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Abstract

In this paper, a system-level diagnosis algorithm for the FTMCS[14]
is discussed. Unlike traditional diagnostic approaches, this algo-
rithm applies techniques of artificial intelligence and expert sys-
tems. It collects naturally available information and status data as
fault symptoms and reasons with these symptoms, using inference
rules to discover the componcats which are responsible for the
fault. Infercnce rules represent the knowledge of the FTMCS
structure at a highly abstract level. The performance of the algo-
rithm can be improved by modifying the inference rules.

L. Introdoction

The past emphasis of fault tolerant and other computer reliability
techniques has generally been on such specialized areas of applica-
tion as spacecraft control [1,2,3] and telephone switching[4). As a
result of a great deal of work, various sophisticated reliability tech-
aiques have been developed for such major systems[5],[6]. On the
other hand, there arc a very large number of less sophisticated
applications in which microprocessors are used to control particular
devices in industry and manufacturing(7}-[11]. Morcover, this area
of low-cost microprocessor-based controllers is rapidly expanding as
developments in VLSI appear. However, it is apparent that it is an
area to which too little attention has been paid in the application
of reliability techniques.

Several trends strongly siiggest that a time for change is upon us -
that specific reliability techniques should be developed and imple-
mented for low-cost systems:

A. Developments in VLSI technology, especially of microproces-
sors and memories, have provided new and less costly ways to
construct relisble and fault tolerant computers and
computer-based systems.

B.  As the use of VLSI technology expands, even highly critical
applications adopt microprocessors in their coatrolling ele-
ments. For these applications, current microprocessor-based
controllers are not sufficiently reliable [12] ,[13],

Motivated by these trends, we have designed a Fault-Tolerant
MicroComputer System (FTMCS) which is intended for industrial
and manufacturing control. The design of the FTMCS was guided
by the following objectives:

1. Permanent and transient fault survival:
2. On-line repair:

3. Degraded operation:

4. Modular design:

S. Commercial VLSI componenss:

6.  Dynamic response-time I reliability trade-off:
7.  Self-diagnosis:

In this paper, we will introduce a fault diagnosis algorithm for the
FTMCS. This algorithm applies Al techniques-such as deductive
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reasoning ( from facts to conclusions ) and hypothesis reasoning (
from assumptions to expected facts ). In order to provide the con-
text for its description, we will briefly introduce the FTMCS sys-
tem.

2. System Architectore

The FTMCS was created to satisfy the requirements m.:derlying the
objectives presentcd in the last section. The system is configured
with three identical computing modules connected by commynicl-
tion channels. The structure is shown in Figure 1 ( For detail, see

[14] ). Commusication Chaonel y
Module w1 [$222: Gl Modute w2 [$2ER: G} Mogute a3
From scasors From scasors Froo sepsors
- T goals to

Figure 1. System Architecture

Each of the identical computing modules executes the same pro-
gram (the control program). To begin, each accepts feedback sig-
nals from the object system (the signals can be sent by cither a sin-
gle sensor group or triplicated sensor groups). Then each calcu-
lates the corresponding control signals independantly, and, after
this, each module broadcasts its computed result to the other
modules for majority-voting. By this means, any single error
caused by a single hardware failure can be detected and corrected.
To recover from transient failures, the exccution of the coatrol
program is modularized by task and the modules are task-
synchronized. That is, after the completion of each task, the
modules are required to exchange important information in order
to mask errors caused by transicnts. The details of this process are
discussed in [14).

If a module or onc of its components is detected to be faulty, that
module is isolated from the others. The system, thus, is degraded to
a dual module one. In this degraded mode, two modules execute
the same program as usual. They also exchange computing results
and system information in order to detect permanent and transient
failures. Many other features are software-implemented and are
discussed in [14).

The module structure is shown in Figure 2.

