
machine to augment a conventional computer in providing
fast responding and user oriented database management
systems. The basic architecture of an RAP device consists of
a set of identical components called cells, a statistical
arithmetic unit, and central controller. This organization is
shown in Fig. 1. Each cell is composed of a processor and
block addressable memory. The processor is specifically
constructed for database definition, insertion, deletion,
update, and retrieval primitives. Logic for each processor
has been designed to be compatible with large-scale in-
tegrated (LSI) circuit implementation technology. The
memory can be implemented by a rotating magnetic device
such as the track of a disk or drum, semiconductor charge-
coupled device (CCD) or random access memory (RAM), or
bubble memory. The statistical arithmetic unit is actually
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part of the controller and is designed for computing sum-
mary statistics (e.g., totals, averages, etc.) over the combined
contents of the cell memories. The controller is responsible
for receiving instructions in RAP machine format from a
general purpose front-end or host computer, decoding them,
broadcasting control sequences to initiate cell execution,
and passing retrieved or inserted items between the front-
end, and RAP. Each RAP instruction is executed within the
cells which operate in parallel directly on the data. Simple
intercell communication for priority polling is implemented
along the chain. Each memory contains data formatted into
a sequence of records containing values of data items. The
details will be given shortly.

A cell is composed of several logic units, the most
important being involved with searching. Several compara-
tor elements form the basis of the associative addressing
architecture of a cell. The comparators can independently
test the contents of one item in the database against several
literals or several items each against different literals. The
true or false results of comparison tests on a record can be
combined into a disjunctive or conjunctive result to deter-
mine if the record associatively qualifies for further
manipulation.

The key to RAP’s performance for database management
is parallel processing. Parallel processing eliminates the
need for indicies, such as inverted lists or B-trees, for fast
retrieval. Thus, the maintenance of such access structures
are also eliminated. A second advantage to the RAP
approach is it provides hardware mechanisms that can
interpret memory formats that match the users view of
database files and records. This minimizes the software
required to translate programming languages into machine
instructions. A demonstration is given in the Appendix
showing the RAP prototype actual operation.

The front-end computer supports high-level user func-
tions. It interfaces users to RAP by supporting communica-
tions via interactive terminals or through programming
language caLL and I/O statements for application programs
running in multiprogramming operating systems. The trans-
lation of various query languages into RAP programs will
also be accomplished in the front-end. Database system
software responsible for coordinating multiple and diverse
secondary storage devices other than RAP, scheduling of
queries, and maintaining protection, security, and integrity
must also be supported in the front-end but can be aided by
the data-processing capabilities of RAP.

Designs for devices similar in philosophy to RAP can also
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be found in the literature [10]-[14]. A survey of recent
database machine developments is given in [19].

II. THE ABSTRACT MACHINE

The RAP system has a machine-oriented yet high-level
and complete assembler instruction set for manipulating
databases. Most instructions correspond to one machine
instruction which invokes several cell microcode instruc-
tions. In this section, an explanation of the RAP assembler
instructions will be presented. A programmer’s view of the
RAP data structure will be given first. Then the basic
structure of an RAP instruction will be given followed by the
description of each individual instruction.

A. Data Structure

From a programmer’s view, RAP stores data as
unordered occurrences of records defined by an RAP rela-
tion as shown in Fig. 2. A relation can be envisioned as a
formatted table of data where rows of the table represent a
set of record occurrences, sometimes called tuples in rela-
tional terminology. The occurrences of a relation stores data
about a set of similar entities (e.g., persons, places, things, or
relationships). The name of a relation identifies the set of
entities. The format of record occurrences is defined by
naming the data items whose concatenated values occur in
each record and specifying their length. The length of each
item in the relation is fixed according to a user’s choice of
one of several sizes. Each occurrence of a relation stores data
which describes a particular entity by assigning a value to
each of the items according to the format of the relation. The
values are treated internally as simple bit patterns for
nonnumeric data and as integers in two’s-complement
format for numeric data.

Each relation and its occurrences are augmented by
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several special one-bit items Mi called mark bits. These items
can be set to @ or 1 under user control through various
marking instructions or by the intermediate operations of
other instructions. The bits are used primarily as a work area
to temporarily indicate subsets of record occurrences so that
the results of one instruction can be used in subsequent
instructions. This is done by treating the mark bits as normal
data items to be tested during associative addressing. An
extra mark bit called the delete flag, which is transparent to
users, is provided to indicate deleted tuples to be ignored
during instruction execution. ’

The records of a relation can occupy one or several cell
memories, but each cell can only store records from one
relation. Therefore, a single RAP device can contain record
occurrences from one large relation or from N relations, one
for each of N cells. (This is an artificial limitation imposed by
our implementation. Allowing records from more than one
relation to reside on a cell can increase performance in many
cases by having more cells process an instruction.) The
programmer of a query need not be aware of the cell location
or number of cells occupied by the relations. However, there
are occasions, such as during garbage collection or bulk
loading, where the user needs to control the device at the cell
level. To permit this, a user can refer to registers containing
an integer address identifying each cell.

Several registers are also available in the controller. These
can be used to store intermediate computations or retrived
data from relations and used as search values to be tested in
subsequent instructions qualifications for generating com-
plex queries.

