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ABSTRACT

The design of a versatile, fast image process-
or is presented. It comprises a TV camera driven
by a bit slice processor. It has the ability to
analyze the whole or any part of video frame in
real time under software control. Various system
advantages and the results of an implementation are
outlined.

INTRODUCTION

Scene analysis using a TV camera is becoming
an invaluable aid to computer control of many
systems. Most image processors today cannot pro-
cess video signals in real time and therefore pre-
clude usage in many potential applications. The
processor describe here can easily synchronize to
and process an input video signal continuously.

It was used to configure a man to machine inter-
face, wherein the camera 'looked' at a key-area
and determined operator actions. The overall
system response was guaranteed less than 100 ms,
and allowed unprecedented flexibility. In general,
this image processor has been intended to lend
powerful support to another slower computer exe-
cuting standard software. The AMD 2900 series bit
slice family was used to implement the processor
and a Motorola 6844 Direct Memory Access Controller
to control the data transfer.

HARDWARE FEATURES AND DETAILS

The output of the image processor is a single
bit/pixel map of the video frame which can either
be transferred by Direct Memory Access into the
host computer or retained for further processing.
The resolution possible is 512 x 512 pixels. The
black-white decision threshold can be set to any
of 256 grey levels by either the host or the image
processor. The image processor does not have any
high speed frame buffer since it uses the host
computer memory to store the digitized frame. The
buffer location is changeable as often as every
frame access by the host computer. Figure 1 shows
a block diagram of the processor.

The video signal is digitized into 'black' or
'white' using a very high speed comparator. These
bits are concatenated to form bytes and stored
into the host computer memory via a Direct Memory
Access. DMA is possible through four channels,
each being programmable by the host computer to
set block length, block position,transfer direction
and transfer mode (interrupt on end of transfer or
re-transfer). One comparator input is derived
from an 8-bit D/A converter which effectively
establishes the black-white decision threshold. It
is accessible to both computers and therefore the
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threshold can be updated continuously. Signals
like vertical and horizontal sync ﬁulses from
the composite video are fed into the status
register of the image processor. This results in
micro-instructions like WAIT till tor branch on)
start (or end) of current frame (or line). The
host computer also has direct access to the write-
able control store of the image processor as
well as a register in the image précessor micro-
program sequencer. It can therefo#e, contin-
uously re-write the image processor micro-code
and using the address register, point to the
exact routine to be executed. 1

The image processor CPU has an 8-bit data
word, and is pipelined at two levels: the outputs
of the control store, which contain the micro-
instruction and the status outputs 'of the ALU
(Carry, Negative, Zero, Ovf and four externals).
The primary objective was a decrease in overall
cycle time. In this scheme the microinstruction
access time is overlapped with the ALU operation,
thus reducing the overall cycle time.

The micro-instruction width is 40 bits with
4 bits reserved for future custom applications.
The use of 4-bit slices for the microprogram
sequencer imply an address space which is tri-
vially expandable to any size. The, same holds
true for the data word size. Since the image
processor and host computer clock r?tes are
vastly different, and communication; is totally
asynchronous, steps were taken to minimize system
errors: A 'mailbox' data buffer was implemented
and a 8 flip flop circuit to implement a correct
handshake across all four DMA channels. In the
implementation, no incorrect transfer has been
detected in all tests made so far.

SOFTWARE FEATURES

The instruction set of the image processor
eases the software writing effort. |A complete
instruction set can be easily generated by
referring to the processor architecture and the
AMD 2900 series data book. Space limitations
preclude a list here. A subroutine to digitize
and fill a frame buffer assuming the transfer
channel to be number 0, would consist of the
following steps:

1) Synchronize to vertical sync.
* Wait for the flyback

* Frame will start on
* execution of next micro-instruction



This architecture differs from all other
existing organizations in that a single memory
device contains all the information of a plane.
To improve the z resolution (i.e., the shade of
grey or colour), one is required merely to add
more chips--possibly on the same board--rather
than adding new boards. This expansion does not
require any modification of the control unit.
Furthermore, a failure of one chip does not dis-
tort the entire image.

Coordinate Transformation

The innovative transformation reduces the
memory mapper to simple interconnections and
results in a natural, fast refreshing scheme for
the dynamic RAM. For a 64 Kbit dynamic memory,
the transformation F(x, y) = (¥, Y) is given by

Fl([xo,xl,...x7])=[CASO,CA51,RASZ,RAS3,...RAS7]
and
Fz([yo,yl,...y7])=[RASO,RASl,CASZ,CAS3,...CAS7]

where x, y are the image coordinate vectors and
X, Y are intermediate vectors whose elements

refer to the dynamic RAM physical coordinate
vectors.

The above transformation has the following
properties. Since the mapping is symmetrical, the
memory mapper reduces to simple wire routing (no
ROM required). The dynamic RAM is refreshed every
four horizontal lines on the raster scan display
and, therefore, no refresh controller sequencer is

sequencer (Fig. 1) can be designed so as to permit
reading in the page mode.?2

Higher resolutions such as 256 x 512, 512 «x
512 can be achieved with the chip-per-plane archi-
tecture by using interleaving and interlacing.
The present 64 Kbit memory devices and any larger
chips could be utilized in the higher spatial
resolution video RAMs.

Summary of Features

. The chip-per-plane architecture allows
increased z resolutions to be accomplished easily
with common control logic. The innovative mapping
results in natural dynamic RAM refreshing and the
simplest possible memory mapper. The time-slice
sequencer enables random access to any pixel by
the external computer. The overall design of the
video RAM, has, therefore, enhanced reliability
and maintainability.
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