TEEE TRANSACTIONS ON EDUCATION, VOL. E-14, NO. 4, NOVEMBER 1971

option or program in computer engineering at the under-
graduate level, and 34 more showed some indication
that there might be such a program or option within a
year. If this happens, then over half of our departments
will have such an option or program. In other words,
the computer is becoming well established in electrical
engineering. It is a pleasure to observe that we can now
concern ourselves about second-order effects such as
whether the introduction of algorithms hampers or im-
proves engineering insight!

VIII. ConcrLusioNs (M. L. DERTOUZOS)

All panelists agree, as is to be expected, that both
insight and algorithms are necessary. Further probing
and discussion, however, reveal some distinct views.
One such view, in its exaggerated form, is that engineer-
ing insight should reign supreme with algorithms and
computers as obedient numerical servants. Another
view regards the computer as a system worthy of serious
study by electrical engineers, for example, through
courses that deal with computer architecture and data
structures. Yet another view is that of computer ac-
culturation, i.e., the required exposure in a serious way
to computation through eny one student-elected avenue,
e.g., a course, a project, or industrial co-op work.

Some additional views, expressed during the panel
discussion are summarized as follows.

169

Excessive concentration on algorithms may damage
insight, e.g., by allowing the student to think of a
capacitor as a resistor in series with a voltage source.

Large and complex systems tend to be counter in-
tuitive. Systematic study, backed up by algorithms is
the proper medicine.

The more interesting real-world problems are those
dealing with nonlinear circuits and systems. These are
best explored interactively through a feedback loop
system which contains the student and the programs
for analysis, optimization, etc.

A computer must be studied and understood as an
integral part of an overall system. Consequently, it
must not be used only as a tool, but it must be studied as
a system, in terms of machine language, microprogram-
ming, and so forth.

Students are very versatile and can easily develop
both their insight and their algorithms. They have
proven this by using ¢ or j properly when addressing
mathematicians or engineers during oral exams.

Perhaps it is appropriate to close this discussion with
a view which was not discussed by the panelists. It is the
recently emerging doctrine (among artificial intelligence
research groups), that the computer has educational
value primarily because it enables the student to model
(and therefore analyze and improve) his thinking pro-
cess. According to this view, algorithms are a basis for
developing and improving insight.

On Important Current Issues Concerning Computers
in Electrical Engineering Education

CHRISTOPHER POTTLE, MEMBER, IEEE, MICHAEL L. DERTOUZOS, MEMBER, IEEE,
IMSONG LEE, MEMBER, IEEE, AND KENNETH C. SMITH, MEMBER, IEEE

I. INTRODUCTION (C. POTTLE)

HE REMARKS which follow were contributed by
Tthe members of a panel at the Purdue 1971

Symposium on Applications of Computers to
Electrical Engineering Education (Lafayette, Ind.)
entitled, “Everything You Always Wanted to Know
About Computers—But Were Afraid to Ask.” These
panelists have a definite bias toward computer science

Manuscript received April 12, 1971; revised May 4, 1971.

C. Pottle is with the Department of Electrical Engineering,
Cornell University, Ithaca, N. Y. He is currently on sabbatical leave
Kitl{(the Thomas J. Watson Research Center, Yorktown Heights,

M. L. Dertouzos is with the Department of Electrical Engineer-
g%gl,ngassachusetts Institute of Technology, Cambridge, Mass.

I. Lee is with the Department of Electrical Engineering, Uni-
versity of Massachusetts, Amherst, Mass.

K. C. Smith is with the Department of Electrical Engineering,
University of Toronto, Toronto, Ontario, Canada.

and know a good deal about computer organization and
programming. They would all, however, claim to be
electrical engineers with a primary interest in the
education of future electrical engineers.

