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The designer of a relational data base must use dependency structures of data to
model semantic situations that arise in data. He must further ensure that these
dependencies are not violated during operations on the data base. In this paper
we study a subclass of dependencies, namely, root-dependencies and introdace a
common graphical picture (S-diagram) for all of them. This effort offers a
possible application of graph theory to the study of relational data bases. The S-
diagram offers a pictorial insight to all the root-dependencies. We also discuss,
briefly, other possible uses of our work such as automatic constraint checking
and recovery of data in a damaged data base.
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relational model.

1. INTRODUCTION

Before the advent of data base management systems, the role of data in a
computer system was to serve as an input to the various programs. If data
was to have any structure, it was defined in the program. This meant that
each program had its own data to work with. However, it became
increasingly clear that several programs used the same data and that data
played a vital role in the functioning of an enterprise. Efficient handling and
storage of data became a desirable goal. This very logically led to data base
management systems.

In a data base management system, the data are structured and stored
in the computer. The programmers do not impose their own structure on the
data. They are constrained to use the data in the computer. Data are a
resource of the enterprise which is available to several users and must be
managed properly. As data became more important, considerable effort was
devoted to studying the properties of data. An important outcome of this
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study is the various dependency structures that may be found in data and
may be usefully exploited to improve the performance of the data base.

Dependency structures have been studied using set theory,
propositional logic,’? and Boolean algebra.” In this paper we study a
subclass of dependencies, namely, root-dependencies using a theory of well-
connected relations.® As a result a very neat graphical picture of root-
dependencies emerges in the form of an S-diagram. It should be noted that
the S-diagram is a hypergraph. Zaniolo”®’ has also applied hypergraphs to
the study of relational data bases. However, his study is not directed towards
dependency structures.

In Section 2 we familiarize the reader with root-dependencies and the
necessary portions of the theory of well-connected relations (WCR’s). Before
interpreting root-dependencies graphically (Sections 4 and 5), we introduce a
graphical representation (S-diagram) of an instance of a relation (Section 3).
Finally, in Section4, we briefly discuss possible practical uses of our
approach to the study of root-dependencies. In the Appendix, we present
three properties of the natural joins which are used throughout this paper.

1

2. BACKGROUND

In this section, we first introduce the reader to dependencies in general
and root-dependencies in particular. This paper is concerned with finding a
graphical interpretation for all root-dependencies. In section 2.1, we take an
example given in Ref. 26 and extend it to show the semantic differences
btween various root-dependencies in the literature. We also include formal
definitions for every root-dependency. In Section 2.2, we present some
definitions and results (without proof) from the theory of WCR’s.”) We also
indicate how the formalism of WCR’s can be applied to binary as well as n-
ary relations. In this paper we use this formalism to obtain the graphical
interpretation of all root dependencies.

2.1. Root-Dependencies

Dependencies are a systematic way of dealing with semantically useful
situations that arise in data. People think in terms of semantic connections
among data rather than in terms of relational algebra which is highly
mathematical. For example, in a company each employee may have a
distinct employee number. The data base designer is faced with the rank of
modeling this semantic connection between an employee and his employee
number. He must further ensure that no two employees ever get the same
employee number during operations on the data base. For this situation, we
have the functional dependency (FD), see for example Refs. 1, 6, and 8. The
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data base designer uses the FD between employee number and employee in
his design process and also specifies it as an integrity constraint which must
not be violated during operations on the data base.

