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Abstract--A new two-dimensional (2D) shape-encoding scheme is introduced which is based on the idea 
of the angle-of-sight (AOS). Using this scheme, a shape can be efficiently transformed into a one-dimensional 
(ID) signature by recording the AOS vs. distance of each boundary point with respect to a shape-specific 
chord-of-sight (COS). The COS is selected by using an extension of the notion of shape boundary, to the 
idea of shape-specific points and the characteristic ellipse (CE). The AOS signature has many important 
properties including: it is information-preserving and thus unique, it does not require boundary smoothing; 
it has its own selectable smoothing property; it can provide a set of multi-scale representations by means 
of a simple operation; it is transformation-invariant; it is defined at all points; it preserves symmetries. As 
well, for matching purposes, a two-level matching process is proposed using a global measure (the 
eccentricity of the CE of a shape) and a dissimilarity measure based on the AOS signature. The encoding 
and matching techniques developed have been tested with 35 manufactured objects. The results obtained 
show that the AOS signature and the two-level-matching technique are quite effective and reliable for the 
recognition of 2D shapes of typical manufactured objects. 

Shape analysis Shape encoding Signature Shape matching Shape-specific properties 

I. I N T R O D U C T I O N  

Shape representation and matching is a key problem 
in machine-vision-system development. This problem 
arises, as well, in the context of a new active-vision 
system for three-dimensional (3D) object recognition 
in robotic assembly workcells, under development in 
the Computer Integrated Manufacturing Laboratory 
(at the University of Toronto). 11'2) In the latter devel- 
opment, the main design concept is to reduce the 
dimensionality of the recognition task: a 3D object is 
modeled in this system by using a small set of topologi- 
cally distinct perspective views, called standard views. 
The process of shape matching is performed between 
the acquired two-dimensional (2D) standard view of 
the sensed object with unknown identity and a library 
of 2D standard views of a set of objects. Based on the 
proposed method, then, any usable 2D representation 
and its corresponding recognition technique must be 
position-, rotation-, and scale-invariant. 

Here, following the same concept of dimensionality 
reduction in a "top-down" fashion, the problem of 
the design of a transformation-invariant 2D shape- 
encoding scheme is addressed. Our goal has been 
the identification of a methodology by which the 2D 
standard views are transformed into one-dimensional 

(1 D) signatures suitable for signal matching. Here the 
required signature is defined as a 1D signal derived 
from the shape by using an encoding scheme for 
mapping the information from the 2D "shape" space 
to the 1D "signature" space. 

The general problem of 2D shape recognition (classi- 
fication/discrimination) is one of the most familiar 
and fundamental problems in pattern recognition. 
Shape analysis, generally, consists of two basic pro- 
cesses: shape representation (description/modeling/ 
encoding) and shape identification (matching). Clearly, 
to a certain extent the type of matching technique 
employed is determined by the method of shape rep- 
resentation used. In the last three decades, various 
methodologies have been developed to address this 
problem in various contexts. These methods have been 
reviewed and classified in a number of papers, t3-~) 

In the proposed 2D shape-recognition technique for 
representation/encoding purposes, a new boundary- 
based signature is developed and used. The new 2D 
shape-encoding scheme is based on a new concept, the 
angle-of-sight (AOS), for extracting and encoding 
"shape" information. ~6) Parameterization of the bound- 
ary of a 2D shape provides a 1D representation 
(signature) of the geometrical information (which is a 
periodic function of one variable). This has several 
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advantages: it allows a more compact representation 
of 2D shapes; it enables one to apply various well- 
developed theoretical techniques (e.g. Fourier analysis) 
to generate even a more compact representation and 
scalar-measure-based identification of 2D shapes; and, 
it can facilitate shape analysis in general. As a result, 
it is a quite attractive approach for image-data com- 
pression and shape analysis. Various 2D shape-bound- 
ary parameterization methods have been prop, osed 
either as an intermediate representation--either for 
subsequent transformations (such as Fourier transform) 
in order to get a set of scalar features, or for subsequent 
processing for extraction of structural primitives of the 
boundary, or as a final form of representation (for 
direct matching). These parameterization techniques 
include: the polar representation, t7-9) the centroidal 
profile representation, ~1°-141 the rectangular rep- 
resentation,tl 5-17) the tangential representation, I~ a~ the 
curvature representation, t~9-22~ the normal-contour- 
distance (NCD) signature, c23~ the slope density de- 
scription, 124~ "signature", c25'26) the angle-and-length 
chord distribution, t27-a~) and the gradient encoding 
scheme.{ a2) 

The proposed 2D shape-representation technique is 
based on the parameterization of the boundary as a 
periodic function of one variable (a signature), and has 
the following properties. It is easily computed from a 
chain code and thus has a low processing/memory 
requirement; it is information-preserving and thus 
unique; it does not require boundary smoothing since it 
is not based on first or second derivatives of the boundary; 
it has its own inherent smoothing property; it can 
provide a set of multi-scale representations by means 
of a simple operation; it is position-invariant, rotation- 
invariant (through standardization of a starting point), 
and size-invariant (through a simple normalization 
of the perimeter length--the signature is required to 
be normalized only along one axis); it is a single-valued 
function, defined at all points, and does not have 
abrupt changes in the signature amplitude (and thus 
has an inherent smoothing property); the shape of each 
object is encoded by only one function (the signature) 
as opposed to two (as in the rectangular representation); 
it preserves symmetries; it represents deviation from a 
basic shape (the circle), and as a result, it can be used 
for creating a measure to test circularity; and, it is a 
stable representation in the sense that small changes 
in the boundary will have a small effect on the 
signature. 

The proposed representation scheme suffers from 
two basic drawbacks: (1) it cannot be applied to 
occluded or partially visible shapes (open curves), 
although, in the proposed 3D object-recognition sys- 
tem, this situation does not occur; and, (2) since it is 
based on chain code (using link lengths of 1 or x/2), 
the boundary is not uniformly sampled; as a result, 
at different orientations, a shape will yield different sig- 
natures since the path length is longer in the diagonal 
directions. In fact, the maximum factor of change in 
the Freeman-chain-coded perimeter length of a shape 

(in link units) due to rotation can be as high as x/2. A 
number of papers have addressed the variation of 
perimeter length of 2D shapes due to digitization 
errors in general, t3a~ and under Freeman chain coding 
in particular, t34) If necessary, the non-uniformity of 
sampling of the boundary can be removed by applying 
uniform sampling techniques developed for digitized 
curves.(23,35) 

On the whole, the above-mentioned properties make 
the proposed encoding technique attractive for shape 
representation and suitable for shape matching, and 
thus, for 2D shape analysis in general. 

In Section 2, the new 2D shape-encoding scheme, 
which is based on the idea of the AOS, is introduced. 
In Section 3, the properties of the new AOS signature 
are discussed. Matching of AOS signatures is addressed 
in Section 4. Experimental results, for simulated as 
well as real 2D shapes, are presented and analyzed in 
Section 5. A brief summary is given in the final section, 
Section 6. 

