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ABSTRACT

In this paper, a novel tactile photoelastic transducer for normal forces is presented. When a normal input force profile is applied to the
transduction medium, stress is generated in the photoelastic layer making it birefringent. Consequently, circularly-polarized input light
becomes elliptically polarized at the output due to the introduction of a phase-lead distribution. If a circular-reflection polaridoscope is
used, the output light-intensity is a circular function of the total phase-lead distribution.

The first part of the paper describes the forward analysis of the transducer using finite-element analysis to determine the stress
distribution in the transducer. Then, the phase-lead distribution is determined using the theory of photoelasticity. The second part of the
paper describes a technique for the recovery of the phase-lead distribution from the ideal noise-free light-intensity distribution. Also, a
verification method is proposed to determine whether a recovered phase-lead distribution is the correct one or not.

In the third part of the paper, we consider the non-ideal situation, where the light-intensity distribution is no longer noise-free.
Quantization errors added to the detected light-intensity distribution are also considered. Recovering the phase-lead distribution under
noisy conditions constitutes an ill-posed inverse problem. An algorithm that accurately and effectively determines the phase-lead
distribution from a noisy light-intensity distribution is presented. The inverse-tactile problem is solved using an optimization function.

Keywords: tactile sensing, ill-posed problem, inverse problem, photoelasticity.

1. INTRODUCTION

Among the required sensory capabilities of future robots are those related to physical contact with the external environment.
Explorations of diverse technologies that can possibly be associated with tactile sensing have resulted in the utilization of several forms of
force transduction. Among the common methods of transduction are piezoelectric, piezoresistive, capacitive and optical. Extensive
surveys of robotic-tactile-transduction technologies, providing considerable details of the performance of each of these types of tactile
sensors, have been presented in several works."?

Amongst optical methods, there exists a strong possibility that photoelastic tactile sensors could be implemented in the near future using
integrated optics and optoelectronics, in a manner analogous to piezoresistive tactile transducers that are presently implemented using
micromachining and microelectronics.*

The few studies that have been published on photoelastic tactile sensors include the description,’ an implementation of a basic sensor,®
and a theoretical model used to analyze it.” Research results presented in these papers clearly show that a photoelastic transducer can
satisfy many of the tactile-sensing requirements specified by Harmon.® In an earlier work,’ although the researchers were successful in
developing a photoelastic contact sensor, their transducer cannot be adapted directly for tactile sensing.

Photoelastic sensors have also been developed to detect slippage. One such sensor'® uses a transducer similar to the one used for tactile
sensing,>® however, in this case, direct analysis of the fringes is used to detect movement of the grasped object: a special technique was
reported to optimize the comparison process for detecting differences between two fringe patterns occurring due to the slippage of the
grasped object."

All of the photoelastic sensors developed thus far for robotics use a polaridoscope for illuminating and collecting the light from the
photoelastic transducer. Polaridoscopes can be either linear or circular depending on the required polarization of the light. Also they can
be characterized as reflective or transparent depending on whether the photoelastic transducer reflects or transmits the light.'

A circular reflective polaridoscope is shown in Figure 1. The input light is linearly polarized and then directed toward the photoelastic
transducer by a beam splitter. Before reaching the transducer the light is circularly polarized by a quarter-wave plate. Once the light
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penetrates the transducer, its polarization is affected by the birefringence induced in the photoelastic element by the forces applied to the
transducer. The birefringence creates a phase-lead distribution that transforms the circularly-polarized light into elliptically-polarized light.
A reflecting surface on the back side of the transducer returns the light toward a detector through the quarter-wave plate, the beam splitter
and an analyzer. The output light-intensity distribution consists of a fringe pattern, as will be discussed in Section 2.
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Fig. 1. A circular reflective polaridoscope.

The photoelastic tactile transducer developed in our laboratory consists of a simply-supported two-layer beam, with a mirrored surface
between the two layers, Fig. 2.”** In our analysis, it is assumed that normal line-distributed forces, separated by equal distances, s, from
each other, are applied to part of the top surface of the beam. The area covered by these lines is referred to as the force-application region.
The upper compliant layer is added to protect the rear surface of the mirror. For simplicity, it is assumed that this layer has the same
mechanical properties as the lower photoelastic layer.