In Ref. 26, the authors point out that FD is not adequate to model some
semantic situations that arise in data. They give the following example.
Suppose an employee works in several departments, then EMPLOYEE » DEPT
(EMPLOYEE does not functionally determine DEPT), and suppose that each
department has only one contract type, DEPT — CTYPE. Clearly, there is
knowledge about employees and contract types on which they are working.
But it cannot be expressed as an FD. Since Ref. 26 was published, other
dependencies have been identified in the literature which capture or model
the knowledge present in the above example. We can look at it in two
different ways. If we wish to look at each employee and his relation to DEPT
and CTYPE then it can be expressed by a mutual dependency (MUD),!?-29
or a contextual dependency (CD),* i.e., EMPLOYEE « DEPT | CTYPE. The
data base designer can now specify this MUD as an integrity constraint.
However, if we wish to look at each department and its relation to
EMPLOYEE and CTYPE then it can be expressed by a multivalued dependency
(MVD),""*) ie., DEPT— ~» EMPLOYEE | CTYPE. We extend the example of
Ref. 26 as follows. Suppose each contract type is divided into several
portfolios and each employee of the department has access to all the
portfolios in that department. We can model the knowledge about
departments, employees, contract types, and portfolios by a hierarchical
dependency (HD),"® ie., DEPT: EMPLOYEE | CTYPE | PFOLIO. Here we are
looking at each department and its relation to EMPLOYEE, CTYPE, and
PFOLIO,

So far we have seen FD, MVD, MUD, CD, and HD. All of them
[MUD and CD are equivalent’"] are semantically useful in modeling
situations that arise in data. However, there are many other dependencies in
the literature for which it is difficult to identify semantic situations in data.
We do not deal with them in this paper, but mention them in passing—join
dependency,®® algebraic dependency,®® transitive dependency,®® subset
dependency,*® template dependency,* general dependency,!® generalized
mutual  dependency,”"®  boolean dependency,'" and implication
dependency.'” The dependencies FD, MVD, MUD, CD, and HD are all
special cases of JD. In all of these, as is demonstrated by the earlier
discussion and underlining of the word “each,” we are looking at every value
of an attribute or attribute set and its relation to values of other attributes.
We choose to call the former (i.e., left-hand side of these dependencies) the
root-attribute. Summing up, we can easily identify semantic situations in data
which can be modeled by a dependency with a root-attribute. And it is
difficult to identify a semantic situation in data which could usefully be
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modeled by a JD without a root-attribute. Hence, it is useful to introduce
other dependencies which have a root-attribute and model semantic situations
in data which cannot be modeled by the existing dependencies with a root-
attribute. In Ref. 4 we introduce the mixed dependency (MD) and the co-
dependency (COD) and show their usefulness.

We again extend the example of Ref. 26 as follows. Suppose EMPLOYEE,
DEPT, and CTYPE have the same constraints as before, but in addition, an
employee works on several projects and each project is assigned to one
department. Clearly there is knowledge about PROJ, DEPT, CTYPE, and
EMPLOYEE which cannot be modeled by FD, MVD, MUD, or HD. This
knowledge can be modeled for each employee by a COD, i.e., EMPLOYEE =
PROJ | DEPT | CTYPE. The MD is a special case of COD. If we modify this
example and say that an employee can work only on one contract type at a
time then we can model this knowledge for each employee by an MD, ie,
EMPLOYEE =~ PROIJ | DEPT j CTYPE.

It can now be pointed out that an FD is a dependency with two sets of
attributes (one root-attribute set on the left-hand side and another attribute
set on the right-hand side which we choose to call a branch-attribute set). An
MVD has three attribute sets—one root and two branch. An HD is an
extension of MVD to ‘»’ attribute sets—one root and ‘n— 1’ branch. An
MUD has three attribute sets— one root and two branch. A COD is an
extension of MUD to ‘n’ attribute sets—one root and ‘n — 1’ branch. An MD
is also defined on ‘n’ attribute sets—one root and ‘n — 1’ branch. However, it
exhibits features of both MVD and MUD. FD, MVD, MUD, HD, MD, and
COD form a class of dependencies which we choose to call root-dependencies.

We now give definitions for each root-dependency for the sake of
completeness of this section. From these definitions, it should be noted that:

1. MVD is based on a linear 2-join;

2. MVD is based on a cyclic 3-join;

3. HD is based on a linear n-join;

4. MD is based on a combination of a linear n-join and ‘p’ cyclic 3-
joins where p < n;

5. COD is based on a combination of a linear n-join and ‘n’ cyclic 3-
joins,

For futher information on linear and cyclic joins the reader is referred
to Ref. 7.

