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A b s t r a c t
In pq>er, a system-level diagnosis algorithm for the FTMCS[14]
is discussed. Unlike traditional diagnostic approaches, this algo
rithm applies techniques of artificial intelligence and expert sys
tems. It collects naturally available information and status data as
fault symptoms and reasons with these symptoms, iwing inference
rules to discover the components which are responsible for the
fault. Inference rules represent the knowledge of the FTMCS
structure at a highly abstract level. The performance of the algo
rithm can be improved by modifjnng the inference rules.

L I n t r o d n c t t o a

The past emphasis of fault tolerant and other computer reliability
tMhniques has generally been on such specialized areas of application as spacecraft control (1,231 and telephone switching(4|. As a
r̂ t of a great deal of work, various sophisticated reliabUity techniques have been developed for such major 5ystems[q,f61. On theother hand, there arc a very large number of less sophisticated
appltcations in which microprocessors are used to control particulardevices m industry and manufacturingfTJ-flll. Moreover, this area
of low-cost microprocessor-based controllers is rapidly expanding as
devel̂ ments in VLSI appear. However, it is apparent that it is anattention has been paid in the application
of reliability techniques.
&veral trends strongly suggest that a time for change is upon us -
that ŝ ific reliability techniques should be developed and imple
mented for low-cost systems:
A. Develô ents in VLSI technology, especially of microproces

sors and mcmcmes, have provided new and less costly ways to
construct reliable and fault tolerant computers and
computer-based systems.

B. As the use of VLSI technology expands, even highly critical
applications adopt microprocessors in their contrdling ele
ments. For these applicaticms, current microprocessor-based
controllers are not sufficiently reliable [12] Jl3].

reasoning ( from facts to conclusions ) and hypothesis reasoning (
from assumptions to expected facts ). In order to provide the con
text for its description, we will briefly introduce the FTMCS sys
t e m .

2. System Architecture
The FTMCS was created to satisfy the requirements imderlying the
objectives presented in the last section. The system is configured
with three identical computing modules coimectcd by communica
tion channels. The structure is shown in Figure 1 ( For detail, see
[14]). Commapiettioa Ctitnnel

Cosi ro l S iga i l t to Ob jec t Sys tem

Figure 1. System Architecture
Each of the identical computing modules executes the —m* pro
gram (the control program). To begin, each accepts feedback sig
nals from the object system (the signals can be sent by either a sin
gle sensor group or triplicated sensor groups). Then each calculates the corresponding control signals independantly, and, after
this, each module broadcasts its computed result to the other
modules for majority-voting. By this means, any single error
caused by a single hardware failure can be detected and corrected.
To recover from transient failures, the execution of the control
program is modularized by tadt and the modules are task-
qmchronized. That is, after the completion of each task, the
modules are required to exchange important information in order
to mask errors caused by transients. The details of this process are
discussed in [14].
If a module or one of its components is detected to be faulty, that
module is isolated from the others. The system, thus, is degraded to
a dual module one. In this degraded mode, two modules execute
the same program as usual. They also exchange computing results
and system information in order to detect permanent and transient
failures. Many other features are software-implemented and are
discussed in [14].
The module structure is shown in Figure 2.

To the Object Syitem

Motivated by these trends, we have designed a Fault-Tolerant
NficroComputer System (FTMCS) which is intended for industrial
and manufacturing control. The design of the FTMCS was guided
by the following objectives:
1. Permanent and transient fault survival:
2. On-line repair:
3. Degraded operat ion:

4. Modular design:

5. Commercial VLSI components:
6. Dynamic response-time / reliability trade-off:
7. Self-diagnosis:

introduce a fault diagnosis algorithm for the Figure 2. Module Structure
FTMCS. This algorithm applies AI techniques-such as deductive
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3. The Fault DIaiBOils Alsoritbm
3.1. Bscksraond
The traditional model used conventionally in ̂ tem-level diagn̂
algorithms is that introduced by Preparata, Metze, and Chien|l̂ .
In this model, a set of computing modules, or units, is ̂ mbM
such that each unit can test a subset of the other umts. It is
assumed that at most a bounded number of imts is permanently
faulty and that these faulty units can claim either that fault-free
units are faulty or that faulty units are fault-free. Bwd on tto
model, interesting results given by Hakimi and Aminllb] show that
there exist necessary and sufficient conditions on the testing assign
ments of the units such that the set of the faulty units m the ̂ tein
can be uniquely identified on the basis of any possible collection of
test results, assuming that the number of faulty units does notexceed a given bound, denoted as t. Such systems are said to be t-
diagnosable. Since 1974, several algorithms based on this modelhave been developed by researchers in this fieldllTj-pll-
In recent years, there has been an increasing interest in applying
techniques of artificial intelligence and expert systems to fault diagnosis for digital computing systemspl]. Several authors have ĵ o-
posed and developed new diagnostic methods which employ these
techniquesI24l-I301. These methods are designed to implement Aag-
nostic tools for electronic devices and other digital systems. Most
of these diagnostic systems perform as troubleshooting considtants.
It is generally assumed that the diagnostic systems themselvies are
fault-free. The role of the troubleshooter is to initiate tests on the
object ̂ tem( the system to be diagnosed ), then, reason with the
test results according to rules incorporating knowledge of the struc
ture and function of the object system to reach conclusions about
the misbehaviour of the system. Often, the conclusions available
are too general to point directly at the source of the fault, there
fore. strategies must be taken to select further tests. These tests,
intended to obtain further and sufficient information about the
fault, may be done either with the help of human interaction or the
knowledge stored in the system.
In this section, we will introduce a new diagnostic method which
borrows the idea of troubleshooter reasoning described above.
However, the method presented here is basically different from
those intelligent diagnostic tools in several aspects: First, it is a
self-diagnosis algorithm, not a diagnostic tool for some other sys^
tem. Second, it is a system-level diagnosis algorithm while most of
the troubeshooters operate at the circuit level. Third, the diagnosis
is based on fault symptoms collected from naturally occurring sys
tem operational information and status, not from the results of
q>ecial tests.
The diagnosis system under discussion collects system operational
information and status which normally includes fault symptoms. It
then reasons with these fault symptoms, using inference rules, to
discover the cause of the fault or to identify the components which
are re^onsible for the fault. The inference rules provide the
means for the system to analyze the symptoms for the purpose of
detecting their root cause. In general, inference rules are depen
dent on the actual ^tem architecture. They represent the system
structure at a highly abstract level. Thus, the performance of the
algorithm depends on how well the inference rules represent the
q m t e m .
One of the advantages of the approach used is that the algorithm
can be improved by modifying only the inference rules and the
organization of information about the system. Another advantage
is that the algorithm does not require explicit testing.'
The third feature of the algorithm is that it does not utilize fault
dictionaries and has no knowledge of fault models or fault
mechan isms .

3J. The System Model As Viewed By The Algarlthfli
In this subsection, we will modify the represratatioii of the system
structure for the convenience of the diagnosis algprithm. First, we
would l ike to define some terms.

Definition I: A component is defined to be a VLSI chip, denoted bya string of characters ( its name ). Referring back to Figure 2..
CPU-i. TIMER-i. lOl-i. CHl-i. etc. are examples of components.
DifMtion 2: A mecheuUsm is defined as a set of components,denoted by a string of characters ( its name). Logically, a median-
ism is a functional part of the system. It is also the smallest ̂ t
the diagnosis algorithm can distinguish. For example, a conmunica-
tion channel CM12 ( see Figure 3 ) is a mechanism consisting of
components CHl-1 in module #1 and CH2-2 in module #2. The
mechanism OUT in Figure 3 is another example.
D^Mtion 3: An event is defined as a boolean variable which has a
value of either 'true' or 'false'. An event is denoted by a string of
characters ( its name ). Events are merely symbols used to describe
system fault symptoms, denote inference rules and represent diag
nostic conclusions. If event A is true, we say that A has happened,
or conclusion A is valid, etc.. Events can also be considered subject
to boolean operators such as 'AND*. 'OR', and 'NOT*. Any
proper boolean expression in which events are variables is also anevent. Events can be classified into two kinds: atotî c events and
non-atomic events. The definitions of both will be gtven shortly in
sect ion 33.