Line / ;‘;:M

Force N

Fig. 2. Photoelastic tactile transducer under study.

Circularly-polarized monochromatic light illuminates the bottom surface of the transducer. A circular-reflection polaridoscope is used
for this purpose. The light propagates parallel to the z-axis, passes through the photoelastic material, reflects from the mirror, and returns
through the photoelastic material. If no force is applied onto the transducer, the returning light is circularly polarized since the photoelastic
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material is isotropic. If a force profile is applied, stresses are induced in the photoelastic layer making the material birefringent. This
introduces a certain phase-difference (a phase-lead) between the components of the electric field associated with the light-wave
propagation in the two allowed directions of polarization."® The two directions of polarization are in the plane perpendicular to the
direction of propagation, in our case the x-y plane. As a consequence of this effect, the output light is elliptically polarized, creating a
phase-lead distribution, p, between the input light and the output light.

In Section 2, finite-clement analysis (FEA) is used to calculate the stress distribution in the photoelastic transducer when forces are
applied to it. Combining the theory of photoelasticity and the stresses previously determined, the phase-lead distribution can be calculated.
The calculation of stresses using FEA rather than relying on approximate closed-form equations,'® has been proposed in several recent
works aimed at motivating better models for the increasing complexity of evolving transducers.””” The analysis presented in Section 2
corresponds to the forward analysis of the tactile sensor.

In Section 3, the basic inverse problem in sensing. is described. It consists of recovering the phase-lead distribution (a linear function of
the force profile) from the (ideal) noise-free light-intensity. Also in this section a method is presented by which to verify if a recovered
phase-lead is correct or not.

In Section 4, the non-ideal case is addressed. It is assumed that the light-intensity is detected by a CCD camera linked to an A/D
converter. Both elements introduce electronic noise, and the A/D converter adds quantization error to the detected light-intensity
distribution, such that the inverse problem of recovering the phase-lead distribution from the light-intensity distribution becomes an ill-
posed problem. To overcome the ili-posedness of the problem, an algorithm consisting of two major steps is presented: The first step
consists of reducing the space of possible solutions, taking into account a series of verification rules, based on some expected behavior of
the solution, that includes the verification of the boundary conditions of the problem. The second step consists of finding the correct
solution amongst the reduced space of possible solutions. This step depends strongly on some known physical properties of the solution,
and on the fact that the final solution can only be a linear combination of some pre-established functions.

2. FINITE-ELEMENT STRESS ANALYSIS OF THE TRANSDUCER

The calculation of the induced phase-lead distribution can be done using the photoelastic law that links the stress distribution to the
phase-lead distribution.? In our case, the phase-lead distribution p(x) can be calculated by:’

a+b
p(x)=2K, Lc,(x,z)dz : o))

where K, is a constant and o, is the stress along the x-axis. In this equation, it is assumed that the stresses are cylindrical along the y-axis,
since the forces in each tactel of the transducer are applied along the y-axis. The constant X is given by:

K 1+v, p 2r @
t= E2 s A ’
where A is the wavelength of the light, v, and E, are the Poisson’s coefficient and the modulus of elasticity of the photoelastic layer,
respectively, and K is the photoelastic strain constant.

The calculation of the 2-D distribution of stresses in the photoelastic transducer is carried out using FEA. The first step in calculating the
stresses consists of establishing a mesh characterizing the photoelastic transducer, Fig. 3. In our case, the central part of the mesh has more
elements than the outer parts in order to improve the accuracy of the stress calculations in the central region where the forces are applied.
For the FEA example presented in this paper, the number of elements of the mesh is 5,025 (201x25), the maximum allowed by the
software used (ANSYS -academic version) for the geometry of the elements used in this analysis. It is also assumed that the compliant
layer and the photoelastic material have the same mechanical properties (the same modulus of elasticity and the same Poisson’s
coefficient), the materials of both layers work in the linear-elastic region and the forces are applied only at the tactels (See Fig. 2). Finally,
it is assumed that the transducer is supported only at the bottom. As a consequence of these boundary conditions, Elasticity Theory
establishes that the stresses must be zero at x=-/2 and x=0/2. Due to numerical errors, stresses would not be zero, but actually be very
small. For the analysis at hand, plane-stress conditions are assumed as well >

Since stresses are calculated by the FEA at each of the nodes of the mesh, Equation (1) is re-written as:

P(x)=2K 3 G , (x;,2;)A25 » 3)

Ni

where G(x; , z;) is the stress at the coordinates (x;, z)), Az, is the length between two consecutive nodes along the z-axis in the photoelastic
layer and M, is the set of nodes in the photoelastic layer at a fixed x; coordinate.
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Figure 3: Finite element mesh representation for the transducer.