These panelists were given considerable latitude to
discuss whatever topics they believed to be important
issues in a modern computer-oriented curriculum. One
would naturally suspect that they would choose for
discussion those topics which were being investigated
with particular emphasis on their campuses. Their
contributions appear to be in two general areas, one
quite distinct from the other, and both of great interest
to any educator who is trying to keep informed of
trends in computers and their application to electrical
engineering education. The first of these topics concerns
the appropriate hardware and software support for
efficient learning on the part of the student while main-
taining efficient use of the computer. 1. Lee discusses the

170

complementary roles of the central time-sharing system
and the laboratory minicomputer, giving some cost
estimates for both. K. C. Smith contrasts the ad-
vantages and disadvantages of the remote batch system
with those of the time-sharing facility and proposes a
possible alternative—the use of many small computers
in a distributed “open shop” environment. The second
area of interest has to do with the choice of a program-
ming language for general student use and the sort of
programs the student will be called upon to implement.
M. L. Dertouzos does not believe the former to be a
really serious question, but comments on the latter,
favoring the user-written program approach over the
canned program, with the canned subroutine inter-
connected by the student as a viable compromise. C.
Pottle finds that the choice of a general programming
language has generated a great deal of heat at his uni-
versity recently and suspects many other colleges are
also facing this problem. His remarks are an attempt to
discourage the teaching of Fortran as the basic program-
ming language and to encourage the substitution of
PL/1 or APL, or both.

1I. THE COMPLEMENTARY ROLES oF MINICOM-
PUTERS AND TIME-SHARING SYSTEMS IN CoM-
PUTER-ORIENTED ELECTRICAL ENGINEER-
ING Curricura (I. LEE)

My comments are intended to cover the respective
roles and comparative cost of minicomputers and time-
sharing systems in a computer-oriented electrical engi-
neering curriculum, based on our experience at the
Ambherst campus of the University of Massachusetts.

The time-sharing computer system called UMASS
has been in operation for the last three years [1].
UMASS is implemented on a CDC 3600 computer sys-
tem with drums and disks to store user programs and
files. It is capable of handling 60 ports (teletype ter-
minals in active use) simultaneously and supports
several languages including Fortran, Basic, APL, and
Mixal (Mix Assembly Language) [2]. Each user is
assigned 8K or 16K words (48-bit) of work space in
core memory and the system is available about 13 hours
each day. In 1970, there were 3300 student users of
UMASS logging 46 689 port hours. This comes to an
average of 14 port hours per student per academic year
and each port hour costs $5.00.

The average beginning student enrolled in the Com-
puter Systems Engineering Program offered by the
Department of Electrical Engineering has been found to
use about 140 port hours per student per academic year,
approximately 5 hours per student per week.

The time-sharing system has been found extremely
useful in teaching assembly and machine language
programming using Mixal and nonnumerical processing,
i.e., data structure and string manipulations using
Mixal and APL. It has also been found very useful in
introductory programming courses for freshmen, ad-
vanced programming courses for computer science
students, and nonproduction-type scientific computa-
tions and engineering simulations. The system is not

IEEE TRANSACTIONS ON EDUCATION, NOVEMBER 1971

TABLE 1
EsTiMATED CosT OF MINICOMPUTERS

. Cost A Cost B
Machine Configuration (per h) (per h)
Mini I $3.30 $5.00

Mini 11 $5.00 $7.20

Mini I Configuration: PDP 11/20; 8K words of core (16 bit/word).
I—{xgh-speed paper tape punch/read, real-time
clock.

Mini II Configuration: Mini I plus disk (64K words), hardware mul-

tiply/divide unit, A/D converter 8 channel,
Infoton Video Terminal

suitable, however, for teaching interrupt handling,
overlapping I/0O operations, computer control of real-
time physical processes, operating systems, and hard-
ware/software interactions in system design and opera-
tions.

Laboratory Minicomputers

An experimental computer laboratory seems to be a
necessity in any balanced computer-oriented curriculum
covering computer technology, methodology, and ap-
plication. The question is not one of time-sharing versus
minicomputer but what sort of computer is best for the
laboratory experience of computer-oriented electrical
engineers. Recent advances in MSI and LSI technology
are already having a profound impact on computer
memories, peripherals, central processors, and hard-
ware/software tradeoffs in computer system architec-
ture in general. These important current developments
can hardly be taught without laboratory computer
facilities. Since funds for laboratory facilities are scarce,
it seems useful to estimate the approximate cost of such
facilities. Table I summarizes the cost of a computer
laboratory for two different minicomputer configura-
tions. The cost figures are approximate and based on
the PDP-11 computer manufactured by the Digital
Equipment Corporation.

