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(57) ABSTRACT 

In various embodiments, applicants’ teachings are related to 
an active guarding circuit and method for reducing parasitic 
impedance signal loading on a signal-transmission channel 
that is shunted by a parasitic impedance. The presence of an 
electrical signal on the signal-transmission channel causes a 
leakage current to How through the parasitic impedance. In 
various embodiments, the circuit comprises an ampli?er and 
an impedance, one terminal of the impedance is coupled to 
the signal-transmission channel. The input of the ampli?er is 
coupled to the signal-transmission channel and the output is 
coupled to the other terminal of the impedance so as to cause 
a compensation current to How through the impedance. The 
gain of the ampli?er and the value of the impedance are 
selected so that the compensation current has a magnitude 

(2006-01) substantially equal to the leakage current magnitude. 
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ACTIVE GUARDING FOR REDUCTION OF 
RESISTIVE AND CAPACITIVE SIGNAL 

LOADING WITH ADJUSTABLE CONTROL 
OF COMPENSATION LEVEL 

RELATED APPLICATIONS 

This application is a US. National Phase under 35 U.S.C. 
371 of the International Patent Application No. PCT/CA08/ 
000,588, ?led Mar. 31, 2008, and published in English on Oct. 
9, 2008 as WO 2008/119166,Which claims the bene?t ofU.S. 
Provisional Application No. 60/909,206, ?led Mar. 30, 2007, 
both of Which are incorporated by reference in their entirety. 

The section headings used herein are for organizational 
purposes only and are not to be construed as limiting the 
subject matter described in any Way. 

FIELD 

Applicants’ teachings are related to a method and circuit 
for reducing resistive and capacitive signal loading. 

SUMMARY 

In various embodiments, applicants’ teachings relate to an 
active guarding circuit for reducing parasitic impedance sig 
nal loading. In various embodiments, the circuit comprises a 
signal-transmission channel, an impedance, and an ampli?er. 
The signal-transmission channel carries an electrical signal 
and is shunted by a parasitic impedance having a parasitic 
impedance value. The electrical signal causes a leakage cur 
rent having a leakage current magnitude to flow through the 
parasitic impedance. The impedance has an impedance value, 
a ?rst terminal and a second terminal; the ?rst terminal is 
coupled to the signal-transmission channel. The ampli?er has 
an input terminal, an output terminal and a gain. The input 
terminal of the ampli?er is coupled to the signal-transmission 
channel, the output terminal of the ampli?er is coupled to the 
second terminal of the impedance to provide a compensation 
current to How through the impedance, and the gain is 
selected based on the impedance and parasitic impedance 
values so that the compensation current has a magnitude 
substantially equal to the leakage current magnitude. 

In some embodiments, the impedance is the parasitic 
impedance. In various other embodiments, the impedance is 
separate from the parasitic impedance. 

In various embodiments, the gain of the ampli?er is sub 
stantially equal to 1. 
The active guarding circuit as de?ned in claim 4, Wherein 

the gain and the compensation impedance are selected so that 
the compensation current magnitude is substantially equal to 
the leakage current magnitude. 

In some embodiments, the gain of the ampli?er is greater 
than 1. 

In various embodiments, the impedance includes a capaci 
tance. In some embodiments, the impedance includes a resis 
tance. In some embodiments, the impedance includes both a 
resistance and a capacitance. In various other embodiments, 
the impedance is a capacitance. In some other embodiments, 
the impedance is a resistance. 

In various embodiments, applicants’ teachings relate to a 
method of active guarding for reducing parasitic impedance 
signal loading. The method comprises sensing an electrical 
signal on the signal-transmission channel, the signal-trans 
mission channel is shunted by a parasitic impedance having a 
parasitic impedance value, the electrical signal causing a 
leakage current having a leakage current magnitude to How 
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2 
through the parasitic impedance. The method further com 
prises providing an impedance having an impedance value, 
With a ?rst terminal and a second terminal, the ?rst terminal is 
coupled to the signal-transmission channel. The method fur 
ther comprises providing an ampli?ed signal to the second 
terminal of the impedance to cause a compensation current to 
How through the impedance, the ampli?ed signal is equal to 
the electrical signal multiplied by a gain, the gain is selected 
based on the impedance value and the parasitic impedance 
value so that the magnitude of the compensation current is 
substantially equal to the leakage current magnitude. 