To the Object System
anolenum m

IMER] [RoMi] Rami] [1011] [i02i] [curi] [cHei

To other modules

Data Bus
CPU-{

Cottrol & Address Bus

Figure 2. Module Structure
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3. The Fault Disgnosis Algorithm

3.1. Background

The traditional model used conventionally in system-level diagnosis
algorithms is that introduced by Preparata, Metze, and Chien{15].
In this model, a set of computing modules, or units, is assembled
such that each unit can test a subsct of the other umits. It is
assumed that at most a bounded number of units is permanently
faulty and that these faulty units can claim cither that fault-free
units are faulty or that faulty units are fault-free. Bascd on this
model, interesting results given by Hakimi and Amin[16] show that
there exist necessary and sufficicat conditions on the testing assign-
ments of the units such that the set of the faulty units in the system
can be uniquely identified on the basis of any possible collection of
test results, assuming that the number of faulty units does not
exceed a given bound, denoted as t. Such systems are said to be t-
disgnosable. Since 1974, scveral algorithms based on this model
have been developed by researchers in this field[17}-[21].

In recent years, there has been an increasing interest in applying
techniques of artificial intelligence and cxpert systems to fault diag-
nosis for digital computing systems[31]. Several authors have pro-
posed and developed new diagnostic methods which employ these
techniques[24]-[30]. These methods are designed to implement diag-
nostic tools for electronic devices and other digital systems. Most
of these diagnostic systems perform as troubleshooting consultants.
It is genecrally assumed that the diagnostic systems themselvies are
fault-frec. The role of the troubleshooter is to initiate tests on the
object system( the system to be diagnosed ), then, reason with the
test results according to rules incorporating knowledge of the struc-
ture and function of the object system to reach conclusions about
the misbehaviour of the system. Often, the conclusions available
are too general to point directly at the source of the fault, there-
fore, strategies must be taken to select further tests. These tests,
intended to obtain further and sufficient information about the
fault, may be done either with the help of human interaction or the
knowledge stored in the system.

In this section, we will introduce a new diagnostic method which
borrows the idea of troubleshooter reasoning described above.
However, the method presented here is basically different from
those intelligent diagnostic tools in scveral aspects: First, it is a
sclf-diagnosis algorithm, not a diagnostic tool for some other sys-
tem. Second, it is a system-level diagnosis algorithm while most of
the troubeshooters operate at the circuit level. Third, the diagnosis
is based on fault symptoms collected from naturally occurring sys-
tem operational information and status, not from the results of
special tests.

The diagnosis system under discussion collects system operational
information and status which normally includes fault symptoms. It
then reasons with these fault symptoms, using inference rules, to
discover the cause of the fault or to identify the components which
are responsible for the fault. The inference rules provide the
means for the system to analyze the symptoms for the purpose of
detecting their root cause. In general, inference rules are depen-
dent on the actual system architecture. They represent the system
structure at a highly abstract level. Thus, the performance of the
algorithm depends on how well the inference rules represent the
system.

One of the advantages of the approach used is that the algorithm

can be improved by modifying only the inference rules and the
organization of information about the system. Another advantage

is that the algorithm does not require explicit testing.!

The third feature of the algorithm is that it does not utilize fault
dictionaries and has no knowledge of fault models or fault
mechanisms.

! Though the FTMCS uses extra software, the rolc of this software is to co-
sure correct operation, not to diagnosc the source of the difficulty. We usc its out-
puts, bowever, &3 data for the dizgnosis process.

3.2. The System Model As Viewed By The Algorithm

In this subsection, we will modify the representation of the system
structure for the convenience of the diagnosis algorithm. First, we
would like to define some terms.

Definition 1: A componens is defined to be a VLSI chip, deaoted by
a string of characters ( its name ). Referring back to Figure 2.,
CPU-i, TIMER-i, IO1-i, CH1-i, ctc. are examples of components.
Definition 2: A mechanism is defined as a sct of components,
denoted by a string of characters ( its name). Logically, a mechan-
ism is a functional part of the system. It is also the smallest unit
the diagnosis algorithm can distinguish. For example, a communica-
tion channel CM12 ( see Figure 3 ) is a mechanism consisting of
components CHI-1 in module #1 and CH2-2 in module #2. The
mechanism OUT in Figure 3 is another example.