2. THE PROPOSED BOUNDARY-BASED 2D 
SHAPE-REPRESENTATION TECHNIQUE 

In this paper, "shape" is defined as a simply connected 
compact region in a 2D Euclidean space, which may or 
may not be convex, t2a~ The set of boundary or frontier 
points of this region are used to characterize its shape. 
Only manufactured objects are considered here since 
their construction is based on definable specifications 
(objects encountered in manufacturing plants, storage 
and sorting facilities, cars, ships, airplanes, and space- 
craft). What characterizes such objects is their geom- 
etry: their surfaces are mathematically well defined 
by planes, cylinders, cones, etc., or otherwise by splines, 
contour lines, and so on. Due to the above-mentioned 
characteristics, their representation and identification 
are relatively simpler than those for natural shapes, 
and consequently can be potentially more successful. 

2.1. Description of the AOS shape-representation 
scheme 

The angles of a triangle formed by any three non- 
colinear boundary points C, D and E of a 2D shape 
(Fig. 1) are invariant under shape translation, rotation 
and scaling. The following thought experiment can be 
performed to visualize the use of this property in 
a shape-encoding scheme: predetermine two of the 
vertices, say C and D, and keep them fixed while 
moving the third vertex E along the shape's boundary 
(Fig. I). The angle ct, associated with each position of 
the moving vertex E, is a descriptive property of the 
boundary and can be used for shape representation. 
Hereafter, the chord joining the fixed points is referred 
to as the chord-of-sight (COS) and the angle ct formed 
at the third vertex is referred to as the AOS. 

The AOS signature is a boundary-based descriptor 
of a planar shape and defined as a 1D signal AOS = ~l), 
where l is the arc length between a starting point Eo 
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Fig. 1. (a) Definition of the AOS. (b) The derived signature. 

and the boundary-tracing point E in the clockwise (or 
counterclockwise) direction 

=arccos[d~(l)+d~(l) -d2  ] 
~(1) L 2 ~  _j, :((l) m__ (O, ~) (1) 

where d~(l) and d2(l ) are the distances from the tracing 
point to the end-points of the COS, and d the length 
of the COS. 

The AOS signature of a planar shape with normalized 
boundary length has the following properties: 

• it is translation-invariant; 
• it is size-invariant; 
• it is a periodic signal, and thus, a change of the 

starting-point position causes only a cyclic shift of the 
signature; 

• it is computationally inexpensive, since its com- 
putational cost is linearly proportional to the number 
of boundary points (N), that is, it is O(N). 

In order to make the signature rotation-invariant as 
well, its starting point must be standardized. In that 
respect, the AOS encoding scheme uniquely defines an 
orthogonal shape-specific coordinate system, which 
can be used to select a "standard" starting point E 0. 
The geometry of this situation can be studied using 
Fig. 2. The loci of boundary points having one and the 
same AOS are circular arcs passing through the 
end-points of the COS. The locus of the centers of these 
constant AOS arcs is a straight line orthogonal to the 
COS and passing through its midpoint. The intersection 
points of this line and the boundary are object-specific 
points, and each can be used as the starting point for 
the AOS signature. To make the starting point unique, 
the most distant (or the least distant) intersection point 
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Fig. 2. The AOS related coordinate system. 

to the origin of the shape specific coordinate system 
(point O in Fig. 2) can be used. If there is more than 
one such point (typically a rare case for industrial 
shapes), then a like number of shifted signatures must 
be derived. Subsequent to standardization of the 
starting point Eo, the AOS signature becomes rota- 
tion-invariant as well. 

2.2. COS selection requirements 

The AOS encoding scheme implies that the positions 
of the COS end-points are predetermined by an off-line 
selection process, whereas their locations are detected 
in real time. Obviously, the AOS signature of a shape 
is transformation-invariant only if one and the same 
pair of COS end-points is unambiguously detected for 
each position, orientation, and size of the shape. As far 
as the shape-recognition problem is concerned, 
matching AOS signatures is to be performed only if 
they are derived with reference to a COS with one and 
the same identity. Therefore, COS selection require- 
ments must be established. The COS end-points must 
have the following properties: 

• Uniqueness: the COS end-points must be uniquely 
identifiable from the shape boundary (or features 
derived from it). 

• Commonality: the COS end-point determination 
must rely on features common to a given set of shapes. 

• Boundary-distortion tolerance: the COS end- 
points must be chosen so as to be minimally sensitive 
to boundary noise. 

• Detectability: the COS end-points must be 
identified fast and readily. 

The last requirement is in contradiction with the 
first three. The first three can be satisfied by points 
having a large domain of support. However, as a 
consequence, detection of such prominent points (in a 
pointwise sense) would require considerable com- 
putational time. Points relying on a local domain of 
support, such as corners, dominant points, etc., can 
hardly meet the above-stated requirements. Generally, 
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the end-points of the longest boundary primitives, 
such as linear or curved segments, are better candidates 
for the COS end-points, but their detection requires 
considerable processing time. (36'37) 

Ideally, the best candidates for the COS end-points 
are points to whose coordinates all boundary points 
collectively contribute. 

2.3. COS based on shape-specific points 

The concept of shape-specific points is an extension 
of the notion of shape to include points which do not 
lie on the shape boundary. The formal definition of a 
shape-specific point is given in reference (38), and for 
the sake of clarity, it will be repeated here: 

"Let p = F(S) be a point computed from shape S 
according to procedure F. Also, let S' = T(S), where 
T is a planar transformation, (translation, rotation, 
or dilation), and let p ' =  F(S'). Then p is a shape- 
specific point of S with respect to transformation T 
if and only if p' = T(p)." 

This definition also applies to geometrical entities 
other than points. For instance, the length of a chord 
connecting two shape-specific points is shape specific 
as well. 

Shape-specific points have several properties which 
make them attractive to the AOS encoding scheme: 

• Shape-specific points behave as if they were on 
the shape boundary. 

• The coordinates of shape-specific points are com- 
puted rather than detected. 

• All boundary points collectively contribute to 
the computation of the coordinates of shape-specific 
points. In this sense, the whole shape's boundary 
acts as a domain of support for each shape-specific 
point. 

An AOS signature derived with respect to a COS, 
which is based on shape-specific points, retains the 
property of being shape-transformation-invariant (as 
was explained in Section 2.1). The method for selection 
of the starting point of a signature, presented in 
Section 2.1, is applicable to shape-specific COS end- 
points as well. 

Various functions can be defined for shape-specific- 
point computat ion.  Mitiche and Aggarwal (3a~ 

Fig. 3. Noise-induced shift of the signature starting point. 

L 

Fig. 4. The AOS signature of a triangle. 

employed the centroid and the weighted median point 
to recover shape orientation for the purpose of regis- 
tration. However, simulated experiments here have 
indicated that boundary noise causes a significant 
shift in the starting point position of the corresponding 
AOS signature when these two points are used to 
define the COS. This is explained by the geometry in 
Fig. 3, where the COS end-points are shown to be 
affected by isotropic noise with standard deviation e. 
The shift of the signature-starting-point position lies 
within an angular interval determined by the following 
formula: 

fl = 2 arcsin ( ~ ) .  (2) 

This formula suggests that the noise-induced shift 
of the AOS signature starting point is decreased by 
increasing the length of the COS, d. The distance 
between the centroid and the weighted-mean point 
of a compact shape is usually small, a fact which 
deteriorates the noise-tolerance of the corresponding 
AOS signature. 