An RAP relation is an intermediate-level abstraction of
large databases. Although it has a flat tubular structure, it is
not quite relational as defined by Codd. For example,
duplicate records are permitted and their existence is not
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automatically detected. There are physical limitations on
sizes and numbers of items. Also, the special hardware
operations for mark bit manipulation is a form of hardwired
“access method” that a user must control via program
instructions to select desired data for further processing.
What RAP does is to provide a data model that is high level
but flexible or general enough to easily support software
implementations of set-oriented versions of common
models such as hierarchies, networks, and relations.

B. Instruction Format
The general format of most RAP instructions is

(label){opcode){mark option)
[Cobject): {qualification)][{ parameter >].

Exceptions will be noted as they arrive. The label is an
optional symbolic instruction address. The opcode specifies
the data manipulation operation. A mark option can take
one of the following forms:

1) <null) implies no marking is done.

2) MaARk (<bit specification)) sets (to “1”) the mark bit
data items specified in the bit specification of the qualified
tuples.

3) reseT (bit specification)) resets (to “@”) the mark bit
data items specified by the bit specification of the qualified
tuples.

The individual mark bits will be denoted M1,M2, ---, Mb
where b is a hardware parameter limiting the number of
mark bits. A bit specification is simply a list of mark bit
names. An object has one of the following formats and is
used primarily to specify which cells, relations, and indivi-
dual items are to be manipulated by the instruction:

1) Rn (D1, :--, Ds) where Rn is a relation name and (D1,
D2, ---, Ds) is a list of data item names associated with
relation Rn. The data item list is optional or not relevant in
many instructions. The index s has a hardware limit on the
number of domain names that can be included for certain
instructions.

2) List of cell addresses, CELL (i), where i the integer
address of the i-th cell.

A qualification in the RAP instruction format can take
one of the following forms:

1) <null) implying every tuple of the relation qualifies.

2) Q1 & Q2 & Q3 --- & Qp denoting the conjunction of
simple condition Qi.

3) Q1/Q2|Q3 -
conditions Qi.

A simple condition Qi can be any one of the following:

1) {Di){comparator){operand) where

a) Di is a data item name .

b) comparator is one of ==, #, <, <, >

c) operand is one of REG (i), (integer), “(literal),”
where REG (i) refers to the contents of the i-th
controller register.

2) MKED (Mi) denoting the mark bit test Mi = 1.

3) UNMKED (Mi) denoting the mark bit test Mi = 0.

4) ceLL (i) indicating that the cell address is tested as part
of the qualification.

A qualification has certain restrictions which are imposed
by a particular hardware implementation. A qualification
can have at most k simple conditions of type 1) (i.c., data
item comparisons) and b simple conditions of types 2) and 3)
together. Only one simple condition of type 4) may be
included in any qualification.

The format of parameter varies greatly and will be
explained along with each instruction that requires addi-
tional information not supplied above.

| Qp denoting the disjunction of simple

>

y =

C. Description of RAP Instructions

The following is a description of each opcode provided by
RAP and an indication of its execution time. Execution
times depend on the speed of the cell processor, the capacity
of cell memory, and could also vary greatly depending on the
choice of technology or architecture of the processor and
memory. However, we can give a summary in terms of the
number of searches or scans of cell memory required to
execute an instruction. The syntax of each instruction is
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given followed by the number of memory scans in paren-
theses required for execution.
1) Selection:

Select{mark option)[Rn:{qualification] (1)

This instruction selects qualified tuples from the relations
Rn and sets or resets the mark bits of these tuples according
to the mark option given. For example, the instruction:

Select Mark(M1M2) [R1:D1 = “a”]

will set mark bits M1 and M2 of tuples in R1 which have
Dl 5‘ »

449

not present, the entire tuple will be transferred, otherwise,
only those items in the list are read into the registers. Values
will be stored left justified and padded on the right with
blanks. Data elements with arithmetic domains will be
assumed to be a fixed word length in two’s-complement
format. This register list can take on any combination of the
following two forms:

1) Reg (i), Reg (j), -+,
2) Reg (i) - Reg ()
where Reg (i) — Reg (j) means Reg (i), Reg (i + 1), ---, Reg
(j)- The transfer is done in the order given, that is, the first
item in the object list is read into the first register designated

Reg (k)

Cross-Select{mark option on R1)[{R1):{D1){comparator){R2)>.{D2}]
[(R2)>{mark option on R2):{qualification)]
(1 + # of source tuples/k)

This instruction involves operation between two relations
called source (R2) and target (R1). It works like a repetitive
select instruction on the target relation with the exception
that qualification for each selection is obtained from the
source relation data item values. That is, in order to select a
target relation (R1) tuple, the items D1 and D2, respectively,
of target and source relation must have comparable values
(i.e., values of the same data format) that satisfy at least one
of the comparisons between them. The source tuples partici-
pating in the comparison are those which satisfy the second
qualification. .