Figure 3 shows the correspondingly modified representation of the
system structure. Each box represents the mechanism named in it.
MffhffP'*'" #1 consists of components CPU-1. TlMER-1. ROM-1.
and RAM-1 ( Figure 2). Mechanism INl contains lOl-l. Mechan
ism OUTl consists of components GATE-1 and I02-1. Mechanism
CM12 ( also called CM21 ) contains components CHl-l and Ch2-2.
Other mecban's™ in Figure 3 have similar organizations as those
descr ibed above.

* Tbosgh the FTMCS tuet eztn Mfcwaie, tbe role of thb loftwtie is to ca-
Kie correct operstioo, not to ditsposc tbe soorce of tbe difBcolty. We use its oat-
pots, bowever, ss dsta for tbe dissaosis prt>ccsB.

To Object Syttem

Figure 3. The System Model for Diagnosis
33. Description of the Algorithm
Before we describe the algorithm, we would like to state our
assumptions:
Assttirvtion J: the algorithm will diagnose only permanent faults (
since transient faults are treated in some other way [14]);
Assumption 2: more than one mechanism can be faulty at any time;
Assumption 3: no two different faulty mechanisms produce the same
fault symptom:

Assumption 4: no fault-free mechanism becomes faulty during diag
nosis;
Assunqttion 5: a faulty mechanism manifests its fault by presenting
incorrect output.

As shown in Figure 4. the diagnosis algorithm consists basically of
three components: an information list, inference rules, and a rea-
soner. The information list contains the system fault symptoms.
Inference rules are IF THEN statements which can be used to rea
son deductively with the system symptoms. The reasoner is the
heart of the algorithm. It choses how to reason, which symptoms
should be applied to which inference mles and what conclusion
should be made. etc.. The objective of the algorithm is to identify
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Figure 4. Diagnosis Procedure

IDiignosliCoaclitsiooi I
I n f o n n a t i o Q

L i s t

the mechanism or provide a list of probable mechanisms which are
responsible for the system fault symptoms depicted in the informa*
tion list. Following is a detailed description of the algorithm.

3 3 . 1 . T h c l n f m n a t l o o L i s t

The information list is a set of basic events or atomic events in the
system. The values of these events serve to fully describe the fault
symptoms of the overall system. These events are basic or atomic (
and will be refered to in this paper as atomic events ) because their
values do not logically depend on other events and are derived
directly from the ^tem operational information and status. These
events must be both readily accessible and representative of fault
q r m p t o m s .
As mentioned earlier in section 2, there are basically three funda
mental voting processes in the system. The first is the vote taken of
iiqrat signals from the sensors in order to make sure that every
module has received the same inputs. This vote is also used to
check the IN mechanism of each module. Since three values ( vl,
v2, and v3 from different modules ) are voted, there are five possi
ble voting results at any particular voting in each particular
module. Because this voting process is held independantly in each
of three modules, for each event, there will be three voting results,
one coming from each of three modules. The voting results will be
denoted as Imn, where m and n are decimal digits. The m ^ecifies
in which module the voting is held, while n denotes the result of
the voting as either 0,1, 2, 3, or 4, where:

a-nlaa Vodat-rcnlta d-yiIbm Vodnt-refolu
n - 0 v l - v 2 - v 3 n - 3 v l - ^ , Y 3 y v l
n - 1 v 2 « « v 3 , v l i t v 2 n - 4 v l ^ # v 3 ^ 1
0 - 2 v l - v 3 , v 2 y * l

For example, 110 means that the input vote held in module i#l indi
cates that vl=v2=v3. Another example is 123 which means that the
input vote in module #2 judges that v3^1=v2.
The second fundamental voting process in the system is result vot
ing. The values to be voted are the final computed results. In
correspondence to the notation for input voting, result voting is
denoted by Rmn. Here the m and n have the same meaning as in
Imn. Similarly, the third process is output voting denoted as Omn.
After examining the ccmditions that must be met, we choose the
voting results as atomic events in the same notation as used for vot
ing results. Therefore, we identify three groups of atomic events.