Suppose, as an example, that the force profile shown in Fig. 4 is applied to the transducer defined in Table 1. After calculating the stress
distribution using FEA and applying (3), the resulting phase-lead distribution is as shown in Fig. 5. The continuous line in Fig. 5 represents
a linear interpolation of the 201 consecutive points.

Table I Dimensions and parameters of the sensor.
l t a b E=E, V=V, A K s N,
25mm | 2mm O5Smm 3mm  0.0046 GPa 049 6328nm 0009 I1mm 11

Applying the principle of superposition to stresses, one can easily prove that the phase-lead distribution can be re-written as:

N,
l 1
”""”=sz1"’ JGDF @)
where y; are the complete set of the corresponding phase-lead distributions when a load W is applied at the 7" tactel, F;is the magnitude of
the force and N, is the number of tactels. The family of y functions completely characterizes the transducer since, if they are known, the
phase-lead distribution corresponding to any force profile can be obtained by applying (4). The family of y functions are linearly
independent in the interval /=[-/2 [/2]. For clarity only some of the functions of the family (for W=0.4 N) are shown in Fig. 6.
The phase-lead distribution induced in the photoelastic material produces a light-intensity distribution at the output of the polaridoscope
that is given by:

1(x)=san2£-‘2‘—). )

Fig. 7 shows the light-intensity distribution corresponding to the phase-lead distribution of our example. This completes the forward
analysis of the transducer.

3. PHASE-LEAD DISTRIBUTION RECOVERY

Prior to the study of the non-ideal case, it is beneficial to determine how to recover the phase-lead distribution from a noise-free
continuous light-intensity distribution. The study of this simpler case will show us some of the possible causes for the ill-posed conditions
introduced by noise and discretization.

Let Equation (5) be inverted as:

P(x)=—-2arcsinJI(x) , ®
where p(x)is the recovered phase-lead distribution. In this equation, it is assumed that the phase-lead distribution will always be negative
or eventually zero, when the light-intensity is zero. Note that the phase-lead distributions y; are negative (except at a few points where they
could be zero) and the forces F; are positive since only compression is allowed. In Figure 8, the recovered phase-lead distributions p(x)
and p(x) are shown. For this case, it is clear that p(x) is not the correct phase-lead based on given knowledge of the correct distribution. In

practice however, the phase-lead distribution p(x) would not be known a priori. Then, an important issue that must be addressed is whether
one can identify an efficient means by which to determine that in our example () is not the sought phase-lead distribution.
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Fig. 8. Phase-lead distributions p(x) and p(x).
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3.1. Proposed Verification Method

The recovered phase-lead distribution must satisfy (4), otherwise the phase-lead distribution is incorrect. In Appendix L it is proven that
when p(x) is smaller than -7 in the interval /, the corresponding 5(x) obtained by (6) is not a linear combination of the  functions,
assumning that the y functions are linearly independent in any open sub-interval of I. An alternative approach to showing that p(x)is not a
linear combination of the W functions can be explained assuming that the y functions have continuous derivatives in I In that case, if
p(x)is a linear combination of the y functions, the derivative of p(x)in the interval I should be continuous. Since the derivative
of p(x)in the interval / is not continuous, 5(x) is not a linear combination of the phase-lead distribution. Note that for x= x, and x= x,,
P(x)has discontinuous derivatives. In Appendix I, the proof is more generic and does not require either that the y functions have
continuous derivatives in /, or that p(x) be discontinuous in 1.

This result can be used to decide if a recovered phase-lead distribution is (or is not) the correct phase-lead distribution: If the recovered
Dhase-lead is a linear combination of the family of  functions in I, then the recovered phase-lead distribution is the correct one,
otherwise it is incorrect.

This conclusion constitutes the basis of the algorithm detailed in the following section.