Cost A was based on a purchase option and Cost B
on a rental option. It was assumed that the machine
would be available 60 hours per week for a 30-week
academic year. The annual maintenance cost was as-
sumed to be 10 percent of the purchase price and a
five-year depreciation period was used for calculation
of Cost A. The figures point out the cost advantage of
the purchase option if one can afford it. At the risk of
comparing “apples and oranges,” one can say that the
cost of time-sharing is approximately comparable to
that of a minicomputer.

Conclusion

Time-sharing systems and laboratory minicomputers
serve different functions and purposes. One cannot
replace the other any more than apples can replace
oranges. The two cost about the same and both are
needed in the education of computer-oriented electrical
engineers. If one must choose between them, the choice
should be made on the basis of educational goals and
needs of a particular department.

POTTLE et al.: COMPUTERS IN ELECTRICAL ENGINEERING EDUCATION

REFERENCES

[1] C. C. Foster, “An unclever time-sharing system,” Computing
Surveys, vol. 3, no. 1, Mar. 1971.

{21 D. E. Knuth, Fundamental Algorithms, The Art of Computer
Programming, vol. 1. Reading, Mass.: Addison-Wesley, 1969.

I11. THE CosT EFFICIENCY-LEARNING EFFICIENCY
GAP IN UNDERGRADUATE Usg oF COMPUTERS
(K. C. SmitH)

Historically there are two incommensurable ap-
proaches to provision of computation facilities to un-
dergraduate students. For those whose interest is in
computer efficiency and overall economy, the tradition
has been batch processing. For those more inclined
toward student learning efficiency the choice of in-
dividual interactive terminals is made. In recent times,
each approach has been trimmed and improved to its
own end with scant attention paid to the other.

Batch advocates have provided remote batch facili-
ties which bring the peripheral equipment somewhat
nearer to the user while maintaining a large and efficient
centralized processing facility. Improved compilers,
available under batch operation, make the student
user’s life somewhat less exasperating. No matter how
good the system, however, the feedback loop between
student and computation process is not well closed.

The advocates of the terminal-oriented approach, on
the other hand, have not been idle. Continuing empha-
sis exists on improved conversational and interactive
programming packages. In the combined software and
hardware areas, emphasis has been placed on schemes
for servicing more and more terminals from one CPU
in order that machine efficiency be improved. Hardware
emphasis has been on improved low-cost terminals.
However, a major cost of conversational terminal sys-
tems remains that of the terminal itself and the space
required for the relatively large number of terminals
needed per user.

To the user, remote batch offers a collection of ad-
vantages and disadvantages. Provided the system is
sufficiently well equipped and operated, turnaround
can be very quick. At the University of Toronto, for
example, the time it takes to hand in a deck, to have it
read, returned by an operator, and for printout to be
removed from the fast printer is usually less than 1
minute. (A 5- to 10-min queue is, of course, often
present.) To maintain this level of turnaround, a large
competent team of operators is needed. They con-
stitute, perhaps, one of the largest components of the
operating cost of such a system. A difficulty is, of
course, that periodically something breaks down. Per-
haps the most serious disadvantage of remote batch is
its reliance on the virtually perfect operation of a rather
large amount of equipment.

Conversational systems, of course, offer the ultimate
in closed loop learning processes. The problem is that
many users are slow learners, hence the terminal time
per user corresponds somewhat more to the desk time
of a batch user than to his combined keypunch and
computer time. The result is apparently the need for a

171

large number of interactive terminals, occupying con-
siderable, though distributed, space. Though the sus-
ceptibility of a conversational terminal system to
terminal breakdown is very low by virtue of the number
of terminals in any system, this system too suffers
fatally from central facility failure. There is, however,
with the added expense of dialing terminals, a con-
venient possibility of using another central service for
jobs in which a unique resident program or data base
is not a part.