In some embodiments, the impedance is provided by the 
parasitic impedance. In various other embodiments, the 
impedance is separate from the parasitic impedance. 

In various embodiments, the gain of the ampli?er is 
selected to be substantially equal to 1. 

In some embodiments, the method further comprises 
selecting the gain and the compensation impedance such that 
the compensation current magnitude is substantially equal to 
the leakage current magnitude. 
The active guarding circuit as de?ned in claim 4, Wherein 

the gain and the compensation impedance are selected so that 
the compensation current magnitude is substantially equal to 
the leakage current magnitude. 

In some embodiments, the gain of the ampli?er is selected 
to be greater than 1. 

In various embodiments, the impedance includes a capaci 
tance. In various embodiments, the impedance includes a 
resistance. In some embodiments, the impedance includes 
both a resistance and a capacitance. In various other embodi 
ments, the impedance is a capacitance. In some other embodi 
ments, the impedance is a resistance. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The skilled person in the art Will understand that the draW 
ings, described beloW, are for illustration purposes only. The 
draWings are not intended to limit the scope of the applicants’ 
teachings in any Way. 

FIG. 1 is a schematic diagram of a signal-transmission 
channel having a parasitic impedance; 

FIG. 2 is a schematic diagram of a portion of a circuit With 
several sources of parasitic impedances indicated; 

FIGS. 3 to 8 are schematic diagrams of active guarding 
circuits according to various embodiments of applicants’ 
teachings; and 

FIG. 9 is a schematic diagram of a portion of a circuit 
illustrating the application of active guarding circuits accord 
ing to various embodiments of applicants’ teachings. 

DETAILED DESCRIPTION 

Signals that are transmitted over signal -transmission chan 
nels can be attenuated or otherWise distorted. One reason for 
such distortion and attenuation is that signal-transmission 
channels often have parasitic impedances coupled to them. 
FIG. 1 illustrates a circuit 100 that comprises a signal-trans 
mission channel 182 that is shunted by a parasitic impedance 
184. Such parasitic impedances may be resistive or capacitive 
or a combination of the tWo. The exact value of the parasitic 
impedance is in part determined by the frequency of the signal 
passing through the impedance. 
As illustrated in FIG. 1, a parasitic impedance may provide 

a signal With an alternate path to ground. In short, such a 
parasitic impedance forms a voltage divider With any other 
load that is coupled to the signal-transmission channel. In this 
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manner, the presence of parasitic impedance may cause 
attenuation and/or distortion of the signal. 

Parasitic impedances can arise from a Wide variety of 
sources including but not limited to other signal -transmission 
channels, other circuit components, and shielding. FIG. 2 
illustrates a number of sources of parasitic impedances. Spe 
ci?cally, FIG. 2, is a schematic diagram of a portion of a 
circuit having a signal-transmission channel 282, several 
parasitic impedances 28411 to 284b, shield 290, and a multi 
plexer 292. 

Shield 290 runs parallel to signal-transmission channel 282 
and thereby causes parasitic impedances 284a and 28419 to 
exist betWeen signal-transmission channel 282 and shield 
290. Similarly, parasitic impedances 2840 and 284d exist 
betWeen the input of the multiplexer and the poWer supplies of 
the multiplexer. FIG. 2 is intended to be illustrative only. 
Parasitic impedances may exist for a variety of reasons. In 
addition, although FIG. 2 only illustrates capacitive imped 
ances, the impedances may also be resistive or a combination 
of resistive and capacitive. 