2) Retrieval:

Read-All{mark option)
[Rn(D1, -+, Ds):{qualification)][{work area)] (1)

This instruction transfers data from all tuples of Rn satisfy-
ing the qualification to the supporting processor’s storage
address as specified by work area. This could be a sequence
of primary memory addresses or a file designation. If the
object data item list is present, only those item values are
read out, otherwise, the entire eligible tuple is transferred. If
the mark option is present, the mark bit items of the eligible
tuples will be set or reset according to the given mark option.

Read(n){mark option)
[Rn(D1, ---, Ds):{qualification)][{work area)] (2)

This instruction is very similar to the Read-All instruction,
except that only data items from the “first” n or less qualified
tuples are transferred to the supporting processor’s storage
location. The mark option will only be exercised on the
tuples that are transferred.

Save(n){mark option)[Rn(D1, ---, Ds):{qualification)]
[Cregister list)]

)

Save transfers data items from qualified tuples of a relation
to registers of the RAP controller. Only items from the
“first” n or less eligible tuples are transferred. If the mark
option is present, the mark bits of the tuples will be set or
reset according to the mark option. If the data element list is

in the register list, second item into the second register, etc.
The s items are read from each tuple. The first item of the
second eligible tuple will be read into the s + 1 register in the
register list.

Read-Reg[(register list)[{work area)] ()]

This instruction transfers content of the specified RAP
registers to the supporting processor. Register list has the
same format as the register list in the Save instruction.

3) Statistical Computations:

{sopry{mark option)
[Rn(Dn):<{qualification)][Reg (i)] (1)

where sopr is one of the statistical function operators Sum,
Count, Max or Min. The opcode Count counts eligible
tuples in the relation Rn and places the result in the register
specified. (Dn) is omitted for this statistical function. The
other instructions compute the specified function over the
numeric domain of item Dn from qualified tuples.

4) Update:

{opr){mark option)[Rn(Dn):{qualification)][{opd)]
(1)
where opr is one of the operators Add, Sub or Replace and
opd is either a constant, a data item name, or an RAP

register. [tem Dn in every eligible tuple is operated on by opr
and value of opd.

Delete[Rn: {qualification}] (1)

Tuples of relation Rn qualifying for deletion have their

delete flag bit set causing the tuple to be ignored in
subsequent operations.

Colgrbg[(relation list) and/or {cell list}] (1)

This instruction initiates the physical deletion of all delete-
flagged tuples of the listed relations and/or listed cells. The
data are packed towards the beginning of cell memory
leaving garbage accumulated towards the end. The cell list
has the same format asa reglster list. The relation list has the
following format:
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(R1,R2, -, Rn)
Space-Count[Rn:{cell list)][Reg (i)] (1)

This instruction will examine the cells of relation Rn and
return a value indicating the number of available spaces in
these cells. This value is stored into the given register.
Available spaces include both empty tuples and the delete-
flagged tuples. If the optional cell list is present, only those
cells in the cell list will be examined. All cells in the cell list
must belong to relation Rn. This instruction is usually used
to test for space before an Insert instruction is used.

Insert (n) [Rn:<{cell list)][{work area)] (1)

Work area is the front-end processor’s program storage
location containing the n tuples to be inserted. If the
optional cell list is given, the n tuples will be inserted in those
cells only. There is an arbitrary hardware upper limit on the
number of characters that can be inserted in one Insert
instruction which places a limit on n.

5) Data Definition:

Destroy[Rn:{cell list}] ©®)

This instruction deletes the tuples, format, and names from
the specified cells of a relation. If a cell list is not present, the
relation is removed from all the cells it occupies. A special
null relation name is reserved for all blank cells.

Create[Rn: {cell list)][{format)] (1)

One execution of this instruction formats each cell in the cell
list for relation Rn. Empty tuples are delete flagged on the
created cells. Format contains parametric data about the
length of the data items stored in a relation.

6) Register Manipulation: Only registers containing valid
integer values will result in meaningful numeric computa-
tions. All register arithmetic will assume a specified word
length for operands starting at the leftmost bits of controller
registers.

Insert Reg[(register list)][{constant list)]

)

This instruction will insert the constants into the specified
registers. If only one constant is present, this constant will be
inserted in all registers of the register list. Otherwise the
number of constants must match the number of registers.

Dec-Reg[Reg (i)] or Inc-Reg[Reg (i)] 0)

The instruction Dec-Reg subtracts 1 from the contents of
Reg (i) and Inc-Reg adds 1 to the contents of Reg (i).

Croprj[Reg (i) [<ropd)] ©)

where ropr is one of the operators: Radd, Rsub, Rmul, or

Rdiv and ropd can either be an integer or another register.
7) Decision and Transfer:

BC(label}, {(boolean expression of conditions)

@

where BC is the abbreviation for “branch on condition.”
Condition can be one of the following:
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a) {null), this implies the instruction is treated as an
unconditional branch.

b) Reg (i) {comparator) Reg (j).

c) Reg (i) (comparator){constant.

d) Test (Rn:{mark qualification)).

If boolean condition is true, branching will take place,
otherwise control is given to the next instruction. Condition
type d) tests each individual mark bit specified by the mark
qualification separately and if the test is met for at least one
tuple (not necessarily the same one) of relation Rn then the
test is true, otherwise, the test is false. Mark qualification can
be either disjunctive or conjunctive.