At the present state of technology, a third alternative
is available. This alternative appears particularly at-
tractive for large schools in which the terminal cost of
conversational systems is very large or in which the
operation and administrative costs of remote batch
systems often dominate. The alternative is the use of
many minicomputers in a distributed user-operated
batch system.

Individual machines in the system will be free-
standing and independent. Each is to be equipped to
run a small number of programs of interest to the
majority of the students. Each is user operated with a
single roving attendant to ascertain the need for service.

Though it is premature to guarantee that such a sys-
tem is economically feasible, there are several favorable
indications.

The majority of batch runs are aborted compilations.
(This is really the major weakness of batch.) Fortu-
nately, a current system extremely well suited to the
compilation task is the DEC PDP 11. A PDP 11-20
system with 16K, 16-bit words, a 600K removable disk
pack, a 200-card/min reader and an 1100 (short) line/
min printer is available for about $50 000. This cost is,
incidentally, about one third of the annual operating
cost at the University of Toronto for one remote batch
terminal having roughly the same I/0 capability. The
state of the art in compiler writing is such that com-
pilers could be written without too great trauma using
compiler-compiler techniques on a large machine at the
University’s computer center and transferred via disk
pack to the small machines.

To avoid swapping inefficiency, each machine of such
a multiple minicomputer system would be assigned at
any one time to be a “Language X” machine where
language assignment would relate to the current user
demand for various services. In the event that one
machine fails, the task assignments of the remaining
machines could be quickly rearranged to suit the de-
mand. Meanwhile, the pressure to repair the offending
machine is much reduced and high-priced instant-
service contracts are avoided. Furthermore, since there
are relatively large numbers of any one machine com-
ponent, the possibility of having complete spares for
the worst mechanical offenders is obviously available.

Not least of the advantages to be obtained in the
system as outlined is that which accrues to the state of
mind of the student user. Such a system may replace
the mixed feelings of awe, despair, and disgust which
remote batch often engenders, with a sense of in-
timacy and satisfaction. The popular misconception

172

that all computing properly must be assigned to a
juggernaut might usefully be dispelled.

The hands-on experience a minicomputer system
provides should in itself be salutary. It is even possible
that one of the machines may be assigned for use by
those students interested in the details of the machine

which lie beyond the facade which its compiler nor-

mally presents.

An alternative approach to the problem of providing
adequate yet economical undergraduate computation
service has been presented. Exact evaluation of the
benefits to be gained from such a solution must await
actual operational tests.

IV. CoMPUTER LANGUAGES, STUDENT PROGRAMMING,
AND INTERACTIVE CoMPUTING (M. L. DERTOUZOS)

In terms of relevant priorities, I do not believe that
“the language that all students should learn” is an
important issue. Almost any language will do, provided
that the student can implement algorithms in that
language and can therefore learn the language-inde-
pendent craft of algorithm synthesis first, and then the
mechanics of algorithm implementation. If, however, a
choice of language is at issue, then the educational ob-
jectives will largely influence the choice. For example,
if these objectives place a high degree of emphasis on
immediate and general applicability to as many com-
puters as possible, then Fortran is clearly the answer.
If the objectives call for using computers as powerful
(and predominantly numeric) slide rules in an inter-
active environment, then APL is probably the best
currently available language. Finally, if the objectives
entail the best choice of language for the (uncertain)
future, then some derivative of PL/1 is probably in
order. Ultimately, all general-purpose languages offer
good educational potential—we have seen the success
of mass-interactive computing at Dartmouth with
Basic; numerous active scientists and engineers learned
computing through Fortran, Mad, Algol, and are
probably on their second or third language by now.
Indeed, the learning of a second language, besides
being relatively easy, is also educationally and practi-
cally important. It corresponds, in a very crude sense,
to the use of linear or circular slide rules, for the solu-
tion of engineering problems.