Thus, parasitic impedances may exist in various forms for 
a variety of reasons in commonly used circuits. The presence 
of parasitic impedances can cause the signals that are trans 
mitted by these circuits to be attenuated or otherWise dis 
torted. The circuits and methods according to applicant’s 
teachings can be used to minimiZe or eliminate the negative 
effects caused by parasitic impedances. 

In various embodiments, applicants’ teachings are related 
to an active guarding circuit and method for reducing imped 
ance signal loading. Further, in some embodiments, appli 
cants’ teachings are related to a circuit and method for reduc 
ing capacitive signal loading. Moreover, in other 
embodiments, applicants’ teachings are related to a circuit 
and method for reducing resistive signal loading. Further 
more, in some embodiments, applicants’ teachings are related 
to a circuit and method for reducing resistive and capacitive 
signal loading. In yet other embodiments, applicants’ teach 
ings are related to an active guarding circuit and method for 
reducing impedance signal loading With an adjustable control 
of level compensation. Applicants’ teachings are not intended 
to be limited to the above-described embodiments. 

Reference is noW made to FIG. 3, Which is schematic 
diagram of an active guarding circuit 300 according to various 
embodiments of applicants’ teachings. Circuit 300 can be 
created by adding an ampli?er 310 and a compensation 
impedance 380 to the circuit 100 of FIG. 1. More speci?cally, 
the input of the ampli?er 310 is coupled to the signal-trans 
mission channel 382 and the output is coupled to one terminal 
of the compensation impedance 380. The other terminal of 
the compensation impedance is coupled to the signal-trans 
mission channel 382. Parasitic impedance 384 has one termi 
nal 385a connected to signal-transmission channel 382 and a 
second terminal 385!) connected to ground. The terminal of a 
parasitic impedance, such as terminal 385b, that is not con 
nected to the signal transmission channel of interest, Will be 
referred to as the termination point of the parasitic imped 
ance. The ground node may include but is not limited to small 
signal ground, such as a poWer supply terminal. 

Compensation impedance 380 and parasitic impedance 
384 may be any appropriate impedance including but not 
limited to a resistance, a capacitance or any appropriate com 
bination, Whether in series or parallel, of resistance and 
capacitance. 

Signal-transmission channel 382 may be used to transmit a 
signal to a load (not shoWn), Which may be any suitable circuit 
or circuit component. The presence of a signal on signal 
transmission channel 382 causes a voltage to appear across 
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4 
parasitic impedance 384. This causes a leakage current 
Leakage to How through the parasitic impedance 384. The 
magnitude of the current ?oWing through parasitic imped 
ance 384 depends on the value of the impedance as Well as the 
magnitude of the voltage appearing across its terminals. 

Ampli?er 310 ampli?es the signal appearing on the signal 
transmission channel 382. In various embodiments ampli?er 
310 has a gain that is greater than 1. This causes a voltage to 
appear across compensation impedance 380 and a current 
ICOMP to How through compensation impedance 380. 

In various embodiments, the gain of ampli?er 310 and the 
value of the compensation impedance is selected such that the 
current that ?oWs through parasitic impedance 384 is com 
pensated for by the current that ?oWs through compensation 
impedance 380. Speci?cally, given a signal voltage of V signal’ 
a parasitic impedance of ZF the leakage current canbe said 
to be: 

ara’ 

Equation (1) 
[leakage = signal X Z 

para 

Similarly, given a compensation impedance of Zcomp and 
an ampli?er gain of G, the compensation current ?oWing 
through the compensation impedance may be said to be: 

comp 

Equating equation (1) and equation (2) yields the folloW 
ing: 

I comp:Ileakage 

Equation (3) 

Thus, by selecting G and Zcomp to satisfy equation (3) the 
compensation current Will exactly match the leakage current. 
The compensation impedance 380 effectively serves as a 
negative impedance that cancels the effect of the parasitic 
impedance 384. 