In view of the above consideration, better results 
can be achieved by using shape-specific points which 
are computed from a Fourier expansion of the rec- 
tangular representation of a shape. Kuhl and Giardina (~ 5~ 
have applied a Fourier trigonometric expansion to 
the X and Y projections of a closed contour and have 
shown that the locus of each vector of constant fre- 
quency is elliptical. The five basic parameters of the 
ellipse related to the fundamental Fourier harmonic 
are given in reference (39). It has been proven here that 
this ellipse is shape specific (as presented in the Ap- 
pendix). Thus, it can be said that this shape-specific 
ellipse is an important extension of the notion of shape. 
Hereafter, the shape-specific ellipse related to the first 
harmonic (the fundamental frequency) will be referred 
to as the characteristic ellipse (CE). As an example, the 
AOS signature of a triangle is shown in Fig. 4. The 
crossing points of the shape boundary and the major 
axis of the CE are used as the COS end-points. 

2.4. An improved 3D based AOS encoding scheme 

The AOS function is not defined for boundary 
points which are collinear with the end-points of the 
COS, and therefore, the associated signature suffers 
from having jump discontinuities for such points. 
Jump discontinuities hinder matching of signatures 
and deteriorate the spectral characteristics of the 
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Fig. 5. Definition of an improved AOS scheme. 

signal (through Gibbs' phenomenon). This is a common 
drawback of many boundary-based encoding (sig- 
nature) schemes. (5~ 

This problem can be solved by placing one of the 
end-points of the COS outside of the plane of the 
"image". An orthogonal X YZ frame is considered 
herein to achieve this (Fig. 5), where the origin co- 

incides with the center of the characteristic ellipse of 
the boundary, and the X and Y axes are aligned with its 
major and minor radii. The length of the COS is 
defined to be equal to the major (or minor) radius of 
the characteristic ellipse of the boundary. In the same 
manner as in Section 2.1, the AOS signature is defined 
as a 1D signal AOS = ct(l), where l is the arc length 
between the moving point E and a starting point Eo, 
measured in a clockwise (or counterclockwise) direction. 
Note that, as a result of employing the third dimension, 
the AOS function has no discontinuities. Based on this 
new definition of COS, the AOS function is defined as 
follows: 

or(l) = arctan [ r ~ ) ]  , ct(l) _c (0, zr/2) (3) 

where A is the length of the major radius of the 
characteristic ellipse of the boundary (the minor radius 
B of CE can be used as well), and r(l) is the distance 
from a boundary point to the origin of the X YZ frame. 
The crossing point of the boundary and the Y-axis or 
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X-axis (which are respectively aligned with the major 
and minor axes of the characteristic ellipse of the 
shape), which is the most distant (or least distant) 
from the origin of the X YZ frame, can be used as a 
"standard position" for the starting point. 

Figure 6 shows a set of simulated shapes and their 
AOS signatures as proposed in this section. 

3. THE PROPERTIES OF THE AOS SIGNATURE 

The improved version of the AOS encoding scheme 
has the following important properties: 

• It can easily be computed from a chain code and 
has a low processing/memory requirement. 

• The signature preserves shape symmetry in the 
sense that points equidistant from the origin of the 
X Y Z  frame have equal AOS. 

• It is inherently position-invariant, and, through 
standardization of the starting point, it is easily made 
rotation-invariant. Furthermore, by normalizing the 
boundary length of a shape, the signature becomes 
size-invariant as well. 

• The signature is a single-valued function, defined 
at all points, and does not yield abrupt changes in 
the signature amplitude due to its inherent smoothing 
property (Section 3.1). 

• The simplest possible signature (a straight line) 
belongs to the circle--the basic shape. In this sense, 
the AOS signature shows how a shape deviates from 
the basic shape. This property can be used to define a 
new measure-for-circularity test. 

• The problem of oversampling/undersampling of 
the boundary for the AOS signature is significantly less 
severe than similar encoding techniques such as polar 
representation, since the signature is based on contour 
sequence (Freeman chain code). Experimental results 
in Section 5 will show how significant this problem is 
for the proposed signature in practice. 

• It is a stable representation, since small changes 
in the boundary will have small effects on the signature 
(thus it is stable under noise such as that from quan- 
tization). A reason for this is the inherent smoothing 
property of the proposed encoding scheme (Section 3.1). 
This property will be illustrated more clearly by the 
experimental results (with simulated as well as real test 
shapes) in Section 5. 

In the following sections, three other important 
properties of the AOS signature will be discussed in 
detail. 

3.1. The smoothing property of the AOS signature 

Representation techniques based on first derivatives 
(i.e. slope) or second derivatives (i.e. curvature) of the 
boundary of a shape are very sensitive to boundary 
noise, and as a result, they require an initial smoothing 
process before a signature is generated. This require- 
ment generates another problem, namely, the extent to 
which the boundary should be smoothed in order to 

get a reliable representation (since, obviously, the scale 
at which the smoothing is carried out has a significant 
effect on the behavior of the boundary). This is an 
important problem in image processing and analysis, 
and there is no general and easy solution to it. Thus, 
encoding schemes such as tangential representation, 
curvature representation, NCD signature, slope-density 
function, and gradient encoding scheme all suffer from 
this important drawback. Furthermore, the prepro- 
cessing operation increases computational costs of the 
representation. As well, due to the above preprocessing, 
in general, they do not have the information-preserving 
property. 

As noted already, one of the important advantages 
of the proposed encoding scheme is that it provides an 
inherent smoothing of the shape representation, since 
the amplitude of the transfer function y = arctan (x) is 
always under the line y = n/2. That is, as the value of 
the variable x increases, the rate of change of the 
function value y is reduced by the above transfer 
function, and y becomes asymptotically closer to the 
limiting value n/2. As well, the signature can easily be 
further smoothed by increasing the length of the COS. 
This latter property can be employed selectively for 
boundary-noise reduction. A family of AOS signatures 
of a shape presented in Fig. 7 shows that a longer COS 
causes smoothing of the form of the signal and an 
increase in its DC component. Now, if a family of 
signatures is translated along the y-axis to a position 
having a fixed DC component value (e.g. n/4), then 
they can be viewed as signatures of the shape with 
different degrees of smoothing. From a geometrical 
point of view, through this process of smoothing, the 
boundary of a shape gets closer to the ideal smooth 
shape (the circle). 

3.2. The shape-preserving property of the signature 

The AOS signature preserves shape information. In 
general, signatures from which shape can be recovered 

CO 
0 
<t 

Trl2 

rr/4 

o 

Fig. 7. A shape and the corresponding family of AOS sig- 
natures for various lengths of COS: 0.5 A, 1 A, 2 A, 4 A, 8 A, 

and 16A. 
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Fig. 8. (a) Shape recovery from the improved AOS signature. 
(b) 3D locus of constant AOS points. 

are referred to as information-preserving signatures/41 
To prove this property, it is sufficient to show a 
procedure performing the "shape-from-representation" 
transform• Figure 8(a) shows the geometry of such a 
shape-recovery transform. The AOS signature is defined 
by a discrete sequence AOS(i) = ct(lg), i = 0, 1 . . . . .  N - 1 
(where N is the total number of elements in the 
sequence; e.g. the total number of links in the Freeman- 
chain-coded boundary of a shape), parameterized with 
respect to the arc length I. The 3D locus of all points 
having constant AOS is the surface of a toroid (a 
surface of revolution generated by rotating constant- 
AOS arcs around the COS- -F ig .  8(b)). The intersec- 
tion of the ith AOS toroidal locus with the image plane 
is a circle (Fig. 5) of radius 

A 
R,  - (4)  

tan (AOS(i)) 

where A is the length of the COS. Consequently, a 
shape-recovery procedure can be described as follows: 

(1) for i =  0 to N -  1 draw concentric circles with 
radius Ri; 

(2) choose an arbitrary starting point Po, lying on 
the first circle (R0); 

(3) for i =  1 to N - 1 ,  draw a circle centered at 
point Pi_ 1 with radius Al~ = li - li- t (for a boundary 
encoded by Freeman chain code, the length Al~ would 
be equal to 1 or ~/2). The boundary points Pi are 
recovered by taking the crossing points of this circle 
and a circle of radius R~ in the direction o f  traversal 
(clockwise, in our case). 