A functional dependency, X — Y|, exists in a relation, R[X, Y,], if in
every instance of the relation some function f: X — Y, exists.

In a relation, R[X, ¥,,Y,], the MVD, X » — Y, | Y, holds if and only
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if R[X,Y,,Y,] is the natural join of its projections, R|.X, Y,] and R[X, Y,].
Here X, Y, and Y, are disjoint sets of attributes.

In a relation, R{X, Y, Y,], the MUD, X « ¥, | Y,, holds if and only if
R[X,Y,,Y,] is the natural join of its three projections—R[X, ¥,], R|X, Y,],
and R[Y,Y,]. In a relation, R[X,Y,, Y,], the contextual dependency,
X~ Y, |Y, (X “determines” Y, in the context of Y,), holds if and only if
when (x; ¥y 721)s (X;Y12022), and (x; ¥, ,,) are tuples in R|X, Y, Y;] then
(x; ¥4, ¥22) 15 also a tuple, and this is true for all x; and all instances of
R[X,Y,,Y,]|. Hence, X, Y,, and Y, are mutually disjoint sets of attributes.
Both of these dependencies are equivalent.

In a relation, R{X, Y,,Y,,.., ¥}, the HD, X: Y| Y,]|-.- 1Y, holds if
RIX, Y\, Y, Y,]=R[X,Y,] *R[X, Y,] % --- * R|X, Y,] where * is the
natural join. Here X, Y|, Y,,..., Y, are mutually disjoint sets of attributes and
R|X,Y;] are projections of R|X, Y, Y,,..., ¥, ].

The COD

X=Y,1%,( Y,
holds in a relation R[X, Y|, Y,,..., ¥, ] if
R=R[X,Y |*R[X,Y,|* - xR[X, Y, [« R[Y,,Y,]
*R|Y,, Y] % - *R|Y,_,,Y,]

Here X, Y,,Y,,.., Y, are mutually disjoint sets of attributes and each
relation on the right-hand side is a projection of R[X, ¥, ¥;,..., ¥, ].
The MD
XZYlszlefY4le!-j‘fYn
holds in a relation R[X, Y,, Y,,.., Y

n

] if
R=R|X,Y,]* R[X,Y,| % - % R|X, ¥,]  R[Y,, Y,
*R[Yy, Yy o« R[Y,_;,Y,]

n—i**np

Here X, ¥, Y,,..., Y, are mutually disjoint sets of attributes and each
relation on the right-hand side is a projection of R|X, Y, ¥s,..., ¥, ].

Finally, we mention in passing that FD’s, MVD’s, and MUD’s have
been defined for the case where the sets of attributes are not mutually
disjoint. Also in Ref. 17, MVD’s have been defined for relations with null
values and in Ref. 5 they have been defined for joins other than natural, i.e.,
NMVD’s and operator multivalued dependencies (OMVD’s). We do not
address the problem of trying to find graphical interpretations for these cases
in this paper.
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2.2 Well-Connected Relations

A theory of WCR’s has been presented in Ref. 2. In this paper we
present a graphical interpretation of all root-dependencies based on WCR’s.
For this purpose, it is sufficient for the reader to know only a few definitions
and results from Ref. 2. These are presented in this section. WCR’s are
essentially a very restricted binary relation. In the context of a relational
data base, they are a generalization of quotient relations.'*

Definition 2.1.2. A WCR is a binary relation. W on two sets 4 and
B such that

(Va)(a € A)(Yb)(b € B)aWb)

The sets 4 and B are called the first and the second constituents of the
WCR.

An elementary WCR (EWCR) is a WCR in which the first constituent
has a single element. The second constituent is then called the “image set” of
the first constituent.

A trivial WCR (TWCR) is a WCR in which both the constituents have
a single ¢lement.

Note 2.1.1

1. In this paper we do not consider partial binary relations. Also the
mapping from set 4 to set B is always taken to be an onto mapping.