In various embodiments, the value of the parasitic imped 
ance may not be knoWn and therefore it may not be possible 
to select a gain for the ampli?er by simply using equation (3) 
above. In such embodiments, the value of the gain can be 
estimated by using circuit 300 of FIG. 3. Speci?cally, circuit 
300 is implemented by selecting a compensation impedance 
and range of values of gain. The circuit is operated at the 
various values of gain and the output is monitored. For those 
values of gain that exceed the required value, the output 
Would oscillate. Thus, the correct value of the gain lies in a 
range of values that is bounded by (l) the loWest knoWn value 
of the gain at Which the output oscillates and (2) the highest 
knoWn value of the gain at Which the output does not oscillate. 
This process may be continued in an iterative manner until a 
suitable value of gain is selected. Once an appropriate value 
of gain is determined, the parasitic impedance may be esti 
mated by using equation (3) given above. 

In various embodiments, the parasitic impedance may be 
comprised of both parasitic and resistive elements. HoWever, 
in some embodiments the effect of the capacitive loading can 
be signi?cantly greater than the effect of the resistive loading. 
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In such cases, various embodiments of applicants’ teachings 
may be used to address the capacitive loading and not the 
resistive loading. Alternatively, applicants’ teachings may be 
used to partially compensate for any portion of the parasitic 
impedance. Thus, in various embodiments, circuits according 
to applicants’ teachings may be used to reduce and/or par 
tially compensate for any leakage currents that may ?oW 
through any parasitic impedances coupled to a signal-trans 
mission channel, but not necessarily to completely compen 
sate for all the current that is lost due to leakage currents. 

Alternatively, the parasitic impedance may be measured or 
estimated according to knoWn techniques. The value of the 
parasitic impedance obtained from this may then be used to 
select initial values for the compensation impedance and the 
range of values of gain. The gain can then be ?ne tuned 
according to the above-described method. 

Reference is next made to FIG. 4, Which is a schematic 
diagram of an active guarding circuit 400 according to various 
embodiments of applicants’ teachings. Circuit 400 may be 
created by applying the output of ampli?er 410 to the termi 
nation point of parasitic impedance 484. Speci?cally, in some 
applications, the termination point, or terminal 485!) of para 
sitic impedance 484 of FIG. 4 may be accessible. In such 
instances, it may be possible to connect the output of an 
ampli?er to terminal 485!) of parasitic impedance 484 and 
therefore, it may not be necessary to utiliZe a circuit With a 
separate compensation impedance. 

Circuit 400 can be implemented by connecting the input of 
ampli?er 410 to signal-transmission channel 482 and the 
output of ampli?er 410 to the terminal of the parasitic imped 
ance 484 that is not connected to signal-transmission channel 
482. 

Signal-transmission channel 482 may be used to transmit a 
signal to a load, Which may be any suitable circuit or circuit 
component (not illustrated). The presence of a signal on sig 
nal-transmission channel 482 causes a voltage to appear 
across parasitic impedance 484. This causes a leakage current 
to How through the parasitic impedance 484. The magnitude 
of the current ?oWing through parasitic impedance 484 
depends on the value of the impedance as Well as the magni 
tude of the voltage appearing across its terminals. 

Ampli?er 410 ampli?es the signal appearing on the signal 
transmission channel 482 and applies the ampli?ed signal to 
the terminal of parasitic impedance 484 that is not connected 
to the signal-transmission channel 482. This causes a com 
pensation current to How through the parasitic impedance 
484. In various embodiments, the gain of ampli?er 410 is 
selected to be substantially equal to I. In such a case, the 
voltage appearing at the terminal of parasitic impedance 484 
that is connected to the output of ampli?er 410 is substantially 
equal to the voltage appearing at the opposite terminal of 
parasitic impedance 484 thereby causing a compensation cur 
rent, having an equal magnitude but opposite direction to the 
leakage current, to How through parasitic impedance 484. 
Since the currents are equal in magnitude but opposite in 
direction, they cancel each other and no current ?oWs through 
the parasitic impedance 484. Stated another Way, a substan 
tially equal voltage potential exists at either terminal of para 
sitic impedance 484 therefore, no substantial current ?oWs 
through the parasitic impedance 484. 
As shoWn in the illustrative example of FIG. 4, parasitic 

impedance 484 serves as both a parasitic impedance and a 
compensation impedance. Thus, Where terminal 485!) of 
parasitic impedance 484 may be accessed, a more simple 
compensation circuit may be achieved than may be possible 
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6 
When terminal 485!) is not accessible. In particular, a separate 
compensation impedance is not necessary and the gain of the 
ampli?er may be set to 1. 