EOQ
This indicates the end of an RAP program or query.

III. IMPLEMENTATION
A. History

The RAP project began in 1975 in the Computer Systems
Research Group at the University of Toronto, and in 1976
produced a prototype system (hereafter called RAP.1) con-
sisting of two cells [4]. The RAP.1 system consisted of a
partially hardwired controller and each cell had its own
memory track where the format and timing of a track was
modeled on disk technology. In RAP.1 all components of
the system were required to be synchronized by a single
clock, all tracks had to be of equal length, and several
instructions needing intercell communication required RAP
to provide data flow capabilities between all cells. Every
operation concerning data on the track took one or several
full revolutions.

During the project three important decisions were made
to change the organization of RAP.1 which resulted in the
design and implementation of RAP.2. First, the controller
was to be implemented by a mini/micro computer. Second,
the data track was designed around the capabilities of
emerging block addressable memories instead of a disk.
Third, a more uniform and flexible instruction set with
extended marking capabilities was needed. A hardwired
implementation of the controller was found to be inflexible
and speed was not an issue. The development of a disk
system that meets the requirements of an RAP system
appears difficult and costly because of synchronization and
error correction complexity. Furthermore, it is becoming
evident that RAM, CCD, bubbles, and electron beam
technologies will eventually cause head per track disks to be
phased out.

The use of a general purpose microcomputer as the
controller resulted in a major redistribution of the work-
load. In RAP .2, the cells were greatly simplified and required
to perform only those tasks directly related to their tracks.
Because the controller is inherently slow and cannot cope
with the speed of the cell, it became important to decouple
cell synchronization from the controller. The new work-load
distribution also freed every cell from the task of sending
data directly to other cells. This can be done through the
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controller. Each cell can operate independently of other cells
and the controller. As a byproduct, each cell can have its
own track length and execute different instructions indepen-
dent of other cells. RAP.2 now looks like a conventional
computer system coordinating the tasks of many cells which
are treated as independent peripheral devices attached to a
bus.

In the summer of 1977, an RAP.2 prototype of 2 cells and
query language software were demonstrated. Each cell
contained a million bit CCD track built from Intel’s 16K bit
2416 component. The controller was a PDP11/1¢ and
RAP.2 was interfaced to a PDP11/45 as a DMA device via
the controller. To make the transition from RAP.1 to RAP.2
as fast as possible, it was decided that only essential changes
were allowed. Consequently, the RAP.2 implementation is
far from perfect and its performance can be greatly
improved. In this paper we refer to enhancements not yet
implemented as features of a future RAP.3 system.

B. Physical Data Organization

In review, data are organized into files called RAP
relations. A relation is a collection of records sometimes
called tuples. Each record is a string of many concatenated
fields called data items in some fixed order. The number of
fiels per record of a given relation is a constant. Every
relation and each of its fields have a name stored in a
compactly coded form. In RAP, the length of each item must
be constant. In the RAP.1 and RAP.2 prototypes, each
record was limited to 255 items whose length could only be
1,2, or 4 bytes of encoded data. In RAP.3, this length can be
anywhere from 1 to n bytes (where n should be 32 bytes or
greater). Presently, each cell stores data from one relation. If
a relation is large they can be allocated to several cells. In
RAP .3 this restriction would be removed to allow pages of
tuples from several different relations to reside in the same
cell. This would allow relations to be spread across more
cells maximizing cell parallelism. An analysis of how this
effects RAP performance is discussed in [15].

In RAP.1, a cell stored the relation name as well as the cell
address at the track head followed by tuples separated by
gaps as shown in Fig. 3. A two-bit code was attached to each
item in a record to specify its length. In RAP.2, the cell
address is defined by an 8-contact switch set by an operator.
The relation name is stored in a 16-bit register and is defined
by the programmer. Both the cell address and the relation
name can be read out. The new format for each tuple
remains unchanged except that the two-bit space between 2
consecutive domains is left blank since all the length codes
are stored in a register called the length code RAM. As for
gaps, the only requirement is that each tuple must fit in an
arbitrary integral number of minor loops.

The CCD memories of each cell behave like a very long
drum with many small tracks of 256 bits each. In the
remaining part of this paper, by “track” we mean the entire
CCD drum and each 256-bit circumference will be called a
minor loop. RAP.2 simulates a disk read head by the use ofa

451

counter which points to the “current” location. The write
head position can be calculated from the read head by using
an adder. For most instructions, the write head is one data
block (a tuple or record plus gaps) behind the read head.
Because of the randomly accessible nature of minor loops,
access time is small (the worst case is 256 bit times). When
a cell idles, its’ read head is positioned on the first minor
loop. In operation, each instruction requires the heads to
scan just enough data to complete the job. After an instruc-
tion is completed, the heads immediately return to the first
minor loop. Due to this property, it is more appropriate to
use the term “scan” instead of “revolution” to indicate the
time required to do an instruction. In data retrieval or
insertion, a scan ends immediately when a sufficient number
of records have been retrieved or inserted.

In RAP.3, storage efficiency would be maximized. There
would be no inter-item spaces or gaps. Also, a “return from
halt” option (analogous to the “return from subroutine”
instruction of some microprocessors) would allow the cell to
resume scanning at some previous spot. This option greatly
improves execution time where a very large volume of data is
to be inserted or retrieved.