In step (3) above, since the intersection of the two 
circles generally yields two solutions, one of them must 
be selected• The proper selection of the solution de- 
pends on convexity-concavity of a shape. In this re- 
gard, there exist three possible cases: 

(a) For a convex shape, the condition stated in step 
(3) above always results in the correct recovery of the 
shape. 

(b) For some convex-concave shapes (e.g. Fig. 9(a)), 
the above criterion works directly as well. 

._/--k._ 
(a) ( b )  
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Fig. 9. Shape recovery of convex-concave shapes. 

(c) For some other convex-concave shapes (e.g. 
Fig. 9(b)), this criterion does not work. The reason is 
as follows: when the recovery process reaches the point 
p on Fig. 9(b), according to the above criterion, point 
p~ (one of the two solutions for the intersection of the 
two circles) is selected as the next point on the shape's 
boundary, while the correct edge point is P2. This 
mistake in recovering some of the boundary points 
leads to a distorted shape which is an open curve 
as well as a crossed one (e,g. the shape in Fig. 9(b) is 
recovered as the open curve in Fig. 9(c)). To prevent 
this situation, it is proposed that these points be de- 
tected and subsequently labeled in the process of gen- 
erating the signature of a shape: e.g. by using minus 
signs. This is a common technique in signal processing. 

Thus, based on the above considerations, the AOS 
shape-encoding scheme can be generally made in- 
formation-preserving, and to provide one-to-one map- 
ping. As a result, it could be used as a data-compres- 
sion scheme for 2D shapes. As well, since it uniquely 
transforms a 2D shape to a 1D signature, the AOS 
signature is appropriate for shape recognition. 

One last important aspect of the shape-recovery 
procedure that deserves to be emphasized, from a 
practical point of view, is the problem of computational 
error. This is a crucial issue in real applications (as 
opposed to simulated ones in which, for example, 
quantization error does not play an important role). 
Moreover, the associated problem is related to the 
accumulation of computational error resulting in a 
negative value for the discriminant of a second-order 
polynomial. The explanation is as follows: to estimate 
the coordinates of a boundary point, a second-order 
polynomial in terms of the variable x or y must be 
solved (to provide the intersection of the two circles). 
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Clearly, based on the discriminant of the polynomial, 
the number of solutions is determined. Since the two 
circles must have either one or two solutions (based on 
the relative sizes of the radii of the two circles), the 
discriminant must be either equal to zero or have a 
positive value. However, when the x or y coordinates 
of the two solutions are equal or very close, the 
discriminant becomes negative due to the accumulation 
of computational error. A simple practical measure has 
been used to prevent this: the discriminant for both 
second-order polynomials in terms of variables x and 
y are estimated for each individual boundary point, 
and the larger one is used. For example, if the value of 
the discriminant for the polynomial in terms of x is 
larger, accordingly the x coordinate is first estimated, 
and on that basis, the y coordinate is calculated. It has 
been shown experimentally that this practical scheme 
is effective in preventing accumulation of computa- 
tional error in the process of recovering a shape from 
its AOS signature. 

3.3. A multi-scale representation based on the A O S  
signature 

The smoothing operation produces different results 
when applied at different scales (which control the 
extent or degree of smoothing). An alternative to the 
use of only one scale for operations such as smoothing, 
is to apply a multi-scale approach. This approach 
allows one to consider structural features over a con- 
tinuum of scales simultaneously. A useful and import- 
ant property that an encoding scheme might have is 
that a smoothed version of the representation be ob- 
tained through some simple operation performed 
on it. This property is important since it can be em- 
ployed for multi-scale representation. 

As was indicated in Section 3.1, a family of AOS 
signatures of a shape with different degrees of smooth- 
ing can be generated by increasing the length of the 
COS (Fig. 7). One important aspect of this multi-scale 
representation process is that the signature is directly 
smoothed, and based on that, a multi-scale represen- 
tation is generated. This is in contrast to the situation 
with other multi-scale representation schemes where, 
first, the original shape must be smoothed by applying 
some preprocessing operation, and then, the smoothed 
representation (a signature with a new scale) can be 
generated (e.g. reference (21)). Thus, from a compu- 
tational point of view, the proposed AOS signature is 
much faster for generating multi-scale representations. 

4. MATCHING O F  AOS SIGNATURES 

It is shown in the Appendix that the CE of any 
planar shape is a shape-specific ellipse, which thus 
behaves as an inseparable part of the shape. Concep- 
tually, it can be said that each shape is "accompanied" 
by such a characteristic ellipse. This idea suggests that 
two shapes can be matched by first aligning their 
characteristic ellipses. This process of alignment in the 

image plane can be performed in two steps. First, 
superimpose the two shapes so that their CE centers 
coincide, and subsequently, rotate one of the shapes 
until the major/minor axes of their characteristic 
ellipses align. Alignment of shapes in the image plane 
is equivalent to superimposing their AOS signatures, 
recalling that the AOS signature is transformation- 
invariant, and that its starting point lies on the major 
axis (or minor axis) of the characteristic ellipse. 

Conceptually, if two shapes are similar, a dissimi- 
larity measure of their signatures is expected to achieve 
its global minimum within a small 1D window, V, 
centered around the starting point of the superimposed 
signatures. This windowed "shift-and-match" search is 
necessary to allow for possible noise-induced displace- 
ment of the characteristic ellipse (due to the variabilities 
in boundary quantization, edge detection, and shape 
orientation). It is proposed to use the following average 
pointwise dissimilarity measure: 

1 K - 1  

D(j)  = ~  i~o ( S l ( i ) - S 2 ( i + J ) ) 2 '  j~ -  [ - V , V ]  (5) 

where Sl(i), i = O, 1 . . . . .  M - 1, and $2(/), i = 0,1 ..... N - l, 
are two shape signatures (two discrete ordered se- 
quences), M and N are the total numbers of elements 
in the ordered sequences (e.g. the total number of links 
in the Freeman chain code), and K = min (M, N). 