Looking next at the range of possible programs—
namely canned, semicanned (i.e., canned routines
which are interconnected by the student), and totally
uncanned—I would like to strongly discourage the use
of the former in any educational environment. There is
something very vague and confusing about a (huge)
canned program which miraculously solves a 100-node
network! The student can seldom comprehend in any
meaningful way how such a prografn works and is
therefore left with the totally unmotivated alternative
of using the program to check results. The totally
uncanned approach is probably most desirable in a free
environment, where there is plenty of time and oppor-
tunity to construct nontrivial programs. In the typical
overcrowded electrical engineering curriculum of today,

IEEE TRANSACTIONS ON EDUCATION, NOVEMBER 1971

the middle way is the best practical alternative—stu-
dents can still enjoy the motivational and educational
benefits of synthesizing something nontrivial with a
relatively small effort. These observations are sub-
stantiated by several educational experiments con-
ducted at the Department of Electrical Engineering at
M.L.T. since the early 1960’s.

There is no question in my mind that interactive
computing is extremely valuable and essential to edu-
cation. The ability to work in an on-line environment
has advantages which go well beyond the obvious sav-
ings in turnaround time—e.g., increased motivation,
and the ability to construct programs or solve prob-
lems in a closed-loop environment, where the effects of
one's actions are immediately visible and the desired
goals can be progressively approached.

At M.I.T., we have arrived at the conclusion that
one half to 1 hour per week of sit-down time is essential
for the student to achieve some sort of educationally
meaningful “critical mass.” Unfortunately, the cost of
on-line services is still considerably higher than that of
batch, so that economic factors tend to dominate any
such decision.

V. FORTRAN AND THE UNDERGRADUATE
CurricuruM (C. PoTTLE)

During the 1960’s, any engineering college that did
not already teach its beginning undergraduates ele-
mentary programming began to do so. Almost without
exception, the language used was Fortran. There were
virtually no alternatives. Fortran was universally used
outside the university and was the language of all
scientific programming. A few disciples of Algol were
relegated to the lunatic fringe. The establishment of
these courses was often opposed by those who claimed
that teaching programming .was no different from
teaching a course in how to use a slide rule, and had no
academic content. In a sense they were correct, for often
these courses taught nothing but elementary Fortran
programming. Today, however, the situation has
changed considerably. An effective first course, as Prof.
Dertouzos points out in Section IV has to do with the
“craft of algorithm synthesis.” Most schools have in-
stituted a first course with this objective, or have one
in the final planning stages. This introductory course
also introduces the general elements of computer pro-
gramming and, in particular, a high-level programming
language. The practical importance of this course
cannot be overemphasized, for it is here that the student
will learn (hopefully) good programming habits, the
principles of debugging programs, and a language which
his school can count on his knowing in later course work.
Those schools which claim to have answered the prob-
lem by teaching undergraduates a short-term non-
credit Fortran programming course in the evening have
only succeeded in removing nonacademic material
from the curriculum. In the remarks which follow, I
assume that we are planning or operating a modern
course of the type described above with a purpose which

POTTLE et al.: COMPUTERS IN ELECTRICAL ENGINEERING EDUCATION

goes beyond the mere teaching of a programming lan-
guage for use as a tool in later course work.

What does Fortran have going for it that, after de-
veloping a sound introductory computer course, it is
chosen as the companion high-level programming lan-
guage? The reasons seem to be the following.

1) Fortran is still the language used by engineers to
solve their problems, even the increasingly nonnumeri-
cal problems currently confronting them.

2) Implementations of the Fortran language (e.g.,
Watfor) are available to handle student jobs efficiently
and economically.

3) Fortran is the only language understood by most
faculty members.

4) Fortran is still the language of choice for obtaining
the most efficient solution to large numerical problems.

5) Many higher level undergraduate and graduate
courses use the computer in a mode in which the student
interconnects already programmed modules to obtain
his results. These modules (usually subroutines) are
written in Fortran and are often distributed nationally.

It is my contention that these arguments are no
longer valid ones for choosing Fortran as the first lan-
guage learned by undergraduates. I offer several reasons
for my position.