Moreover, in various embodiments, circuit 400 may be 
utiliZed Without knoWing the value of parasitic impedance. In 
addition, if extra compensation is required, then the gain of 
the ampli?er may be appropriately adjusted as Will be 
explained in greater detail beloW. 

Reference is noW made to FIG. 5, Which is a detailed 
schematic diagram of an active guarding circuit 500 accord 
ing to various embodiments of applicants’ teachings. Speci? 
cally, circuit 500 may be utiliZed to implement circuits 
equivalent to either circuit 300 or 400 as Will be explained in 
greater detail beloW. 

Circuit 500 comprises an ampli?er portion 510 Which in 
turn comprises an operational ampli?er 512 With a non-in 
ver‘ting input 514, an inverting input 516, an output node 517, 
and poWer rails 518 and 520. 

Circuit 500 also comprises input node 522, guarding output 
524 and negative impedance output 526. More speci?cally, 
input node 522 is the node that is connected to a signal 
transmission channel. Guarding output 524 is the output uti 
liZed When using a con?guration similar to that illustrated in 
FIG. 4. Speci?cally, if the termination point of a parasitic 
capacitance is accessible, then guarding output 524 may be 
used to connect to the termination point of the parasitic 
impedance. In contrast, negative impedance output 526 is the 
output that is used to connect to a signal-transmission channel 
When the termination point of the parasitic impedance is not 
accessible. 

Referring again to the ampli?er portion 510, ampli?er por 
tion 510 further comprises an input balancing portion 528, a 
gain control portion 530, and a stability control portion 532. 
Input balancing portion 528 comprises resistor 534. Gain 
control portion comprises resistor 536, one terminal of Which 
is connected to ground 538, and resistor 540. By adjusting the 
values of resistors 536 and 540, one is able to adjust the gain 
G of the overall ampli?er portion 510. In some embodiments, 
When negative impedance output 526 is utiliZed the values of 
resistors 536 and 540 may be set to a value that is greater than 
1 . In various other embodiments, When guarding output 524 is 
utiliZed, the values of resistors 536 and 540 may be selected to 
provide a gain of greater than 1. Stability control portion 532 
comprises capacitor 542, resistor 544, and resistor 546. By 
adjusting the values of capacitor 542, resistor 544, and resis 
tor 546 one is able to alter the stability of the overall ampli?er 
circuit. 

Circuit 500 can also comprise compensation level portion 
580, When used in a con?guration similar to FIG. 3. Compen 
sation level portion 580 is in turn comprised of resistor 546 
and capacitor 548. Compensation level portion 580 is used as 
the compensation impedance. By adjusting gain control por 
tion 530 and compensation level portion 582, one may adjust 
the compensation current that is provided to the signal-trans 
mission channel, and thereby match the compensation cur 
rent magnitude to the magnitude of the leakage current. This 
may be done according to equation (3) given above. It should 
be understood hoWever, that in various embodiments, Where 
circuit 500 is used in a con?guration similar to FIG. 4, com 
pensation level portion 580 and output 526 can be omitted. 

Reference is noW made to FIG. 6, Which is a detailed 
schematic diagram of an active guarding circuit 600 accord 
ing to various embodiments of applicants’ teachings. Circuit 
600 comprises ampli?er 610, Which is coupled to compensa 
tion impedance 680. Both ampli?er 610 and compensation 
impedance 680 are coupled to signal path 682, Which has 
parasitic impedance 684. Parasitic capacitance 684 may be 
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comprised of various impedances such as capacitances 686 
and 688, Which may be distributed throughout the signal 
transmission channel 682. Parasitic capacitances 686 and 688 
have termination points 6851). Both compensation impedance 
680 and parasitic impedance 684 are illustrated as only con 
taining capacitances. However, it is not intended to exclude 
embodiments in Which compensation impedance 680 and 
parasitic impedance 684 include resistances or a combination 
of capacitances and resistances, Which may appear as some 
combination of parallel or serial connections. 