The first group corresponds to input voting: 110, 120, 130; 111, 121,
Dl; 112,122,132; 113,123,133; 114,124,134;
The second group corresponds to result voting: RIO, R20, R30;
Rll, R21, R31; R12, R22, R32; R13, R23, R33; R14, R24, R34;
The third group corresponds to output voting: OlO, O20, O30; Oil,
021, 031; 012, 022, 032; 013, 023, 033; 014,024, 034;
Since these are events, each could be either 'true" or 'false'. If,
for example, 122 is true, this means that the input voting process of
module #2 says that its input signals are different from those of
modules #1 and #3 and those of #1 and #3 are the same.

Now, we would argue that these events are readily available since
the system will always hold votings for inputs, results, and outputs.
To implement the diagnosis algorithm, it is only necessary that this
information be automatically recorded by the system. Finally, it is
apparent that any occurrence of a faulty mechanism will be noted
in these events. Therefore, these events meet our requirements for
atomic events.

3 3 3 . I n f e r e n c e B u l e a

Inference rules are simply a collection of IF THEN statements.
They have the following general form:

I F e l T H E N e 2
where el is boolean expression of events, and e2 is boolean assign
ment expression based on events.
Before we describe the inference rules, we would like to extend the
idea to include other events. We claim that the names of the
mechanisms in section 32 can be used here as notations for these
events. We name this group of events non-atomic events since the
values of these events are determined by those of atomic events. If
the value of a non-atomic event is true, then the correqxinding
mechanism is functioning properly, otherwise, it is faulty. There
fore, for example, #l='true' means mechanism #>1 is fault free.
The inference rules are divided into three groups: first order rules,
second order rules, and third order rules. In first order rules, the el
expression contains only atomic events. The el expression of the
second order rule can contain both atomic and non-atomic events.
However, the el expression of third order rules consists of only
non-atomic events. For result voting, there are three first order
rules, three second order rules, and two third oder rules.
In the following, i, j, and k are integers between 0 and 4, where
i^ j ^kfi i .

T b s b i t o r d e r n i k c

FORI IF RiO AND RjO THEN CMij-iiw AND ^1-tnte AND M-tnie AND #3«tnie
FOR2 IFRiOANDRikTHBNCMij-lrae AND#i-tnieAKD#j-tiuc
FOR3 IFRikANDRjkTHENCMij-traeANDi^i-tnicAND^-tiuc

lbs Kcoad O lde r n t l c s :

SORl IF Rij AND #i THEN CMij-fitic OR
S0R2 ff Rli AND #J THEN CMJj-filic OR
S0R3 IF Ri4 AND #i THEN (CSCjaftlie AND CmikWabc) OR (CkUj'falte AND

f t - fi b e ) O R ( C M i k - f t l i e A N D O R A N D
The third order reles:

TORI n'(NaTCMiDAND#jTHENRilORRH
TOaa IF(NOr#0AND#jTHENRjiORRj4

The reader may note that we have described the inference rules in
terms only of the second group (ijc. the R group ) of atomic events.
In fact, the inference rules corresponding to other groups of atomic
events are similar to the rules dncribed above. For simplicity, we
will not list them here.

3 3 3 . T h e R c a s o n e r

The reasoner is the core of the algorithm. It afqilies the inference
rulM to the atomic events, and generates some non-atomic events
which can be regarded as conclusions. The reasoning procedure can
be divided into four steps:
First step: apply all possible first order rules to the available atomic
events, and generate corresponding non-atomic events if any;
Second step: apply all possible second order rules to the available
atomic and non-atomic events if any. If there is no non-atomic
event at this time, assumptions can be made, and the second order
rules can be applied to the assumptions. This step is intended to
identify the suspects;
TUrd step: If it is possible, apply third order rules to discriminate
some suspects. In this step, assumptions will be made about some
non-atomic events;
Fourth step: Examine the non-atomic events obtained in the last
three steps and analyze the relationships amongst these non-atomic
events. Then generate the final conclusion.
The first step is actually reasoning from facts to conclusions. In this
«cp, some conclusions can be derived directly from the facts, that
is, from the atomic events. However, in this step, only some of the
fault-free mechanisms are determined, and no information about
the faulty mechanism(s) is generated.
In the second step, suspects for the faulty mechanism are deter
mined according to atomic events and non-atomic events. However,
there are cases where for a given information list, no non-atomic
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eveats can be geneiatcd in the first step. In this ease, the reasoncr
has to reason from hypothesis to passible facts. It first makes an
assttmption, then checks the assumption with the atomic events and
Inference rules to see if the assumption is in conflict with the
atomic events. If so, the assumption is wrong, otherwise, the
assumption is correct.
The third step is intended to discriminate amongst the suspects.
Usually, among the suspects generated in the second step, there are
mechanisms which are not faulty. These mechanisms can be elim<
inated from the suspect list by hypothesis-based reasoning.
The fotirth step is required to organize the suspects into a list. It
will sort the su^ects in terms of probability of being faulty, and
suggest to the user which mechanism is the most probably faulty
o n e .