2. A binary relation is R[4, B] while a WCR is W[A4; B]. We also use
SklAB] and S[B]| (or S;[{4]) which mean the following:

Sxl4AB] = {(a,b): (a€ A), (b € B), (aRb)}
Sk
Sz[B]| = {(b): (b € B)and (a)(a € A)(aRb)}

I

Definition 2.1.3. A relation R|A4, B] can be expressed as
n
R[A,B] = Z Ri[Ai’Bi]
i=1

sz[Al’BJURz[Asz] (AR URn[An’Bn]
= n(R) = partition of R
where

R;[4;, B] ij[Astj] =9
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for

n n
i#j,1<i,j<n,and 4= {J) 4,and B={J B,

i=1 i=1

Definition 2.1.4. A vpartition of a binary relation R[4,B] is a
canonical partition if

-

P[4

w,

Ri4,B]= i3 By

{
where

1. W,d4,;B;]is a WCR for 1 <ign.
2. A, is a set with a single element for 1 i< n.
3. A;#Ad;fori#jand 1 <i,j<n

3. GRAPHICAL REPRESENTATION OF A RELATION

Before we can interpret root-dependencies graphically, we need a
graphical representation of a relation. In this section we present a few
definitions (3.1, 3.2, and 3.3) which lead to the S-diagram of an instance of a
relation (Definition 3.4). We identify loops in the S-diagram which, in
general, correspond to the tuples of the particular instance of the relation.
This paper is concerned with a study of the properties of S-diagrams and
their loops. In this section, we define four distinct properties of an S$-
diagram, namely

1. L-T condition;

2. C-condition;

3. total C-condition;

4. vpartial C-condition.

Since an S-diagram is a graphical representation of an instance of a
relation, the above four properties are of necessity on the extension of a
relation. Also properties (2), (3), and (4} involve the concept of a WCR. We

show in Section 4 that the various root-dependencies can be interpreted in
terms of these properties of the S-diagram and its loops.

Definition 3.7. 1In a relation, R[X, Y, Y;,..., ¥, ], we call S;[X]| the
root-segment and Si[Y;], Sg[Y,],.. the branch-segments (see Note 3.1),
Throughout this paper, we assume X, Y|, ¥,,..., ¥, to be mutually disjoint
sets of attributes.

828/10/3-2
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Definition 3.2. Any binary projection of R{X,Y,,Y,,..,Y,] on the
root-segment and one of the branch-segments is called a root-projection. For
example, R[X, Y,], R[X, Y,],... are root-projections.

Definition 3.3. Any binary projection of R[X,Y,,Y,, Y;,.,Y,] on
any two adjacent branch-segments is called a branch-projection. For
example, R|Y,, Y,], R|Y,, Y,],... are branch-projections (see Note 3.1).

Note 3.1. The above definitions raise two questions. Firstly, are we
implying an ordering among the attributes of a relation while in the
relationa]l model the ordering of attributes is immaterial? Secondly, how do
we decide which attribute is the root-segment? In this section, we are going
to introduce a graphical representation for any instance of a relation. This
representation is easier to study if we draw it with the attributes in a certain
order. For example, R{X,Y,,Y,,Y;] is the same relation as
R[X,Y,, Y, ¥,]; however, the graphical representation of the former may be
more meaningful than that of the latter. In the rest of this paper we will
assume that for the relation under consideration, the optimum ordering has
been obtained. We do not address the problem of how to obtain this ordering
in this paper. It was pointed out in an earlier section of this paper that the
root-segment is that attribute or attribute set of a relation for which there is a
semantic connection between each of its values and values of the other
attribute sets. Hence, the choice of the root-segment is solely dependent on
the semantic connection we wish to model or examine.

Definition 3.4. Any instance of an n-ary relation R[X, Y}, ¥,,... ¥, ],
can be drawn graphically as follows:

1. Take the root-projections and the branch-projections of the relation.

2. Represent each projection as a mapping between the corresponding
segments.

3. Draw all these mappings together in a single diagram.

We call this diagram an S-diagram of the relation. The order of an S-
diagram is the number of segments in it. In Fig. 1, we show an example of an
S-diagram of order 4 and the corresponding instance of the relation.