If the eccentricity of the CE is above a certain 
threshold, the shape can be considered rotationally 
symmetric. As a result, the starting point, as defined in 
Section 2.1, is not unique. Thus, the axes of the CE 
cannot be used for superimposition of shapes. In 
reference (19), Freeman proposes using min-max 
points of a curvature-based signature for starting- 
point selection. This idea can be extended and im- 
plemented for alignment ofmin-max points of the AOS 
signatures to achieve proper superimposition of the 
shapes to be matched. Evidently, if two shapes are 
similar, there is a correspondence between the min-max 
points of their signatures, and the dissimilarity measure 
is minimized by proper alignment of min-max points. 
One should notice that the geometrical interpretation 
of the min-max points of an AOS signature is as 
follows: a maximum extremum point corresponds to 
a concavity of a shape or is caused by a long linear 
segment, while a minimum extremum point corre- 
sponds to a corner (a vertex). In this sense, alignment 
of AOS signatures by using pairs of maximum (or 
minimum) extremum points can be considered as 
superimposition of edges (or vertices) of the shapes to 
be matched. For more details on edge-based shape 
alignment, the reader should refer to reference (40). 
Shape matching through alignment of features like 
edges or vertices implies searching for those pairings 
of maximum (or minimum) extremum points whose 
alignment would minimize the dissimilarity measure. 
To avoid considering all possible combinations, we 
confine the search process only to the min-max points 
which are dominant, i.e. having a high (or the highest) 
domain of support. Correspondingly, we have ira- 
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Table l. Distance measure performance of the improved AOS signature 

Library shapes 

I] ZI I5] El 0 
4.78 12.63 14.06 9.35 94.74 13.82 

0.96 9.48 15.53 3.55 114.82 11.4 

i t  0.125 9.29 18.13 2.26 122.58 13.87 

plemented the algorithm presented in reference (41) for 
detection of extremum points of the AOS signatures 
and for ordering them in accord to their domain of 
support. 

To evaluate the performance of the above dissimi- 
larity measure, the following experiment was performed, 
based on simulated test and library (reference) shapes: 
the performance of the AOS dissimilarity measure is 
shown in Table 1. The test shapes--rotated,  scaled 
and distorted versions of a rectangular shape- -are  
matched against a set of library shapes. The results 
obtained for the dissimilarity measure show that 
despite the fact that most of the library shapes are quite 
similar, the test shapes can be identified using a simple 
minimum-distance rule. These results also indicate 
that, due to the uniqueness of the signature, geometri- 
cally dissimilar objects are classified as different. 

5. EXPERIMENTAL PROCEDURE AND RESULTS 

In order to test the proposed encoding and matching 
schemes, 35 randomly-selected manufactured objects 
were considered (as shown in Figs 10-12): the range 
of their sizes (in terms of area and perimeter length) is 
quite large; they represent simple and basic as well 
as very complex shapes (in terms of the complexity 
measure used in this study); as well, the eccentricity 
values of their CEs are well distributed. These aspects 
of the selected objects (shapes) can be seen in Table 2. 

5. l. Generation of reference and test shapes 

To generate the set of reference shapes for the set of 
objects, the following procedure was employed: 

(1) The objects were positioned in the scene such 
that the major axes of their CEs would be almost 
horizontal, and, as well, they would be at the center of 
the field of view of the camera. This position is referred 
to as the standard reference position. 

(2) The camera was located directly over the object 
at an approximate distance of 0.7 m. 

(3) A backlit-illumination system was employed 
such that an image of the silhouette of an object could 
be acquired easily. 

(4) The focal length, and the aperture size of the 
camera were adjusted for each object in order to get a 
sharp and focused image. 

(5) An image was acquired and subsequently pro- 
cessed as follows: 

• The smallest rectangle that envelops the object 
was determined and image preprocessing was applied 
to this window of interest. 

• An optimal global threshold value was determined 
based on a non-parametric and unsupervised meth- 
od of automatic threshold selection, c42~ The optimal 
threshold was selected by a discriminant criterion to 
maximize the separability of the resultant classes in 
a grey-level image. Subsequent to the selection of the 
optimal threshold value, a binary image was generated. 

• Erosion and dilation operators were applied to 
remove scattered noise in the background of the binary 
image. 

• The image was read raster-scan-wise and a 
boundary point was detected. Subsequently, the 
boundary of the silhouette was traced and a 1D 
Freeman chain code was produced, t43'44) 

(6) The AOS signature of the silhouette of the object 
was generated based on the ID chain code. This sig- 
nature was used as a reference signature. 

The above procedure represents reality in part; that 
is, the reference model (signature) generated is based 
on a relatively "ideal", though real, condition, rather 
than on an ideal simulated condition (such as a CAD 
model). Thus, it has some degree of perspective distor- 
tion, and boundary noise due to binarization and 
quantization processes. 

The signatures of the test shapes, on the other hand, 
were generated with procedures similar to those above, 
but with the following differences: 

• The objects were randomly positioned and 
oriented. 
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Fig. 10. A grey-level image of the manufactured objects used in the experiment. 

Fig. 11. A grey-level image of the manufactured objects used in the experiment. 
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Fig. 12. A grey-level image of the manufactured objects used in the experiment. 

• The focal length and aperture size of the camera 
were fixed (at average values) for all the test objects. 

• No window of interest was employed. 

Based on these differences, each shape goes through 
various degrees of additional distortion due to orienta- 
tion and position (off-center) changes, relatively blurred 
edges, and less-contrasted imaging. As a result, in some 
cases, the boundary of a shape is significantly distorted, 
especially those with cylindrical surfaces (e.g. object 
number 9). These changes are manifested, for example, 
in the change of values of perimeter length (in terms of 
link units), the complexity measure, and the eccentricity 
of the CE of each shape as shown in Table 2. 

5.2. 2D shape matching 

Subsequent to the generation of AOS signatures 
(both the reference and test ones), the proposed match- 
ing technique was applied. In this regard, the following 
aspects of the process must be noted: 

(I) The size of the 1D window for the "shift-and- 
match" search process was assumed to be 1/20 of the 
perimeter length of a shape. This is, generally, a 
relatively large window compared to the actual required 
size for many test shapes as can be seen in Table 2. 
However, it was accepted in order to provide a higher 
degree of confidence in the results obtained. Further- 
more, the size of the window can be objectively deter- 
mined according to some measure which is a function 

of perimeter length, complexity-measure value, and 
eccentricity of the CEs of a set of shapes, off-line and 
in advance. 

(2) In case of rotationally-asymmetric shapes, since 
the matching procedure is based on the alignment of 
the major and minor axes of CEs of two shapes, there 
exists a g-ambiguity in the alignment process. This 
must also be taken into account in the matching 
algorithm. 

(3) To determine the presence of centrally symmetric 
shapes, the value 0.95 was used as an eccentricity 
threshold. This value was determined experimentally. 
In the set of 35 shapes under consideration, four of 
them are classified as centrally symmetric (shape 
numbers 18, 26, 27, and 32). 

(4) The size of the COS for each shape was selected 
to be the mean value of its CE's major and minor radii. 