3.2. Recovery of the phase-lead distribution by a full analytical study of the light-intensity distribution

The proposed method allows the recovery of the phase-lead distribution by a full analysis of the light-intensity distribution. The
disadvantage of applying this method is the necessity for the calculation of high-order derivatives at critical points.”

Differentiating (5) yields:

LN
dx(x)—zsmp(x) dx(x). 0

The critical points of /(x) can be found by analyzing % =0, namely where

sin p(x)=0, 8.

X . .b

Equation (8.a) simply indicates that the phase-lead is zero or a multiple of 7, and (8.b) determines the critical point of p(x). It should be
noted that some critical points can satisfy (8.a) and (8.b) simultaneously. These particular points are the ones that complicate the recovery
of the phase-lead distribution.

The following algorithm is an analytical method for the recovery of a general phase-lead distribution from the normalized light-intensity
distribution. A detailed explanation of the algorithm has been previously reported.”

The first step in the algorithm is the classification of the critical points of I(x) as follows:

(a) Class I critical points of I(x), where I(x)=1, and the first non-negative derivative is of the form d**'J/dx®*! for some integer k > 1.

(b) Class 2: critical points of I(x), where I(x)=0, and the first non-negative derivative is of the form &**'Idx**' for some integer k > 1.

(c) Class 3: critical points of I(x), which are local extrema but do not satisfy conditions (a) or (b).

The second step in the algorithm deals with the recovery of the phase-lead distribution. The phase-lead distribution can be reconstructed
using the following formula:

p(x)==21M —(~1)M*N 2arcsin J1(x) , ©)

where M — M +(-1)K.

The algorithm starts with M=0, N=0, and K=0. The phase-lead distribution is recovered point-by-point increasing x from -2 to I/2.
When a Class 3 critical point is encountered, K is increased by one; when a Class 2 critical point is encountered, N is increased by one;
and, when a Class 1 critical point is encountered, M is increased or decreased by one depending on the value of K.

One of the major problems with this algorithm is the need for analytical expressions for the light-intensity in order to calculate the high-
order derivatives with accuracy. However, measurements of the light-intensity distribution are subject to noise quantization error and
sampling that makes the calculation of derivatives impossible to the extent required by the algorithm. If the high-order derivatives cannot
be calculated, then the classification of the critical points cannot be performed accurately, and the inverse problem of finding the phase-
lead distribution becomes ill-posed.
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4. PHASE-LEAD RECOVERY UNDER NON-IDEAL CONDITIONS

In this section, it is assumed that the output light of the polaridoscope is detected by a CCD linear array, mounted parallel to the x-
coordinate, whose active length is the same as the transducer’s. Since the linear array samples the light-intensity distribution in the pixel-
quantized space, Equation (5) can be re-written in a discrete form as:

Ix)=sinZ§2  fori=12,..m, (10)

where m is the number of pixels on the linear array. Note that, in Section 2, the light-intensity distribution was calculated for only 201
points. When m>201, the light-intensity values can be interpolated based on the values obtained using FEA.

The equations for p(x) and ;(x), (3) and (4) respectively, can also be re-written in a discrete form as:

P, | |Wa Wo - |
. ‘r=| o i F= (14)

P, = p(x;) fori=1,2..m 11
V= i(x;)  fori=12..m;j=12..n. (12)
The discrete version of (3) can, thus, be re-written using a matrix notation as:
1
P=—Y¥YF, 13
W 13)
where
lrpl ] [Wll V12 Wip [Fl]l
I | F> |
I .|
I |

] v v w,,,,.JI -

Herein, P is the phase-lead vector, ¥ is the base matrix, and F is the input force-proﬁle vector. A relation similar to (14), but between
strains and forces, has been reported for the case of piezo-resistive tactile transducers.'®

Once the light-intensity has been discretized by the linear array, the measurements are converted into digital form by an A/D converter.

The A/D converter introduces quantization errors in addition to the random electronic noise that would be present due to the detection
process. The detected light-intensity distribution (in grey levels), I;, can be written as:

1;(x;)= round[Asm2 -p—(—+n o(X)+1, ] fori=1,2...m, 15)

where n, is the total noise introduced into the measurement; J, is the minimum average voltage applied to the A/D converter, such that
[1,+ min(n,)] 2 0; and A is the maximum allowed dynamic range of the A/D converter, such that [A + ,+ max(n,)] < 28_1, (where Bis
the number of bits in the A/D converter). The function round(-) returns the closest integer to the real number (-).