C. Global Architecture

The RAP.2 system is organized as shown in Fig. 1. There
are 8 control lines and 16 data lines. A DMA link is
established between the data bus of the controller and
front-end computer. There is a priority line that runs
through all cells to allow fast polling of individual cells. This
is used to sequence controller access to cells to retrieve
accumulated statistical computations without having to poll
every cell in the system.

The reason why direct data communications between
cells was dropped in RAP.2 is multifold. First, expensive
drivers were needed because each cell was required to drive
all others. Second, there was the classical transmission line
problem requiring the entire RAP.1 system to be crammed
into a physically small space. Third, we wanted to desynch-
ronize the system to maximize reliability and concurrency.
Last, reliability suffers when data are sent automatically
from any cell directly to all others. If one cell is malfunction-
ing, the whole system could crash and diagnosis would
become an extremely difficult task. Furthermore, the
amount of information to be exchanged is usually too small
to justify the cost of direct communication links.

Out of eight control lines, seven are used to encode a
maximum of 128 micro-code commands called “keys.” The
eighth is called “key enable” and is used to indicate valid
data. In practice, these lines are connected to the least
significant part of the address bus of the PDP 11 controller
and the key enable line is decoded from the most significant
part. Some keys are accompanied by an operand which must
appear on the data bus, some expect data from cells to be put
on the data bus, and others are not associated with any data.

Commands are broadcast to all cells of the system.
Establishing a scheme to selectively restrict the execution of
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Fig. 3. RAP physical data formats.

commands by a subset of cells is handled by the creation of
three state-variables called “open,” “blocked,” and
“rejected.” There are three different ways to open a cell. In
the simplest case, the controller can open any particular cell
by its integer designation by storing that value in one key
location. Finally, cells can be opened by referencing the
name of the relation stored in the cell. The states “blocked”
and “rejected” together with the priority line and the “get
next cell” command are used for controlling the opening and
closing of cells in a sequence. Consider the following ana-
logy. A number of persons (cells) form a line to buy a ticket
in a theater. Those who have bought one are “rejected,”
those who still have to wait are “blocked.” The one who is
buy is neither blocked nor rejected. Each time the line move
corresponds to a “get next cell” execution. This command
rejects the current non-blocked cell and unblocks the first
blocked cell. For example, to serve all cells of a relation Rn
sequentially, the controller must first open all Rn cells and
then blocks them which is achieved by referring to a key. It
then sequences through a program loop starting with a “get
next cell” followed by the service routine.

For a cell to respond to a command, the cell must be in a
proper state; it must be open, neither blocked nor rejected,
and furthermore, not running. The last condition is a
measure of protection against any erroneous attempt to
change the parameters of a query for the nature of the
instruction being executed.

For I/O each cell has an (1K-word) RAM called the 1/O
buffer and a pointer which is resettable by the controller. As
far as the controller is concerned, the I/O buffer looks like a
single reserved memory location. Every time a word is
stored in this location, it is sent to the I/O buffer where a
pointer is incremented automatically. To insert a set of
tuples, all the controller has to do is repeatedly store 2 bytes
at a time in the reserved location. The number of tuples to be
inserted is written in another reserved location. After the cell

is initiated to run, it will look for vacant slots on its track and
pull data from its I/O buffer to fill them.

During data retrieval, the opposite is done. The cell looks
for desired data on its track and puts them in its /) buffer.
Since the buffer size is limited, the controller must also
indicate how many tuples to be retrieved. For reading, the
I/O buffer also looks like a reserved memory location. The
buffer pointer is automatically incremented every time this
location is read out.

Besides track data, many other kinds of information of a
cell are also available for retrieval by the controller: proces-
sing status, cell address, relation name, buffer pointer, result
register for statistical computations, and the S-counter
which contains the number of satisfied tuples in the most
recent pass. Access to the buffer pointer allows the establish-
ment of a future DMA link for rapid bulk transfer of
inserted/retrieved data directly between cells and the front-
end computer.

D. Cell Structure

The structure of a cell can be divided into eight units.

1) Cell Interface: This unit implements the interface to
the control and data buses. It contains bus receivers and a
large decoder that decodes the contents of the control bus.
The cell address is part of this unit and is defined by an
8-contact switch. Also, there is a 16-bit relation name
register. The logic for “get next cell” is also part of this unit.
As mentioned before, every reference to the related control-
ler key will affect the states “blocked” and “rejected” of an
open cell. Finally there are also status states indicating
whether in the last pass, bit DF, M1, M2, etc., are marked
and a state indicating if there was a satisfied tuple. The most
significant bit of the status is always a “1” and is used to
indicate the presence of a cell.

2) Synchronizer: This is the largest logic unit of a cell. It
provides all timing signals and shift clocks to the rest of the
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cell. For simplicity and ease of testing, all basic clock signals
are periodic. This implies that there is always a read phase
and a write phase for the CCD memories. Consequently, the
bit rate of RAP.2 is slightly below 1 MHz. (In RAP.3, read
and write phases would be allowed only when necessary.)
The-1 MHz bit rate is a limitation of the CCD’s and not of
the cell logic which has been rated at 10 MHz.