Based on the above considerations, each test sig- 
nature was compared with the 35 reference signatures. 
The results of the experiment on all 35 test shapes 
(signatures) are shown in Table 3. As can be seen from 
this table, 33 of the 35 test shapes are classified 
correctly. Amongst this group, three are classified 
correctly but with a low degree of confidence; that is, 
in three cases there exists a next closest candidate 
whose dissimilarity distance value is less than twice 
that of the first candidate (see the notes associated with 
Table 3). On the other hand, there are two test shapes 
that are misclassified through the minimum distance 
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Table 2. Basic data for the shapes of the 35 manufactured objects (both reference and test shapes) 

Test 
shape Perimeter length (in link unit) CE eccentricity: E = B / A  Shape complexity: C Starting point 
No. Reference Test AP (~) Reference Test AE Reference Test AC Shift AS 

01 1214 l l l 0  -8.57 0.204 0.196 -0.008 56.46 59.99 3.53 0 (W=55) 
02 1021 863 - 15.48 0.645 0.656 0.011 50.80 51.21 0.41 4 (W=43) 
03 1344 1245 -7.37 0.102 0.101 -0.001 76.92 86.61 9.69 0(W=62)  
04 706 612 - 13.31 0.644 0.642 -0.002 21.04 22.98 1.94 1 (W= 30) 
05 839 831 -0.95 0.154 0.155 0.001 45.43 49.39 3.96 - 2  (W=41) 
06 356 356 0.0 0.838 0.819 -0.019 17.33 18.03 0.70 1 (W= 17) 
07 1530 1564 2.22 0.920 0.911 -0.009 1 8 5 . 8 9  190.15 4.26 13 (W= 76) 
08 1393 1387 -0.43 0.352 0.376 0.024 155 .51  155.67 0.16 - 3  (W=69) 
09 638 615 -3.60 0.428 0.405 -0.023 23.09 26.85 3.76 - 2 ( W = 3 0 )  
10 735 718 -2.31 0.477 0.468 -0.009 23.09 22.53 -0.56 - 1  (W=35) 
11 515 464 -9 .90 0.160 0.165 0.005 49.05 51.34 2.29 0(W=23)  
12 386 395 2.33 0.578 0.584 0.006 25.26 25.74 0.48 - 1 (W= 19) 
13 768 587 -23.57 0.394 0.386 -0.008 22.03 23.43 1.40 - 1 (W=29) 
14 810 694 16.7 0.328 0.327 - 0.001 25.01 28.02 3.01 3 (W= 34) 
15 433 431 -0.46 0.172 0.176 0.004 47.48 48.69 1.21 0 (W=21) 
16 476 474 -0.42 0.188 0.194 0.006 54.38 55.39 1.01 10(W=23) 
17 175 158 -9.71 0.648 0.659 -0.011 18.24 18.37 0.13 1 (W=7) 
18 182 183 0.55 0.976 0.995 0.019 15.36 15.70 0.34 4 (W=9) 
19 469 471 0.43 0.512 0.512 0.000 44.76 45.21 0.45 0 (W= 23) 
20 351 355 1.14 0.200 0.205 0.005 41.18 43.67 2.49 - 2 ( W = 1 7 )  
21 273 262 -4.03 0.423 0.418 -0.005 27.59 30.44 2.85 0 (W= 13) 
22 289 276 -4.50 0.793 0.792 -0.001 22.41 24.90 2.49 - 2  (W= 13) 
23 1165 1107 -4.98 0.775 0.776 0.001 15.43 16.16 0.73 5 (W= 55) 
24 493 507 2.84 0.289 0.297 0.008 38.83 40.97 2.14 - 9 (W= 25) 
25 532 517 -2.82 0.175 0.180 0.005 45.34 49.11 3.77 6 (W=25) 
26 217 195 - 10.14 0.780 0.772 -0.008 16.04 16.61 0.57 - 1 (W=9) 
27 291 300 3.09 0.986 0.998 0.012 14.78 15.01 0.23 - 1 (W= 14) 
28 345 318 - 7.83 0.985 0.981 -0.004 16.75 17.86 1.11 3 (W= 15) 
29 332 317 -4.52 0.590 0.607 0.017 26.48 27.75 1.27 2 (W= 15) 
30 331 312 - 5.74 0.590 0.607 0.017 26.49 28.03 1.54 0 (W= 15) 
31 846 735 -13.12 0.216 0.215 -0.001 34.67 38.66 3.99 0(W=36)  
32 312 321 2.88 0.984 0.993 0.009 14.02 14.09 0.07 - 3  (W= 16) 
33 2192 1961 - 10.54 0.060 0.076 0.016 866.60 591.71 -274.89 - 8  (W= 109) 
34 504 493 -2.18 0.918 0.904 -0.014 15.58 17.29 1.71 - 1 (W=24) 
35 695 676 -2.73 0.075 0.76 0.001 100.46 108.63 8.17 - 1  (W= 33) 
Variation -23.57 to 16.7% -0.023 to 0.024 -0.56 to 3.53 - 9  to 13 

Notes: AP(%) = 100(P t - Pr)/Pr; A E  = E t - E,; A C  = C, - C r ;  r, reference shape; t, test shape; W, the total size of the 1D 
window for the "shift-and-match" process; S* - (W/2)  < S < S* + (I4I/2); S*, the initial starting point (the intersection of the 
major axis of CE of a shape with its boundary); S, the shifted starting point; AS, starting point shift, AS = S* - S. 

rule: numbers  25 and  27. In these instances, the 
dissimilarity caused by quant iza t ion  error  predomi-  
nates over the geometric dissimilarity, which results in 
misclassification. This can be seen from the fact tha t  
the corresponding dissimilarity measure values in 
Table 2 are small  and  quite close to each other.  As a 
result, it can be said tha t  the match ing  scheme leads 
to a high degree of correct classification. 

In order  to reduce the search space, a two-level 
matching  process is proposed:  in the first level, a global 
measure is used to reduce the search space; in the 
second level, the AOS signature of a test shape is 
compared,  th rough  a dissimilarity measure, with the 
set of AOS reference signatures in the reduced search 
space. Two g l o b a l  scalar measures were tested, namely 
the eccentricity of the CE of each shape (which is 
defined as the rat io of minor  and  major  radii), and  the 
shape complexity (which is defined as the rat io  of the 
square of perimeter  length and  the area of a shape). In 
Table 2, the values of these global measures are given 

for all reference and  test shapes. F rom this table, the 
following can be concluded: 

(1) Due to the quant iza t ion  process, the average 
var ia t ion of the perimeter  length (in terms of link unit) 
for test shapes compared  to reference shapes lies be- 
tween - 2 3 . 5 7  and  16.70~. This shows the significant 
effect of shape or ienta t ion  on perimeter  length, a factor 
which affects the signature as well. 

(2) The var ia t ion of the eccentricity measure ranges 
from - 0 . 0 2 3  to 0.024. It is noted tha t  this value can, 
in general, range from 0 to 1. Thus  in a sense the 
var ia t ion is only from - 2 . 3  to 2.4~o. As a result, it can 
be concluded tha t  this measure is a very s t a b l e  meas- 
ure, and  thus ,  can be used for the initial phase of a 
classification process. In fact, this is a direct result of 
the proper ty  of CE as being shapeTspecific. Applicat ion 
of this measure leads to a significant reduct ion in the 
search space. Experimental  results on  the 35 test 
shapes show that  on  the average, only five reference 
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Table 3. Experimental results for the identification of the shapes of the 35 manufactured objects based on 
the proposed matching scheme 

1301 

Test shape Closest candidate Next closest candidate Correctly classified Mis- RNCBEM 
No. No. MDV* No. MDV LMDV MMDV classified No. 