Now, the phase-lead distribution has to be recovered from (15). However, the critical points of ; cannot be classified using the
algorithm outlined in Section 3 since the derivatives of I, would be zero or infinite. As a consequence, a new algorithm must be developed
through which to invert the problem. The proposed algorithm is explained herein via the example used in the previous sections.

Let the light-intensity distribution be given by (15), and p(x) be calculated using (13). For the example, the parameters for the A/D
converter and the linear array are as follows: B=8 bits, m=2048, [,=5 and A=245. The noise is assumed to be random and limited between
-5 and 5 grey levels. Fig. 9, shows the noisy light-intensity distribution.

A description of the algorithm follows:

(a) The light-intensity distribution shown in Fig. 9 is filtered with an ideal low-pass filter. The noise, in our example, was reduced to the

range of -2 to 2 grey levels (from -5 to 5) by utilizing a pass-band of 10 pm’.

(b) The filtered light-intensity distribution is normalized, Fig. 10, and the critical points are identified. In our example, they are ¢; , k=1,

2,..19
(c) Three regions exist in the normalized light-intensity distribution for the classification of the critical points, Fig. 10. In our example,
on the normalized intensity scale, Region 1 is defined as 098 < I <1, Region 2 as 0 < I <0.02 and Region 3 as 0.02 < ] <098.
The widths of Regions 1 and 2 were obtained approximately by dividing the maximum error in the filtered light-intensity
distribution by A (that is, 4/245~0.02). The critical points are now classified as follows:
(i) All local extrema in Region 1 are either Class 1 or Class 3 points (following the classification used in Section 3). In our
example, c;and c¢;7are in Region 1.
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(i) All local extrema in Region 2 are either Class 2 or Class 3 points. In our example, ¢y, is in Region 2.
(iii) All local extrema in Region 3 are Class 3 points. In our example, with the exception of ¢;, ¢;2 and ¢y the rest of the points are

in Region 3.

Due to uncertainty about the class of critical points in Regions 1 and 3, several different phase-lead distributions can be recovered
using the algorithm outlined in Section 3, of which only one is correct. This constitutes an ill-posed inverse problem. Each local
extremum in Regjons 1 and 2 would yield two possible phase-lead distributions. If the total number of local extrema in Regions 1
and 2 is C, then the total number of possible phase-lead distributions is 2€. In our example C=3, leading to 8 possible phase-lead
distributions. For coding purposes, the number “1” is assigned to Class 1, “-1” to Class 2 and “0” to Class 3. Table II.

(d) The number of possible phase-lead distributions is minimized. To accomplish this objective, all the possible cases are checked with

respect to a set of verification rules:

Rule I Xf cyyand cppare both Class-1 or both two Class-2 points, such that between them only Class 3 critical points exist, then the
number of Class 3 critical points must be odd. In our example, all the cases satisfy this Rule.

Rule 2: If cy is a Class-1 (Class-2) point and ¢y, is Class-2 (Class-I) point such that between them only Class-3 critical points
exist, then the number of Class-3 critical points must be even. In our example, all the cases satisfy this Rule.

Rule 3: The parameter M in (9) must be zero for x = -I2 and x = [2 since the following boundary conditions apply to the
transducer: p(-/2)=p(l/2)=0. " For instance, in our example, Cases 2,4, 5, 7 and 8 do not satisfy this rule.

After applying the rules to our example, the possible set of phase-lead distributions was reduced to 3 (Cases 1, 3 and 6).
(e) The phase-lead distributions are reconstructed for the reduced set at hand.

g B

g

Intensity (gray levels)

100 +

-10 5 0 5 10
x (mm)

Fig. 9. Detected light-intensity distribution in grey levels.

Normalized light intensity

e ©o 0o o o 9 o0 o o
o = N W » 0 ® N ©® © o
———

Table II: Complete set of possible critical points.

X (mm)

Fig. 10. Normalized filtered light-intensity distribution.