1) Fortran was developed 15 years ago with the
characteristics of computer hardware in mind rather
than how a scientifically designed language should be
defined. Many of the devices in Fortran, such as only
two types of variables, fixed and permanent dimension-
ing of arrays, and lack of character handling ability are
restrictive in the sense that general programming con-
cepts are difficult to communicate to students when the
companion language is full of exceptions and exclu-
sions. An arithmetic example concerns the fact that
Fortran truncates toward 0 when converting from
floating to fixed-point representation. The reason is
simply that in the 1950’s, IBM computers used a sign-
plus absolute-value number representation where trun-
cation toward 0 is easy to do. What is usually desired in
this conversion, however, is the greatest integer con-
tained in the number. To obtain this result, instead of
K=Y one must first write the arithmetic statement
function

1FLOR(X) = F1x(X — 0.5 + s16n(0.5, X))
at the head of the program and then use
K = 1rLor(Y).

Tricks such as this one have no place in an introductory
course.

2) What the state of the art is and has been in
industry should not be a factor in making decisions
about teaching programming any more than the current
methods used to design circuits are used to make de-
cisions about teaching circuit theory.

3) Implementations of other programming languages
such as PL/1 are now available which handle many
small student jobs as efficiently as their Fortran counter-

173

parts. For example, the Cornell College of Engineering
maintains and distributes a core-resident compiler
which implements a proper subset of PL/1 called
PL/C. Itis at least as efficient as Watfor.

4) Perhaps the primary difficulty in introducing com-
puters into the undergraduate curriculum in the 1960’s
was due to opposition of faculty who did not know a
programming language. It appears that the same situa-
tion has now emerged with respect to faculty learning
a second language.

5) It seems clear that for the next few years, most
practicing engineers who write production programs
will be writing Fortran programs, no matter which lan-
guage they first learned. The desirability of using
canned Fortran subroutines in course work in the
upperclass years at a university indicates that many
students will write Fortran programs even before they
graduate. What I wish to emphasize is the ease with
which Fortran can be learned as a second language. We
need have no qualms about requiring students in our
departments to have acquired a working knowledge of
Fortran from a short noncredit course before the start
of his third or fourth year, if we have a good reason for
this requirement. No student with a good background
in the algorithmic approach and a high-level pro-
gramming language is really handicapped by going into
the world without Fortran.

None of the preceding remarks have given any hint
of what language I would suggest as a replacement for
Fortran. The omission has been deliberate, for I am far
more interested in seeing Fortran replaced in the first
course than I am in dictating what its replacement will
be. A particular college’'s own specific situation will
probably be the major factor. Two very different pro-
gramming languages, either of which would be excellent
replacements, are APL and PL/1.

1) APL is an interactive language. Any reader who
is not familiar at all with APL is urged to become at
least minimally informed. It cannot be learned efh-
ciently without terminal sessions where the student is
allowed considerable freedom. APL is beautifully de-
signed to implement programming concepts the way
they are taught. Its lack of input—output features and
of interfacing possibilities with other systems is of
no consequence in a first course. For generating en-
thusiasm in a student for computing, AFL is without
compare. Perhaps the factor which will eliminate APL
from consideration is the calculation of the costs in-
volved in supplying 500 freshmen each semester with 4
hours of terminal time each per week. The cost of
about $4.00 per terminal hour for APL (based on esti-
mates gathered at the Purdue Symposium) is lower than
might be expected, however, and will continue to drop.
The APL missionaries whose papers appear elsewhere
in this special issue should be listened to with attention.
It is already true that a hoard of APL functions for use
in electrical engineering courses have been developed
and are available for use in the “canned subroutine”
approach.