01 01 0.876 16 12.644 , /  
02 02 0.194 29 93.875 
03 03 0.165 35 5.688 , /  
04 04 0.778 26 9.136 // 
05 05 0.006 25 0.698 , /  
06 06 0.134 26 4.063 
07 07 1.107 23 135.314 J 
08 08 0.749 19 76.013 
09 09 0.735 13 0.990 x/ 
10 10 0.076 09 1.269 
11 11 0.194 31 8.969 
12 12 0.351 30 8.024 
13 13 0.055 14 1.658 
14 14 0.054 13 2.435 
15 15 0.142 05 0.998 
16 16 0.177 25 7.485 
17 17 0.408 23 7.556 
18 18 0.165 32 1.5579 
19 19 0.147 17 51.032 
20 20 0.224 31 1.009 
21 21 0.400 24 15.725 
22 22 0.287 23 35.539 
23 23 0.380 26 7.580 
24 24 2.406 31 3.516 x/ 

20 4.275 
14 4.355 

25 05 0.603 25 0.702 
15 0.806 

26 26 0.263 32 15.744 x/ 
27 32 0.128 27 0.143 
28 28 0.100 34 5.835 ~/ 
29 29 0.395 12 12.262 
30 30 0.614 12 7.882 x/ 
31 31 0.022 20 1.088 , /  
32 32 0.049 27 0.110 
33 33 4.679 35 5.117 x/ 

05 7.627 
25 7.824 

34 34 0.126 28 7.000 J 
35 35 0.045 05 3.290 

4 

4 

Notes: COS = (A + B)/2; 1D search window size =(Perimeter length)/20;, MDV*, the smallest mean- 
distance value; MDV, the range of mean-distance values of the closest candidates, MVD*< MDV< 
2 (MVD*); LMDV, large mean distance value, LMDV > 2 (MDV*); MMDV, marginal mean distance value, 
MVD*< MMDV < 2(MDV*); RNCBCM, reduced number of candidates based on eccentricity measure, 
E t -  0.05 < E <  Et +0.05. 

shapes (out of 35) must be checked through matching 
of AOS signatures in the second phase of the matching 
process (see the last column of Table 3). The average 
size of the search space is based on the following 
criterion: 

Et - 0.05 < E < Et + 0.05 (6) 

where E, is the eccentricity of the CE of the test shape, 
and E the eccentricity of the CEs of reference shapes 
that are within the range given in expression (6), that 
is, those reference signatures considered in the second 
phase of the matching process. 

(3) The variation for the complexity measure ranges 
from - 0 . 5 6  to 3.53 for all shapes except shape number 
33 which demonstrates to a much higher change: from 
866.60 to 591.71. These values indicate a less stable 

property of this measure. This is expected, since the 
quantization and edge-detection processes lead, in 
some cases, to significant changes in the values of 
perimeter length and area. This is clearly seen for shape 
number 33 (Table 2). 

Thus, based on the results above, it is concluded that 
the eccentricity of the CE of a shape is a more stable 
global measure, and its application in the first level of 
a matching scheme effectively reduces the size of the 
search space. 

6. SUMMARY 

In this paper, we addressed the problem of designing 
a new transformation-invariant 2D shape-encoding 
scheme, by which 2D standard views were transformed 
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into 1D signatures suitable for signal matching. In this 
context, the following aspects of the proposed technique 
were discussed: the 3D based AOS encoding scheme, 
the characteristic ellipse of a 2D shape and its shape- 
specific property, the properties of the AOS signature, 
a matching scheme for AOS signatures based on a 
dissimilarity measure, and the eccentricity of the CE 
of a shape as a global measure for reduction of search 
space. In order to test the proposed encoding and 
matching techniques, 35 manufactured objects were 
considered. The results obtained show that the AOS 
signature encoding scheme and the two-level matching 
technique are quite effective and reliable in the process 
of recognition of manufactured objects. 
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A P P E N D I X .  P R O O F  O F  T H E  S H A P E - S P E C I F I C  P R O P E R T Y  

O F  T H E  C H A R A C T E R I S T I C  E L L I P S E  

In order to show that the CE is shape-specific under the 
planar transformations (i.e. translation, rotation, and scale 
change), it must be proven that all five basic parameters of 
the CE (i.e. the center coordinates (Xo, Yo), the orientation 
(O), and the major and minor radii (A, B)) are shape-specific. 
These parameters are expressed as follows: (39~ 

X o = A o + x~ 

Yo = Co + Ys 

® = 12 arctan [ a ~ _  c ]  

where 

and 

a = d + a ~  

b = - 2 ( a l q  +bid,) 

c = d + b ,  ~ 
f = -(aldt  - blq)2 

1 r Ax ° ( t  2 _ t 2 

Ao= T~=l 2Ato"v "o-" 

1 r 

T K t] a, = L A 4cos2"'o- cos2"t" 
= AtvL T T 

(A2) 

T K 

At~L T T J 

c, X  Y'[cos2 t'-cos 
z~ v=, At,  L T T 

T 
dl=~-~2p~=lAY°rsin2mp--sin2ntT-z ] (A3) 

= At, L T 

In the above equations, Axp and Ay v represent the lengths of 
the projections of the linear link p on the x and y axes, 
respectively, At v = t v - t v_ , is the required time to trace the 
link p at a constant speed, t o and tp_, are the required time 
to trace the contour from the starting point to the links p and 
p -  1, respectively, T the total time required to trace the 
whole contour at a constant speed, and x, and Ys are the 
coordinates of the starting point on the contour. 

Translation 

Under planar translation (Ax and Ay), it must be shown 
that 0 ,  A, and B remain unchanged, while the center co- 
ordinates of the CE (Xo, Yo) are translated, with the amount 
of translation equal to Ax and Ay respectively. 

Under translations Ax and Ay, the terms T, Ax o, Ay v, At o, 
t v and t v_ , do not change. As a result, the variables Ao, Co, a, 
b, c, and f remain unchanged. Thus, the three parameters 0 ,  
A, and B do not change either. For the other two parameters, 
X o and Yo, the proof proceeds as follows: the translated X o 
coordinate (X~) is expressed as 

X~ = A~ + x',. (A4) 

But, as was indicated earlier, A~ = Ao; furthermore, the x 
coordinate of the starting point is translated, x's = x, + Ax. 
Thus 

X~ = A o + x, + Ax = X o + Ax. (A5) 

A similar result can be obtained for the translated Y0 
coordinate (Yb) 

Y'o=Bo+y~+Ay = Yo + Ay. 

Rotation 

Under planar rotation 6, it must be shown that the 
parameters A and B remain unchanged, while the other three 
parameters ®, Xo, and Yo change into the following: 

O ' = O - 6  

X~ = X0cos3 + Yo sin6 

Yb = - X o sin 3 + Yo cos & (A6) 

For the CE center coordinates, the proof is as follows: let 

Xb = A b + x', (A7) 

where 

x', = x, cos 6 + y, sin 6. (A8) 

For A o, the following expression can be derived based on the 
fact that the only term in A o (equation (A3)) which changes 
under rotation, is Ax.: 

1 " AX'o(t2_t~_, ) 
A'° =7"o~ , 2 A t  ° " 

1 r l 
= 71. ,,~, ~(Ax,, cos 6 + Ay o sin 6)(t2 v - ' ~ - t  ) 

= 2At v 

=I 1 ,: ,,]cos, 
L "  p= 1 2 A t  v v 

+ [ 1 T ~ = , ~ t v ( t ' - t : - l ) ] s i n a  

= A o cos 6 + Co sin a. (A9) 
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Using  equa t ions  (A8) and  (A9), equa t ion  (A7) would  be 

X~ = (Ao cos ,5 + Co sin 6) + x, cos ,5 + y, s in ,5 

= (Ao + x,) cos  ,5 + (Co + y,) sin '5 

= Xocos '5  + Yosin6. (A10) 

Fol lowing the above  mathemat ica l  reasoning,  a similar result 
can be obta ined  for Y~, 

Y~) = - Xo sin 6 + Yo cos,5. 