Case# | ¢ ¢ ¢ ctocy ¢ cptocs € Cig Cro
1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 1 0 0
3 0 0 0 0 -1 0 0 0 0
4 0 0 0 0 -1 0 1 0 0
5 0 0 1 0 0 0 0 0 0
6 0 0 1 0 0 0 1 0 0
7 0 0 1 0 -1 0 0 0 0
8 0 0 1 0 -1 0 1 0 0
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098 9 0N\ . 1
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Region3 1
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* In our simulation, due to numerical errors in determining the stresses using FEA, p(-I/2) and p(l/2) are non-zero small negative values,
however, this does not affect the value of M at the borders since p(-//2) >r and p(/2) >
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(f) Since only one of the solutions in the reduced set is the one sought, the spurious phase-lead distributions are eliminated.

To achieve this objective, in general, all the force-profiles, F,, corresponding to the limited set of potential phase-lead distributions,
P, , must be found. One could be tempted to use (13) to find F,, but it is realized that (13) can only be used for the forward analysis
because the base matrix ¥ (a set of noise-free phase-lead distributions) cannot be determined from noisy measurements. Because of
that we will have to determine F, by solving the following expression:

1.~
P ETV-‘P F, . (16)

where ¥ is the noisy base-matrix. This matrix can be found alternatively by applying a force W to each tactel such that the phase-
lead distribution in all points is larger than -t; for our case W=0.4 N. Then, using (9), a noisy light-intensity distribution is obtained
for each case. These noisy light intensities are filtered with the same filter used in Step (a) of the algorithm and then are normalized.
Since the phase-lead distribution is larger than -, the elements of each column of ¥ can be obtained using (6).

Then, F, has to be found from (16). A similar problem was addressed in a previous study for the case of a piezoresistive tactile
sensor.” Therein, a neural network was proposed to solve the inverse-tactile problem. In our case, the following non-negative least-
squares problem was formulated and solved,

, suchthat F, 20, an

1 A
P F B

min
F
where ¥ and F, are the coefficients of the objective function. The vector F, is restricted to be non-negative due to the positive
force profile requirement in our case.
In our example, for Case 1 in Table II, the following force profile was recovered using (17):
F,=(0.2469, 0.0745,0.0501,0,0,0,0, 0, 0, 0.1258, 0.2336) N
The recovered force profile obtained by (17) must be verified via (16). Let P, be the phase-lead distribution obtained when the
estimated force profile F, is applied to (10):
1.~
Pv EW‘P F,. . (18)

For the correct guess for P, the difference between P, and P, must be minimal.
Let a normalized error be defined, for each case, as:

1
Error(%) = " max {abs{P, - P,1}x100, 19)

max

where the function abs calculates the absolute value of each component of the difference between P, and P,, and AP, is the
difference between the overall absolute maximum and the overall absolute minimum of P, and P,.

In Fig. 11, both P, and P, are plotted for Case 1. As can be observed, there exists a large difference between the two phase-lead
distributions. This correctly implies that Case 1 is not the true phase-lead distribution. The large difference between P, and P, is
associated with the fact that, in the ideal (noise-free) case, the vector P, would not be a linear combination of the y functions.

For Case 3, the corresponding P, and P, are shown in Fig. 12. Once again, it is noted that Case 3 is not the true phase-lead
distribution. The corresponding force profile F, associated with this case is:
F,=(0.2359, 0.0835, 0.0679, 0,0,0,0,0,0,0,0) N
The correct phase-lead distribution is the one that corresponds to Case 6, Fig. 13. The normalized error for this case is 3.6% (Table
III, shows the normalized error for all three cases considered). The recovered force profile for Case 6 is:
F,=(0.0999, 0.0572, 0.1008, 0.0715, 0.2105, 0.2998, 0.1186, 0.1298, 0.1503, 0.1098, 0.0899) N.

When one compares the above F, with the true input (see Fig. 4), the maximum error in any component is determined to be less
than 3%.

Table III: Normalized Errors.
Case # 1 3 6
Error (%) | 414 514 36
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5. CONCLUSIONS

In this paper, a photoelastic tactile sensor has been studied using FEA to determine the stress distribution, and the theory of photo-
elasticity for the calculation of the phase-lead distribution. The developed technique allows one to take into account the effect of the
boundary conditions on the phase-lead distribution of the transducer, creating as a consequence a more reliable model for the transducer.