3.4. Examples
The reader may find it easier to understand the capability of the
algorithm by working through examples.

"""r*" t Anme ihtt tbe tafoniirioa Ibt eoatih* Mamie eiest* (RIO, XZ3, R3Z). Ditf
Boi is ;

F 0 R 2 I F R 1 0 A N D R 2 3 T K E N C M U - t n » A N D # l - t i u e A N D # 2 - t t i i c
F 0 R 2 W R I O A N D R 3 Z T H E N C M U t r a e A N D M t n t e A N D M - t n e

S O R l I F R 2 3 A N D # 2 T H E N C M » - ( l l j e O R # 3 - f i J s c

S O R l I F R S A N D # 3 T H E N C M 2 3 - r i I i e O R M - ( i I i c

Lilt o( Siapccli:CM23, #2, #3
Slaee M tod #3 tic tnic tccotdint Co F0R2, they ihoiild be Rmoved bom the nnpcct Ibt,
Tberefere, tbe cncehtsitffl which b leipooiible (or the (aolt ia CM23.

Eiimpte 2: Tbe infonnitioa litl b (RU. R21. R31). Diixooib:
F O R 3 D ' R a i A N D R 3 1 T H E N C M 2 3 - l r u c A N D # 2 - t r i e A N D M - t r a e

S O R l n ' R a i A N D A T H E N C M 1 2 - ( t b e O R # W t b e

S O R l O C R S l A N D A T H E N C M U - f t b e G R M - fi b e
Tbe tbi of (ospccu: #1, (#1 ud CMI2). (#1. tod CMm. (CMI2. isd CM13), (d>l.
C M a , t o d C M O ) .
Awnftm #1 b foactioeisg. Beeiiae et SORl both CM12 tad CM13 moit be holty.
TbcteCore, tccotdios to TORI:

TORI IF (NOT CM13) AND #1 THEN R13 OR RM
Sbee the ttoaiie eeeau R13 tad R14 tn ftbe, thea the tnamptioa that b fuaetioaiBg b
btcomct, that b, #1 b faalty. So, dbgaodi coactadea b that mcchtaba #1 b facdty.

4 . F n t n r c E x t o u t o n s

In this paper, we have introduced a diagnosis algorithm for the
FTMCS. However, while this algorithm has been designed and
described specifically for the FTMCS, the concept which included
in it can be applied to other systems even those which are much
more complex. To facilitate the application of this idea in other
areas, future research should:
(1) explore a general and systematic method and a coircqionding

langimge by which the user can define both atomic and non-
atomic events;

(2) develop a language by which the user can define relationships
amongst the events;

(3) provide a compiler which can translate the relationships
amongst the events into inference rules;

(4) explore an existing programming language in which it is most
suitable to implement the entire diagnostic system.
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5 . C o n d o s t o n s

In this paper, we have introduced a system-level fault diaguosis
algorithm for a low-cost controller, the FTMCS system. The algo
rithm is different from traditional methods in that it applies tech
niques of Al and eiqiert systems. It has several advantages over the
t r a d i t i o n a l m e t h o d s .
While, this algorithm has been developed specifically for the
FTMCS system described, we believe its basic approach to be appli
cable to other systems -even systems which are much more com
plex than the FTMCS.
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