Definition 3: An evens is defined as a boolean variable which has a
value of either "true® or “false”. An cvent is denoted by a string of
characters ( its name ). Events are merely symbols used to describe
system fault symptoms, denote inference rules and represent diag-
nostic conclusions. If event A is true, we say that A has happened,
or conclusion A is valid, etc.. Events can also be considered subject
to boolean operators such as "AND”, "OR’, and *NOT". Any
proper boolean expression in which eveats are variables is also an
event. Events can be classified into two kinds: atomic events and
non-atomic evenss. The definitions of both will be given shortly in
section 33,

Figure 3 shows the correspondingly modified representation of the
system structure. Each box represents the mechanism named in it.

Mecchanism #1 consists of components CPU-1, TIMER-1, ROM-1,
and RAM-1 ( Figure 2). Mecchanism IN1 contains [01-1. Mechan-
ism OUT1 consists of components GATE-1 and 102-1. Mechanism
CM12 ( also called CM21 ) contains componcnts CH1-1 and Ch2-2.
Other mechanisms in Figure 3 have similar organizations as those
described above.

To Object System
Figure 3. The System Model for Diagnosis

3.3. Description of the Algorithm

Before we describe the algorithm, we would like to state our
assumptions:

Assumption 1: the algorithm will diagnose only permanent faults (
since transicnt faults are treated in some other way [14] );

Assumption 2: more than one mechanism can be faulty at any time;

Assumption 3: 8o two different faulty mechanisms produce the same
fault symptom;

Assumption 4: no fault-free mechanism becomes faulty during diag-
nosis;

Assumption S: a faulty mechanism manifests its fault by presenting
incorrect output.

As shown in Figure 4, the diagnosis algorithm consists basically of
three components: an information list, inference rules, and a rea-
soner. The information list contains the system fault symptoms.
Inference rules are IF THEN statements which can be used to rea-
son deductivcly with the system symptoms. The reasoner is the
heart of the algorithm. It choses how to reason, which symptoms
should be applied to which inference rules and what conclusion
should be made, etc.. The objective of the algorithm is to identify
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Figure 4. Diagnosis Procedure
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the mechanism or provide a list of probable mechanisms which arc

responsible for the system fault symptoms depicted in the informa-
tion list. Following is a detailed description of the algorithm.

33.1. Tke Information List

The information list is a set of basic events or atomic events in the
system. The values of these cveats serve to fully describe the fault
symptoms of the overall system. These events are basic or atomic (
and will be refered to in this paper as atomic cvents ) because their
values do not logically depend on other events and are derived
directly from the system operational information and status. These
events must be both readily accessible and representative of fault
symptoms-

As mentioned earlier in section 2, there are basically three funda-
mental voting processes in the system. The first is the vote taken of
input signals from the sensors in order to make sure that every
module has received the same inputs. This vote is also used to
check the IN mechanism of each module. Since three values ( v1,
v2, and v3 from different modules ) are voted, there are five possi-
ble voting results at any particular voting in each particular
module. Because this voting process is held indeperdantly in cach
of three modules, for cach event, there will be three voting results,
one coming from ecach of threc modules. The voting results will be
denoted as Imn, where m and a are decimal digits. The m specifies
in which module the voting is held, while n denotes the result of
the voting as either 0, 1, 2, 3, or 4, where:

p-values Voting-results o-valuos  Voting-results
a=0 vi=v2=v3 o=3 viavl, vyl
a=1 v2=v3, visv2 n=4 vigv2édvidvl
a=2 vi=v3, 24}

For example, 110 means that the input vote held in module #1 indi-
cates that vi=v2=v3. Another example is 123 which means that the
input vote in module #2 judges that v3#vi=v2.

The second fundamental voting process in the system is result vot-
ing. The values to be voted arc the final computed results. In
correspondence to the notation for input voting, result voting _is
denoted by Rmn. Here the m and n have the same meaning as in
Imn. Similarly, the third process is output voting denoted as Omn.