Ampli?er 610, comprises an operational ampli?er 612, 
With a non-inverting input 614, an inverting input 616, an 
output node 617, and poWer rails 618 and 620. Ampli?er 610 
further comprises resistor 634 connected betWeen the non 
inverting input 614 and signal-transmission channel 682. 
Resistor 636, Which is connected betWeen ground 638 and 
inverting input 616, as Well as resistor 640, form a gain 
control portion. In various embodiments, the values of resis 
tors 636 and 640 are selected to have a gain With a value 
greater than 1. Capacitor 642, resistor 644 and resistor 646 
form a stability control portion. 

Capacitors 648 and 650 make up a compensation imped 
ance 680 and are connected betWeen resistor 646 and signal 
transmission channel 682. As discussed above, the value of 
compensation impedance and the gain of the ampli?er may be 
selected according to equation (3) in order to cancel or reduce 
the effect of the parasitic impedance and the leakage current. 

Reference is next made to FIG. 7, Which is a detailed 
schematic diagram of an active guarding circuit 700 accord 
ing to various embodiments of applicants’ teachings. Circuit 
700 is illustrated With speci?c values for various circuit com 
ponents indicated. Circuit 700 may be utilized to compensate 
for parasitic capacitance 784 that has a value of 90 pF and 
appears across a signal-transmission channel 782. 

Circuit 700 comprises ampli?er 710, Which is coupled to 
compensation impedance 780. Both ampli?er 710 and com 
pensation impedance 780 are coupled to the signal-transmis 
sion channel 782. The parasitic capacitance 784 could be 
distributed throughout the signal-transmission channel 782 
and be made up of various impedances such as capacitances 
786 and 788 having termination points 78519. 

Ampli?er 710, comprises an operational ampli?er 712, 
Which may be, but is not limited to being, implemented as an 
U21 LMH6642 operation ampli?er. Operational ampli?er 
712 has a non-inverting input 714, an inverting input 716, an 
output node 717, and poWer rails 718 and 720. Ampli?er 710 
further comprises resistor 734 connected betWeen the invert 
ing input 714 and signal-transmission channel 782. Resistor 
736 has a value of 100 kQ and is connected betWeen ground 
738 and inverting input 716. Resistor 740 has a value of l 0 k9 
and is connected in parallel With capacitor 742. Resistors 738 
and 740 form a gain control portion. 

Capacitor 742 and resistor 746 form a stability control 
portion. Capacitor 742 has a value of 10 pF, and resistor 746 
has value of 1009. 

Capacitors 748 and 750 make up a compensation imped 
ance 780 and are connected betWeen resistor 746 and signal 
transmission channel 782. 

Circuit 700 may be utiliZed When the termination point of 
the parasitic impedance is not readily accessible. Speci?cally, 
it may not be possible to connect the output of ampli?er 710 
to terminal 785!) of parasitic impedance 784. 

Reference is next made to FIG. 8, Which is a detailed 
schematic diagram of an active guarding circuit 800 accord 
ing to various embodiments of applicants’ teachings. Circuit 
800 comprises ampli?er 810, the input of Which is coupled to 
signal-transmission channel 882. Signal-transmission chan 
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8 
nel 882 has parasitic impedance 884. Parasitic impedances 
884 may be comprised of various impedances such as capaci 
tances 886 and 888, Which may be distributed through out the 
signal-transmission channel 882. Although parasitic imped 
ance 884 is illustrated of being comprised of only capaci 
tances, it is not intended to exclude embodiments in Which 
parasitic impedance 884 is comprised of resistors, or a com 
bination of resistive and capacitive elements. 
The output of ampli?er 810 is coupled to node 885!) of 

parasitic impedance 884. Node 885b corresponds to the ter 
mination point of parasitic capacitance 884. 