The recovery of the phase-lead distribution from an ideal (noise-free) light-intensity distribution has been presented and used to help in
the understanding of the ill-posed conditions that may be found when the phase-lead distribution must be recovered from a noisy light-
intensity distribution. For the later case, a general algorithm has been presented for the automatic recovery of the phase-lead distribution.
In this process, the noisy light-intensity distribution is assumed to be detected by a CCD array camera linked to an A/D converter. The
algorithm tackles the ill-posed condition of the problem by reducing the set of possible phase-lead distributions and by checking physical
properties of the solution. Some simulation results using a 2-D opto-mechanical finite-element model of the transducer have been
presented to demonstrate the proposed algorithm. To solve the inverse tactile problem, an optimization function was successfully
implemented.

In practice, finding the correct phase-lead distribution might be computationally time-consuming if each distribution is considered
sequentially. This is a consequence of the complexity of the algorithm by which the inverse-tactile problem must be solved. However, it is
quite possible to process the different phase-lead distributions in a parallel manner: Use of dedicated hardware to solve the inverse-tactile
problem, such as the scheme proposed by Pati,” for instance, is particularly attractive.
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Fig. 11. Phase-lead distributions P, and P, for Case 1 Fig. 12. Phase-lead distributions P, and P, for Case 3.

- -t
k)
8
3 2
3
g |
=
o
4l
sl
-6}
s a0 5 0 5 10 15
x(mm)

Fig. 13. Phase-lead distributions P, and P, for Case 6.

316 /SPIE Vol. 2570

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/03/2016 Terms of Use: http://spiedigitallibrary.or g/ss/'TermsOfUse.aspx



6. ACKNOWLEDGMENTS

The authors are grateful for the financial support provided by the Natural Sciences and Engineering Research Council of Canada. Mr.
Saad would also like to thank CNPq, Brazil, for its financial support. Further, the authors would like to thank Dr. Tom Zougas for the
development of the FEA programs and Mr. Dimiter Zlatanov for his comments on Section 3 of this paper.

APPENDIX I
The recovered phase-lead distribution, p(x), given by:

P(x) = —2arcsin [1(x) (A1)
can only provide the correct solution if the original phase-lead distribution p(x)is larger or equal to -7 in the interval I=[-1/2 12]. If
p(x) is larger than -7 in any sub-interval of , then p(x)is different than p(x). For this case, p(x) has sub-intervals where it is larger
than -m. Then, p(x)and p(x)will have the same values in the sub-interval. Consider for example, the phase-leads in Fig. 8. As can be
observed, the p(x) and j(x) have the same values in the interval I} =[-1/2 x,],aswell asin the interval I, =[x, 1/2].

Theorem: Let p(x) be a linear combination of the linearly-independent functions y(x), Wa(x), ...Wn(x) defined in the interval I=[-/2
2. Let us also assume that y;(x), W(x), .. .¥in(x) are linearly independent in any open sub-interval of 1. Let us now assume that a function
p(x) is identical to p(x) in some, but not in all, open sub-intervals of I. Then, p(x)is not a linear combination of the functions y;(x),
Yo%), ... Wn(x) in 1.

Proof: Assume that p(x)is a linear combination of y;(x), Y(x), ...Wn(x) in 1. Then, because of the additive property of linear functions,
the function p(x)- p(x) should also be a linear combination of y(x), Wa(x), .. . Wn(x):

N
p(x)=p(x)=Y, o,y ;(x). (A2)

i=1
In the sub-intervals of / where p(x) and p(x) are identical, the coefficients o; must be zero since the theorem assumes that the functions
V(%) Wa(x), ... yn(x) are linearly independent in any sub-interval of I In the sub-intervals of I, where p(x)and p(x)are different, the
coefficients o; must be different than zero. Correspondingly, it is proven that the function p(x)- p(x)is not a linear combination of the
functions ¥;(x), Wo(x), ... Wn(¥) in L. Since, by definition, p(x)is a linear combination of y;(x), Wa(x), ...WYn(x) in , then, p(x)cannot be
linear combination of y;(x), Wa(%), ... Wn(x) in .
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