After examining the conditions that must be met, we choose the
voting results as atomic events in the same notation as used for vot-
ing results. Therefore, we identify three groups of atomic events.

The first group corresponds to input voting: 110, 120, I30; I11, I21,
I31; 112, 122, 132; 113, 123, [33; 114, 124, I34;

Thke second group corresponds to result voting: R10, R20, R30;
R1l1, R21, R31; R12, R22, R32; R13, R23, R33; R14, R24, R34;

The third group corresponds to output voting: 010, 020, 030; O11,
021, 031; 012, 022, 032; 013, 023, 033; 014, 024, 034;

Since these are events, each could be ecither "true” or "false”. If,
for example, 122 is true, this means that the input voting process of
module #2 says that its input signals are different from those of
modules #1 and #3 and those of #1 and #3 are the same.

Now, we would argue that thesc cvents are readily available since
the system will always hold votings for inputs, results, and outputs.
To implement the diagnosis algorithm, it is only necessary that this
information be automatically recorded by the system. Finally, it is
apparent that any occurrence of a faulty mechanism will be noted
in thesc events. Therefore, these events meet our requirements for
atomic events,

33.2. Inference Rules

Inference rules arc simply a collection of IF THEN statcments.
They have the following general form:

IF e1 THEN e2

where el is boolcan expression of eveats, and e2 is boolean assign-
ment expression based on events.

Before we describe the inference rules, we would like to extend the
idea to include other cvents. We claim that the names of the
mechanisms in scction 32 can be used here as notations for these
events. We name this group of events non-atomic eveats since the
values of these cvents arc determined by those of atomic events. If
the valuc of a non-atomic event is true, then the corresponding
mechanism is functioning properly, otherwise, it is faulty. There-
fore, for example, #1="true” means mechanism #1 is fault free.

The inference rules are divided into three groups: first order rules,
second order rules, and third order rules. In first order rules, the el
expression contains only atomic events. The ¢l expression of the
second order rule can contain both atomic and non-atomic events.
However, the el expression of third order rules consists of only
non-atomic cvents. For result voting, there are three first order
rules, three second order rules, and two third oder rules.

In the following, i, j, and k are integers between 0 and 4, where
i#jekAi.
Too first order rules:
FOR1 [F R0 AND Rj0 THEN CMij=troc AND #i=truc AND #2=truc AND #i3=true
FOR2 F Ri0 AND Rjk THEN CMij=truc AND si=truc AND #j=truc
FOR3 F Rik AND Rjk THEN CMij=trcc AND si=truc AND #j=truc
T8 sccond order rules:
SOR1 F Rij AND #i THEN CMij=talsc OR #j=falsc
SOR2 [F Rlj AND #j THEN CMij=faixc OR siafetsc

SOR3 [F Ri4 AND #i THEN (CMij=falsc AND Cmiksfalic) OR (CMijnfalse AND
#k=falsc) OR (CMik=fslsc AND #j=fslsc) OR (#j=falsc AND #k={xlsc)

Tho third order rules:

TOR1 [F (NOT CMij) AND #j THEN Rji OR R4

TORZ [F (NOT #i) AND #j THEN Rji OR Rj4
The reader may note that we have described the inference rules in
terms only of the second group (i.c. the R group ) of atomic events.
In fact, the inference rules corresponding to other groups of atomic
events are similar to the rules described above. For simplicity, we
will oot list them here.

3.3.3. The Reasoner

The reasoner is the corc of the algorithm. It applies the inference
rules to the atomic events, and gencrates some non-atomic events
which can be regarded as conclusions. The reasoning procedure can

be divided into four steps:

First step: apply all possible first order rules to the available atomic
events, and generate corresponding non-atomic events if any;

Second step: apply all possible second order rufes to the available
atomic and non-atomic events if any. If there is no non-atomic
cvent at-this time, assumptions can be made, and the second order
rules can be applied to the assumptions. This step is intended to
identify the suspects;

Third step: If it is possible, apply third order rules to discriminate
some suspects. In this step, assumptions will be made about some
non-atomic cvents;

Fourth siep: Examine the non-atomic cvents obtained in the last
three steps and analyze the relationships amongst these non-atomic
events. Then generate the final conclusion.