Ampli?er 810, comprises an operational ampli?er 812, 
With a non-inverting input 814, an inverting input 816, an 
output node 817, and poWer rails 818 and 820. Ampli?er 810 
further comprises resistor 834 connected betWeen the invert 
ing input 814 and signal-transmission channel 882. Resistor 
836, Which is connected betWeen ground 838 and inverting 
input 816, as Well as resistor 840, form a gain control portion. 
Capacitor 842, resistor 844 and resistor 846 form a stability 
control portion. 

Circuit 800 may be utiliZed When the termination point, or 
terminal 885b, of the parasitic impedance 884 is readily 
accessible. Speci?cally, the output of ampli?er 810 is con 
nected to terminal 885!) of parasitic impedance 884. 
The use of any circuit components such as ampli?ers may 

introduce delays into circuits. If the delay is signi?cant then 
the circuit may not adequately compensate for any leakage 
current that is lost through the parasitic impedance. This may 
result in signal distortion. Various embodiments of the cir 
cuits illustrated above may overcome the dif?culties associ 
ated With delays by utilizing ampli?ers With a suf?cient band 
Width so as not to introduce a delay that is signi?cant When 
compared to the bandWidth of the signal that is propagated 
over the signal-transmission channel. 

For example, various embodiments of the circuits illus 
trated above may make use of an operational ampli?er When 
implementing the ampli?er for the signal. In some embodi 
ments, the bandWidth of the operational ampli?er, such as 
operational ampli?er 812 is selected to be at least 10 times the 
bandWidth of the signal being propagated over the signal 
transmission channel. In various embodiments, the signal that 
is propagated on the signal-transmission channel is a sinusoi 
dal signal. In such cases, the bandWidth of the signal is simply 
the frequency of the signal, and the bandWidth of the ampli?er 
may be appropriately selected. 
An alternative solution for compensating for delay is that a 

phase lead of an appropriate signal may be added to the 
ampli?er of any of the above signals. This requires that the 
circuit be able to predict the future values of the signal. In the 
case of sinusoidal signals, or any other periodic signal, this 
may be accomplished very easily as the value of such a signal 
may alWays be predicted for any future time. 

Reference is noW made to FIG. 9, Which is a schematic 
diagram of a circuit 900 according to various embodiments of 
applicants’ teachings. Speci?cally, FIG. 9, illustrates the 
application of active guarding circuits according to appli 
cants’ teachings to a circuit similar to that illustrated in FIG. 
2. 

Illustrated in FIG. 9 is a signal-transmission channel 982, 
several parasitic impedances 98411 to 984d, shield 990, and a 
multiplexer 992. Shield 986 runs parallel to signal-transmis 
sion channel 982 and thereby causes parasitic impedances 
984a and 98419 to exist betWeen signal-transmission channel 
982 and shield 986. Similarly, parasitic impedances 9840 and 
984d exist betWeen the input of the multiplexer and the poWer 
supplies of the multiplexer. 
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Ampli?ers 910a, 910b, and 9100 are utilized to compen 
sate for any leakage current that may occur. Speci?cally, the 
inputs of ampli?ers 910a, 910b, and 9100 are coupled to the 
signal-transmission channel and the outputs of ampli?ers 
910a, 910b, and 9100 are coupled to the termination point of 
impedances 98411 to 984d. Each of the ampli?ers 910a, 910b, 
and 9100 may be implemented as discussed With respect to 
FIGS. 4 and 8. 

Although FIG. 9 only illustrates capacitive impedances, 
the impedances may also be resistive or may be any combi 
nation of resistances and capacitances connected in series or 
parallel. It is not intended to exclude any of these combina 
tions. FIG. 9 is intentionally simpli?ed for the purposes of 
clarity of illustration. 