3) Query Analyzer: This is the heart of a cell and it
determines whether a tuple satisfies a search qualification.
The query analyzer has two parts: the terms evaluator and k
identical data item comparator units (k = 3 in the prot-
otype). Each comparator unit has an 8-bit register to store
the item number to be tested, a tapped 32-bit shift register for
the externally supplied constant, a 4-bit register which
indicates the selection of the unit and the symbols (<, =, >)
of the comparison, and a serial comparator.

4) I/O Buffer: This unit is of prime importance to dec-
ouple a cell from the controller for data retrieval and
insertion. It consists of a 1K x 16 RAM buffer and a
collection of pointers.

5) Arithmetic Unit: This is the only unit that is not vital to
the operation of the rest of the cell. It is only necessary for
supporting arithmetic instructions (namely Add, Sub, Sum,
Max, Min) and can be removed if they are not required. It
contains three tapped shift registers to store operands and
results.

6) Update Control: This is the smallest unit of a cell. It has
a register to store information concerning the Mark and
Reset option. It takes care of the marking and resetting of
mark bits as well as the writing of new data supplied by the
I/O buffer for Insert or by the arithmetic unit for Add, Sub,
and Replace. It also erases the track for Create or selected
tuples for Delete.

7) Output Multiplexer: This is logically the simplest unit.
Appropriate registers are connected to various bus drivers
which are enabled by signals from the cell interface decoded
from the control bus. For most registers, it is the duty of the
controller to assure that only one cell at a time is in the
readable state otherwise information on the data bus is
meaningless. The only exception is the reading of cell status
which is meaningful in an “OR” form.

8) CCD Memories: Each cell in the prototype contains 1
Mbit of CCD memory. Due to physical limitations, the 1
Mbit drum occupies three identical boards. Each board
contains all necessary drivers and 20 Intel 2416 CCD chips
which are arranged in an X-Y matrix of 4 x 5. Two different
kinds of drivers are used: Intel’s 5244 chips are used for shift
inputs and Intel’s 3245 chips for addressing. Currently, all
the CCD chips are driven at a same frequency. If the memory
size is to be expanded much larger, it makes sense to use two
different rates where one of two chips at atime aredriven at a
fast rate and the rest at the minimum frequency to conserve
power.

E. Some Statistics

Each cell breadboard (including the 1 Mbit track) re-
quires about 9 A at 5 V. There is a total of 13 boards
employing 412 IC packages (218 SSI + 117 MSI + 77 LSI).
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For each additional 1 Mbit extension, 96 IC’s are needed.

It is clear to us now that we should have implemented the
memory system and cell logic to operate word parallel. We
would have increased performance greatly and in many
cases reduced logic design complexity by being able to use
existing components. The bit serial approach was taken
because of our initial choice to model head per track disk
technology. An example of such an architecture for RAP is
presented in [20].

IV. UsING RAP IN A DATABASE COMPUTER

One might conceive of the day in which microprocessor
logic and memory becomes so inexpensive that all secon-
dary memories would have RAP-like processing capabili-
ties. However, the first generation of commercial RAP’s
would have capacity limitations due to cost relative to the
total database storage requirements. A cost effective system
would, therefore, consist of a triad of component types: a
front-end general purpose computer to interface with users
and provide operating system and language processing
functions,one or more RAP devices used to act as a file
“cache,” and one or more conventional secondary mem-
ories. This architecture is shown in Fig. 4. With appropriate
software, the triad could then be considered to be a
specialized database computer [13]. We will briefly outline
two approaches to the DBMS software organization that
exploit such an architecture.

A. Database Partitioning

This approach attempts to exploit the notion that not all
data in a data base, at a particular point in time, requires the
same processing capabilities. Data can be categorized by the
system according to its usage characteristics and placed on
the conventional secondary memories or RAP depending on
processing requirements that best fir the data. We can
partition the database files both horizontally, placing cer-
tain records on RAP and others on disk, and/or vertically,
placing clusters of data items on one device or the other.
Extra data items such as record id’s may be required to link
corresponding partitions.

The implementation of such a system should include
mechanisms for both user controlled and automatic migra-
tion of data between the various devices as usage of the data
changes. Research into algorithms that exploit database
device partitioning is under way at the University of Tor-
onto [16].

A request would be processed by decomposing it into
RAP and disk subqueries and first executing the RAP
subqueries. Access would then be made to disk only if the
request cannot be entirely serviced by RAP. In this case the
response from the RAP subquery would be used to minimize
the search over the disk portion.

B. Paging and Virtual Memory

This approach exploits the techniques of paging operating
systems to provide a virtual associative address space for an
RAP device. This requires all the data in the database to be
stored according to RAP memory format. The data are then
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divided into pages of the size of one RAP cell. All database
queries are translated into RAP processing statements.
Before execution, each query is directed through a software
monitor executing on the front-end computer. The principal
tasks of the monitor are to maintain a table that gives the
location of the pages for each database file, analyze which
pages are required to execute a query, and then page the
necessary data between the conventional secondary storage
devices and the RAP processor. The query is then passed to
the RAP processor for execution. It would be optimum to
have a direct path between the secondary storage devices
and RAP so that pages would not have to be transferred
through front-end.