The first step is actually reasoning from facts to conclusions. In this
step, some conclusions can be derived directly from the facts, that
is, from the atomic events. However, in this step, only some of the
fault-frec mechanisms are determined, and no information about
the faulty mechanism(s) is generated.

In the sccond step, suspects for the faulty mechanism are deter-
mined according to atomic events and non-atomic events. However,
there are cases where for a given information list, no non-atomic
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cvents can be generated in the first step. In this case, the reasoner
has to reason from hypothesis to possible facts. It first makes an
assumption, then checks the assumption with the atomic events and
inference rules to sce if the assumption is in conflict with the
atomic cvents. If so, the assumption is wrong, otherwise, the
assumption is correct.

The third step is intended to discriminatc amongst the suspects.
Usually, among the suspects generated in the second step, there are
mechanisms which are not faulty. These mechanisms can be elim-
inated from the suspect list by hypothesis-based reasoning.

The fourth step is required to organize the suspects into a list. It
will sort the suspects in terms of probability of being faulty, and
suggest to the user which mechanism is the most probably faulty
one,

3A4. Examples

The reader may find it casicr to understand the capability of the
algorithm by working through examples.
Exmplo 1 wmmmmtm”mem-mmmm.mm Disg-

FOR2 [F R10 AND R23 THEN CM12«truc AND #1=truc AND #2=truc
FOR2 [F RI0 AND RR2 THEN CM13=truc AND #l=truc AND #3=truc
IF R2Z3 AND #2 THEN CM23={slsc OR #3=falsc
IF RX2 AND #3 THEN CM23={atsc OR #2={alsc

List of Saspects: CM2), #2, #3
Since #2 aod #3 src truc according to FOR2, they should be removed from tho surpect Ust,
T the mechacism which is ible for the fault s CM23,

Enmplo 2 Tbo information list is (R12, R21, R31). Dizgnosis:
FORS IF R21 AND R31 THEN CM23=truc AND #2=truc AND #3=true
SOR1 IF R21 AND #2 THEN CMi2=fslsx OR #1=falsc
SOR1 IF R31 AND #3 THEN CM13=falsc OR #l=falsc

The st of suspects: #1, (#1 2ad CMI2), (1, 2nd CM13), (CMI2, sad CM13), (#1,
CM12, sad CMDY).

Assimo W1 i3 functioning. Beeause of SOR1 both CM12 aad CM13 mast be faulty,
Therefore, sccordiog to TOR!:

TOR1 [F (NQT CMi13) AND #1 THEN R13 OR R14

Stace the stomic cvents R13 aad R14 ase felse, then the ption that #i1 is functioning fs
tacorceet, that is, #1 s feulty. So, di is thet mochaaisn W1 s faclty.

4. Future Extenslons

In this paper, we have introduced a diagnosis algorithm for the
FTMCS. However, while this algorithm has been designed and
described specifically for the FTMCS, the concept which included
in it can be applied to other systems even those which are much
more complex. To facilitate the application of this idea in other
areas, future research should:
(1) explore a general and systematic method and a corresponding
language by which the user can define both atomic and non-
atomic cvents;

(2) develop a language by which the user can define relationships
amongst the cvents;

(3) provide a compiler which can translate the relationships
amongst the cvents into inference rules;

(4) explore an existing programming language in which it is most
suitable to implement the entire diagnostic system.

8. Conclastons

In this paper, we have introduced a system-level fault diagnosis
algorithm for a low-cost controller, the FTMCS system. The algo-
rithm is different from traditional methods in that it applies tech-
niques of Al and cxpert systems. It has several advantages over the
traditional methods.

While, this algorithm has been developed specifically for the
FTMCS system described, we belicve its basic approach to be appli-
cable to other systems --even systems which are much more com-
plex than the FTMCS.
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