While the applicants’ teachings are described in conjunc 
tion With various embodiments, it is not intended that the 
applicants’ teachings be limited to such embodiments. On the 
contrary, the applicants’ teachings encompass various alter 
natives, modi?cations, and equivalents, as Will be appreciated 
by those of skill in the art. 
We claim: 
1. An active guarding circuit for reducing parasitic imped 

ance signal loading, the circuit comprising: 
a signal-transmission channel that carries an electrical sig 

nal and is shunted by a parasitic impedance having a 
parasitic impedance value, the electrical signal causes a 
leakage current having a leakage current magnitude to 
How through the parasitic impedance; 

an impedance having an impedance value, a ?rst terminal 
and a second terminal, the ?rst terminal coupled to the 
signal-transmission channel; and 

an ampli?er having an input terminal, an output terminal 
and a gain, the input terminal coupled to the signal 
transmission channel, the output terminal coupled to the 
second terminal of the impedance to provide a compen 
sation current to How through the impedance, and the 
gain is selected based on the impedance and parasitic 
impedance values so that the compensation current has a 
magnitude substantially equal to the leakage current 
magnitude. 

2. The active guarding circuit as de?ned in claim 1, Wherein 
the impedance is the parasitic impedance. 

3. The active guarding circuit as de?ned in claim 1, Wherein 
the gain is substantially equal to l. 

4. The active guarding circuit as de?ned in claim 1, Wherein 
the impedance is separate from the parasitic impedance. 

5. The active guarding circuit as de?ned in claim 4, Wherein 
the gain and the compensation impedance are selected so that 
the compensation current magnitude is substantially equal to 
the leakage current magnitude. 

6. The active guarding circuit as de?ned in claim 4, Wherein 
the gain is greater than 1. 
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7. The active guarding circuit as de?ned in claim 1, Wherein 

the impedance includes a capacitance. 
8. The active guarding circuit as de?ned in claim 1, Wherein 

the impedance includes a resistance. 
9. The active guarding circuit as de?ned in claim 1, Wherein 

the impedance includes both a resistance and a capacitance. 
10. The active guarding circuit as de?ned in claim 1, 

Wherein the impedance is a capacitance. 
11. The active guarding circuit as de?ned in claim 1, 

Wherein the impedance is a resistance. 
12. A method of active guarding for reducing parasitic 

impedance signal loading, the method comprising: 
sensing an electrical signal on a signal-transmission chan 

nel, the signal-transmission channel is shunted by a 
parasitic impedance having a parasitic impedance value, 
the electrical signal causing a leakage current having a 
leakage current magnitude to How through the parasitic 
impedance; 

providing an impedance having an importance value, With 
a ?rst terminal and a second terminal, the ?rst terminal is 
coupled to the signal-transmission channel; 

providing an ampli?ed signal to the second terminal of the 
impedance to cause a compensation current to How 
through the impedance, the ampli?ed signal is equal to 
the electrical signal multiplied by a gain, the gain is 
selected based on the impedance value and the parasitic 
impedance value so that the magnitude of the compen 
sation current is substantially equal to the leakage cur 
rent magnitude. 

13. The method as de?ned in claim 12, Wherein the imped 
ance is provided by the parasitic impedance. 

14. The method as de?ned in claim 12, Wherein the gain is 
selected to be equal to l. 

15. The method as de?ned in claim 12, Wherein the imped 
ance is separate from the parasitic impedance. 

16. The method as de?ned in claim 15, further comprising 
selecting the gain and the compensation impedance such that 
the compensation current magnitude is substantially equal to 
the leakage current magnitude. 

17. The method as de?ned in claim 15, Wherein the gain is 
selected to be greater than 1. 

18. The method as de?ned in claim 12, Wherein the imped 
ance includes a capacitance. 

19. The method as de?ned in claim 12, Wherein the imped 
ance includes a resistance. 

20. The method as de?ned in claim 12, Wherein the imped 
ance includes both a resistance and a capacitance. 

21. The method as de?ned in claim 12, Wherein the imped 
ance is a capacitance. 

22. The method as de?ned in claim 12, Wherein the imped 
ance is a resistance. 