As opposed to the partitioned approach, all queries will be
executed entirely within the RAP processor. A detailed
design of the proposed. monitor has been outlined in a
previous study [9]. For simplification, we require that all the
data for a query be small enough to store on the RAP device
before being processed. Many of the architectural extensions
proposed for the RAP.1 device to allow the overlapping of
paging with processing are not required by the RAP.2
architecture.

A GPSS simulation of the entire system was performed
and the results were analyzed [3], [7]. Statistics were col-
lected on the average response time for on-line queries for
population of Poisson arrivals with a fixed mean and specific
sized RAP device. Response was studied with respect to
average exponential processing times, average amount of
data stored in a relation, total database size, and uniform
and exponential locality of relation references. Locality was
defined as the degree to which short sequences of queries
reference some relations more than others. It was found that
no significant losses in performance will occur in user
environments which exhibit some relative combination of
the following characteristics:

1) Relations that occupy a small number of cells.

2) Query populations which exhibit long processing
times relative to their paging requirements so that overlap-
ping of processing and paging can be effective.

3) Query populations which exhibit a “significant”
amount of locality.

V. SUMMARY OF PERFORMANCE

An important feature of the RAP instruction set is that it is
relationally complete meaning that any query expressable by
the relational calculus can be implemented entirely within
the RAP processor [6]. This eliminates the need to transfer
extensive amounts of data derived from the intermediate
results of query processing between RAP and the supporting
computer.

It is important to note that each high-level instruction
operates on at most two entire relations during its execution.
The hardware is naturally locked during an instruction
execution. Thus all software schemes concerned with mutual
exclusion of update operations can implement synchroniza-
tion mechanisms at the relation level. This eliminates much
of the operating system overhead incurred by conventional
implementations as well as reducing the complexity of
maintaining high levels of consistency.

Studies have been conducted to compare the hypothetical
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Fig. 4. Using RAP in a database computer.

performances of the original RAP architecture relative to a
conventional computer system for implementing a rela-
tional database [8]. Both approaches were modeled analy-
tically. The models considered resident databases for the
original RAP architecture and fast access paths in the form
of inverted lists for the conventional system. The results
show that gains from one to three orders of magnitude in
query execution speed can be achieved by the RAP architec-
ture over conventional systems. Furthermore, the new
architecture improves this gain substantially through the
use of retrieval mechanisms exploiting block addressable
memories. The model studied queries of the form: retrievals
and updates on records of relations selected with respect to
simple and complex Boolean qualifications, retrievals that
include statistical criteria in the selection qualification, and
retrievals involving the implicit join of two or more rela-
tions. This study indicates that, under many circumstances,
on-line retrievals and updates of large databases may only
be possible with the use of RAP-like systems.

APPENDIX

The following are the results of a live demonstration of the
RAP.2 prototype hardware. The database contains two .
relations describing bus drivers and routes. The DRIVER
relation has data items DRIVER _NO, SURNAME, INITIAL, HOME
town, SEX, MARITAL_STATUS, HEIGHT, BIRTH_YEAR,
DAY_HIRED, MONTH _HIRED, YEAR _HIRED, and SALARY. The
TRIP relation contains data items TRIP_NO, ORIGIN, DESTN,
LV time, AR time, TRAVEL_TIME, MILEAGE, FARE, and
DRIVER _NO.

The demonstration includes a monitor running on a
PDP11/45, that translates the experimental IBM relational
query language SEQUEL-2 into RAP.2 assembler state-
ments [18]. An assembler then generates internal RAP.2
machine code which is transmitted to the RAP.2 peripheral
for execution. The host machine is interrupted to accept
results and the monitor displays them at the users station.
Each query is described in an English comment before being
entered as a SEQUEL-2 statement. The RAP.2 assembler
statement translation is presented. Following this, execution
statistics are displayed. Finally, any tuples or records to be
retrieved are displayed.
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—>FILE ‘QUERY3.S

—
%  QUERY 3
CALCULATE THE AVERAGE AND TOTAL MILEAGE DRIVEN BY DRIVERS WHO LIVE

IN TORONTO, AND RETRIEVE THE TRIP NUMBERS, ORIGINS, AND DESTINATIONS
OF THEIR TRIPS.

+ SELECT TRIP_NO, ORIGIN, DESTN, AVG(MILEAGE), SUM(MILEAGE)
FROM TRIP

WHERE DRIVER _NO IS IN + SELECT DRIVER _NO
FROM DRIVER
WHERE HOME = ‘TORO’ + +

THE SEQUEL STATEMENT HAS BEEN TRANSLATED IN 10 RAP INSTRUCTIONS

—>RAP
1) SELECT MARK(M1) [DRIVER: HOME = ‘TORO’]
2) CROSS_SELECT MARK(M1) [TRIP: DRIVER _NO = DRIVER, DRIVER _NO] [DRIVER RESET(M1):MKED(M1)]
3) SUM [TRIP(MILEAGE):MKED(M1)] [REG(1)]
4) COUNT [TRIP:MKED(M1)] [REG(2)]
5)  roiv [ReG(1)] [ReG(2)]
6) READ_REG [REG(1)] ‘
7) SUM [TRIP(MILEAGE):MKED(M1)] [REG(1)]
8) READ_REG [REG(1)]
9) READ_ALL RESET(M1) [TRIP(TRIP_NO, ORIGIN, DESTN):MKED(M1)] [QUERY3.0]
10) EOQ
—YEXECUTE

QUERY TRANSMITTED

QUERY EXECUTION:
13 REVOLUTIONS TO EXECUTE.
18 SIXTIETHS OF A SECOND.