For  the o ther  three pa ramete r s  (i.e. O,  A, and  B), a set of  
express ions  for the coefficients a, b, c, and  f unde r  ro ta t ion  
(a',b',c', and  f ' )  m u s t  first be derived. In order  to do so, as 
wel l  a set of  express ions  for the variables a,, b~,c~, and  d~ 
under  ro ta t ion  (a' v b'  v c' v and  d'  1 ) m u s t  be obtained:  

- 2 n  p=l 

T x 1 . . . . . . .  [- 2m~ 2 m p - l ' ]  
=g~_2 ~, z - - ~ a x p c o s o + A y p s m o ) l c o s - - - c o s  - I  

2rt ~,ffilAtp L T T / 

L2n ~=~ AtpL T T 

+ "y,l-cos cos 2=';:-']]:in,5 
Atp L T 

= a~ cos g + cl sin '5. (A11) 

Similarly 
b'l = b ~ cos ,5 + d ~ sin ,5 

c'~ = - a~ sin ,5 + c, cos 

d', = - b~ sin ,5 + d~ cos ~. (A 12) 

Based on equat ions  (A11) and  (A12), the following expressions 
can be derived: 

a '  = a~ sin z ,5 + c~ cos  ~ ,5 - 2a~ c~ sin ~ cos,5 + b~ sin z ,5 

+ d~ cos ~ ,5 - 2b~ d~ sin ,5 cos,5 

b' = - 2 ( - a ~  sin ,5 cos ,5 - a~c~ sin z ,5 + a~ c, cos 2 ,5 

+ c ~ sin ,s cos ,5 - b ~ sin ,s cos ,5 - b t d ~ sin ~ ,5 

+ b ~ dt cos  ~ ,~ + d 12 sin,5 cos fi) 

c' = a~ cos ~ ~ + c~ sin 2 ,5 + 2a~ c~ sin ,5 cos 

+ b 12 cos 2 ,5 + d~ sin ~ ,5 + 2b~ d~ sin ,5 cos ,5 

f ' =  -(a~d~ - b i G )  2. (AI3) 

Using  equa t ions  (A13), it can  be shown tha t  

(C' - -  a ' )  2 + b '2 = (c - a )  2 + b e 

b '~ - 4a'c' = b ~ - 4ac 

c' + a ' = c  + a  

f'=fo 
Thus 

A ' Z = A  2 

B 'z = B 2 

which shows tha t  under  rotat ion,  the C E  radii A'  and  B' do 
not  change,  as was expected to be proved. 

For  the or ientat ion parameter ,  to simplify the process,  the 
p roof  can be s tar ted from the result and  proceeds backward;  
that  is, using the following relation: 

tan 2 0  - tan 2'5 
tan 2 0 '  = tan ( 2 0  -- 2~5) (AI4) 

1 + tan 2 0  tan 26 

and  knowing  that  

b 
tan 2 0  = - - - -  (A 15) 

f l - - C  

and 

b' 
tan 2 0 '  = - -  (A 16) 

a' - c' 

the following mus t  be proved: 

b' cos26 +(a ' -c ' ) s in2 ,5  b 
= - -  (A17) 

J -- (a' -- c') cos 2'5 - b'  sin 2'5 a - c" 

To  prove equa t ion  (AI7), the following relat ions are first 
obta ined  us ing  equa t ion  (A 13): 

a ' - c ' =  - a2 t  cos  2,5 + c~ cos 2,5 - 2alcl sin 2,5 

- b~ cos 2'5 - d~ cos  2J - 2bl dl sin 2~5 

b' = a~ sin 2'5 - c~ sin 2'5 - 2alc 1 cos 2'5 

+ b~ sin 26 - d~ sin 2'5 - 2bid 1 cos 2'5. (A18) 

Based on equa t ions  (A18), then,  it can be proved tha t  

b'  cos 2t~ + (a' - c') sin 2'5 = - 2 ( a , c  I + bid  1 ) 

( a ' - c ' ) c o s 2 t ~ - b '  s in26=(c2 + d~ ) - (a~  + b~). (Al9)  

Thus  
- 2 ( a l c l  + bid1) 

J (¢~ 2 2 2" (A20) 
+ d ~ ) - ( a ~  + b t )  

Using  equa t ions  (A2), (A20) is simplified to 

which proves  tha t  

Scale  change 

b 
j = - -  (A21) 

a - - c  

0 '  = 0 - 6 .  

For  scale change,  the following mus t  be proved: 

X'o = k X  o 

g'o = k  go 

0 ' = 0  

A' = k A  

B' = k a .  (A22) 

For  center  coordinates ,  the p roof  proceeds as follows: let 

x~=,%+x'~. 
But A~ is simplified to 

1 
A ~ ) = ~  p= l  ~ ( t p - - t , _ , )  

- ! ~ k A X p ( k 2 t ~ - k 2 t 2 - , )  
kTp=l k2Atp  

= k Ao (A23) 

and  x', is equal  to 

Thus  

Similarly 

x'~=kx,. 

X~ = k X o. (A24) 

Y~ = k Yo. (A25) 

For  the other  three pa ramete r s  (0 ,  A, and  B), first, a set of  
express ions  for a'., b',, c' v and  d'  I mus t  be derived, a '  I can be 
writ ten as 

a'l T '  ~ A x e , [ c o s  ~ , ~ -  27tt~,_ ~-1 
2rd p ffi z Ate, - -  

= - -  - -  , c o s - - ~  [ 

_" kAx.[cos2.k,, cos2.k,. , ] 
= ~ '  p~l kAtp L k T  ~ k T - - I  

= k a v (A26) 
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Similarly and 
b'l = k b l  

c'~ = k c ~  

d'~ = k dv (A27) 

Based on equations (A26) and (A27), the following can be 
obtained: 

a' = kZa 

b'  = k2b 

C' = k2c 

f '  - k ' f .  (A28) 

Thus 
1 [- b' ] 1 [ k 2 b  7 

19'= arctan / / = - a r c t a n / - - /  
2 L a ' - c ' J  2 L k 2 a - k E c J  

= 12arctan[a b c ]  = ® (A29) 

b '2 - 4a'c'  [(c' + a') + x/((c' - a') 2 + b'2)] 

[- 2 f  k4 q - 4 
=/~b2 + a)+  x/(k (c - a) 2 + k'*b2)] 

= k 2 A 2. IA30) 

Similarly 

B '2 = k 2 B  2. (A31) 

Relations (A24), (A25), (A29), (A30), and (A31) prove what is 
expected under scale change transformation. 

Based on the totality of the above proof, it can be 
concluded that the CE is shape-specific. 
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