2) PL/1 is primarily a batch processing language of

174

extraordinary richness. Only a small subset of the lan-
guage would be taught in an introductory course.
Efficient compilers for student use are becoming avail-
able. The experience reported by several institutions
that have used PL/1 as their programming language is
entirely favorable. The basics of nonnumerical pro-
gramming which are becoming more important to
engineering are handled with ease by PL/1. Many stu-

IEEE TRANSACTIONS ON EDUCATION, VOL. E-14, NO. 4, NOVEMBER 1971

dents who enter college with Fortran experience are
delighted to find a language which has removed many
of the incomprehensible constraints appearing in the
Fortran language. It seems clear that no more time is
required to teach PL/1 than Fortran. This time is
better spent, moreover, since it can be used to show how
general concepts of programming languages are imple-
mented in a particular language.

APL: A Natural Language for Engineering Education?

Part I (GArRTH H. FOSTER, MEMBER, IEEE)

I have found you an argument; but I am not obliged
to find you an understanding.
—Samuel Johnson

I. INTRODUCTION

HIS paper represents an effort to describe the
Teffect that some electrical engineering educators

feel APL will have upon undergraduate and
graduate education in that field. Accordingly, the
sections of this paper deal with the following areas.
Section II attempts to succinctly convey the flavor of
APL and to summarize its features. Section III dis-
cusses the strengths and weaknesses of current imple-
mentations and the general application of APL to
engineering education. Section 1V gives a brief intro-
duction of each of the panelists and contains the posi-
tion papers of each participant.

II. APL: AN OVERVIEW!

“What is one and one and one and one and one and
one and one and one and one and one?”
“I don’t know,” said Alice, “I lost count.”
“She can’t do addition,” said the Red Queen.
—Lewis Carroll
+\10p1
—APL

APL, standing for 4 Programming Language, de-
rives from the title of the book by the same name,
written by K. E. Iverson and published by Wiley in
1962. That volume, modest in size but not in scope, was
the formalization of an algorithmic notation which K.
Iverson first began to set down in the late 1950’s while
at Harvard. Further refinements of the language after
Iverson joined IBM surfaced when APL was used to
describe the IBM System 360 in 1964. Initially, the

Manuscript received February 22, 1971; revised April 28, 1971.

The author is with the Department of Electrical and Computing
Engineering, Syracuse University, Syracuse, N.Y. 13210.

! This overview addresses the form and content of the language
and not its programming or application. The latter topics are treated
more fully in the section of the paper, “APL—A Natural Language
for Engineering Education,” by W. R. LePage.

lack of implementation tended to discount the utility
of APL; first steps to remedy that state of affairs were
taken when L. M. Breed and P. S. Abrams at Stanford
University implemented an interpreter for APL. Sub-
sequently, Breed joined Iverson and A. D. Falkoff at
IBM to collaborate on the design and to implement
APL on the IBM System 360. APL\360 was available
internally to IBM and a few researchers on the outside
in late 1966; the implementation was obtainable in
Canada in 1967 and the U. S. by the fall of 1968. From
1967 to the present a number of independent imple-
mentations of APL have been undertaken so that APL
may now be found (or will shortly be obtainable) on
the IBM 1130 and 1500, XDS Sigma 7 (at least two
separate implementations), CDC 3600, Burroughs
B5500, CDC 6600 and 7600, Honeywell (GE)635,
Univac 1108, Burroughs 700 line, and possibly DEC’s
PDP10 and RCA Spectra 70.

Many of the implementations are being done by
equipment users rather than by vendors of hardware
and/or software, but the number and the range of
machines are indicative of the growing interest in APL.

Most of the implementations have followed the
directions laid out by APL\360 in that the implementa-
tion is a time-shared interpreter often using the IBM
2741 “Selectric” typewriter terminal or its equivalent.
Major variations may exist in the system supervisor and
its command structure or in the type and range of
1/O devices which a particular implementation may
support. The following discussion refers to APL\360
but the statements are, in general, applicable to other
implementations.

An APL terminal system provides for the managing,

saving, and merging collections of user-defined functions

and data into workspaces, and collections of workspaces
into libraries, and, in general, makes the language
available to a user at a terminal.

To the user the input interface to the APL terminal
system appears to be the keyboard shown in Fig. 1
and the output is the terminal printer which is for most
installations an IBM 2741 with the Selectric 1/0
Writer; the golfball normally has the same character