AVERAGE(MILEAGE) FROM TRIP IS 147
SUM(MILEAGE) FROM TRIP IS 1615

11 TUPLES RETRIEVED

—>DISPLAY *
+ TRIP +
+ +
+ TRIP_NO + OPIGIN + DESTN +
+101 + TORO +LOND +
+106 +LOND + TORO +
+201 +HAM +NF +
+206 + NF +HAM +
+300 +TORO +MONT +
+400 +KING +MONT +
+600 + TORO +OTTA +
+601 +O0TTA 4+ TORO +
+700 +TORO +BARR +
+705 + NBAY + BARR +
+ 705 + BARR + TORO +

—DFILE ‘QUERY4.S’



456 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-28, NO. 6, JUNE 1979

%  QUERY 4
DUE TO INCREASING COSTS, THE FARE OF TRIPS BETWEEN TORONTO AND LONDON

MUST BE RAISED TO 8
DOLLARS. %

+ UPDATE TRIP
REPLACE FARE = §
WHERE ORIGIN = ‘TORO’ AND DESTN = ‘LOND’
OR ORIGIN = ‘LOND’ AND DESTN = ‘TORO’+

THE SEQUEL STATEMENT HAS BEEN TRANSLATED IN 6 RAP INSTRUCTIONS

—DRAP
1) SELECT MARK(M1) [TRIP: DESTN = ‘LOND’ & ORIGIN = ‘TORO’]
2) SELECT MARK(M2) [TRIP: DESTN = ‘TORO’ & ORIGIN = ‘LOND’]
3) SELECT MARK(M3) [TRIP:MKED(M2) + MKED(M1)]

4) REPLACE RESET(M3) [TRIP(FARE):MKED(M3)] [8]
5) SELECT RESET(M1M2) [TRIP]
6) EOQ

— >EXECUTE

QUERY TRANSMITTED

QUERY EXECUTION:
S REVOLUTIONS TO EXECUTE.
8 SIXTIETHS OF A SECOND.

0 TUPLES RETRIEVED

—FILE ‘QUERY6.S’
—
%  QUERY 6

FOR ALL DRIVERS WHO LIVE IN OTTAWA, GENERATE A LIST OF THE TRIPS
DRIVEN BY EACH DRIVER, ALONG WITH THE DRIVERS’ NAMES AND NUMBERS. 0/0

+JOIN ON TRIP . DRIVER _NO = DRIVER . DRIVER _NO
+ SELECT DRIVER _NO, SURNAME
FROM DRIVER
WHERE HOME = ‘OTTA’+
WITH
+ SELECT ORIGIN, DESTN
FROM TRIP+ +

THE SEQUEL STATEMENT HAS BEEN TRANSLATED IN 19 RAP INSTRUCTIONS

—DRAP

1) SELECT MARK(M1M2) [DRIVER : HOME = ‘OTTA’]

2) SELECT MARK(M1) [TRIP]

3) BC L1, TEST [DRIVER:MKED(M1)]

4) SELECT RESET(M1) [TRIP]

5) BC END

6) L1  BC L2, TEST [TRIP:MKED(M1)]

7) _ SELECT RESET(M1M2) [DRIVER]

8) BC END _

-9) L2 save(1) RESET(M1) [DRIVER(DRIVER _NO):MKED(m1)] [REG(1)]
10) SELECT MARK(M2) [TRIP: DRIVER _NO = REG(1) & MKED(M1)]
11) BC L3, TEST [TRIP:MKED(M2)]
12) BC L4 .

13) L3  READ [DRIVER(DRIVER _NO, SURNAME): UNMKED(M1) & MKED(M2)] [APPEND QUERY6.0]
14) RETRIEVE(1) RESET(M2) [TRIP(ORIGIN, DESTN):MKED(M1) & MKED(M2)] [APPEND QUERY6.0]
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SELECT RESET(M2) [DRIVER: UNMKED(M1) & MKED(M2)]

15) BC L3, TEST [TRIP:MKED(M2)]
16) L4

17) BC L2, TEST [DRIVER :MKED(M1)]
18) SELECT RESET(M1) [TRIP] -

19) END EOQ :

— YEXECUTE

QUERY TRANSMITTED

QUERY EXECUTION:

63 REVOLUTIONS TO EXECUTE.
82 SIXTIETHS OF A SECOND.

7 TUPLES RETRIEVED

—>DISPLAY *
+ DRIVER
.+.
+ DRIVER_NO + SURNAME
+103 + WATT
+103 + WATT
+106 + BEGG
+106 + BEGG
+118 +BOND
+121 + BARR
+133 +CARR

—>QUIT
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