Definition 3.5. A loop is any closed path in an S-diagram of
R[X,Y,, Y,,., Y,] which starts at an element in the root-segment and passes
once through each of the branch-segments, in the order specified, and then
returns to the same element in the root-segment.

A loop in an S-diagram of order 2 is a simple edge while a loop in an S-
diagram of order 1 is a simple point.



A Graphical Interpretation of Dependency Structures in Relational Data Bases 195

RIX, Y5 You¥g) = X vy Yo Vg
3 Y2 Y1 Va2

Xy Y2 Yo Y3

s.

SR{YZ}

Order = 4

Fig. 1. S-diagram {order 4).

For any instance of RIX, Y, Y,., Y, ), it is trivially true thar every
tuple is a loop in the S-diagram. In S-diagrams of order less than 3 the
converse of this is also true, ie., every loop is a tuple. However, in S-
diagrams of order 3 or more, every loop need not be g tuple. For example, in
Fig 1, {x;y,,¥v,) is a loop, but there is no corresponding tuple in
RX, Y, Y,

Definition 3.6. The extension of a relation is said to satisfy the
loop~tuple condition {L-T condition) if every loop in its S-diagrams is also a
tuple in the corresponding instances.
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We can redraw an S-diagram of a relation as foilows;

1. Draw the canonical partition of each root-projection. Now each
element in the root-segment will have an image set in each of the branch-
segments.

2. The image sets, in adjacent branch-segments, of a particular
element in the root segment are themselves connected by a binary subrelation
called a branch relation. Hence, a branch-projection is made up of a set of
branch-relations.

3.  An S-diagram for order 3 is shown in Fig. 2. In general, the image
sets in a branch-segment need not be disjoint. The diagrams show them to be
disjoint only for the sake of clarity.

Definition 3.7. 1In the extension of a relation, R[X,Y,,Y;,..Y,], a
branch-projection satisfies the completeness condition (C-condition) if every
branch-relation in it is always a WCR.

Definition 3.8. The extension of a relation, R[X,Y,,Y,,.., Y,
satisfies the total C-condition if every branch-relation in every branch-

5 [X]

Canonical Partition of
one root~projection

Image Set

Branch~ Branch~
Projection Relation

Fig, 2. Components of S-diagram.
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projection is always a WCR. It satisfies the partial C-condition if every
branch-relation in at least one of the branch-projections is always a WCR.

4. GRAPHICAL INTERPRETATION OF DEPENDENCIES

In Section 3, we have defined four properties of an S-diagram. In
general, the S-diagrams of a relation need not satisfy these properties.
However, if some of the root-dependencies hold in the relation then some of
these properties are always satisfied. Again if some of these properties are
always satisfied then some of the root-dependencies hold in the relation.
These facts have been presented in this section as a series of propositions,
leading to Theorem 4.1 which sums up the results. We have left out some
proofs which can easily be constructed on lines, similar to other proofs in
this section.

Proposition 4.7. In a relation R[X,Y,|, if the F- DX — ¥, holds
then so does the L-T condition.

Proof. Trivially true.

Proposition 4.2. In a relation R[X,Y,,Y,] the MUD X «~ Y,|Y,
holds if and only if the L.-T condition is satisfied.

Proof. If

Assume X «~ Y, | Y, in R[X, Y|, Y,]. It is trivially true that every tuple
in instances of R is a loop in the S-diagrams. So we assume that every loop
is not a tuple. Let (x, y,, y,) be a loop in the S-diagram and not a tuple in
an instance of R. By definition of an MUD

R{X,Y,, Y,]=R[X, Y,] * R[X, Y,] = R[Y,, Y,

Let
R\X,Y,,Y,]=R[X, Y] *R|X, Y,]
RIX,Y,,Y,|=R, xR[Y,, Y,]
Now
(1) ER[X, Y] ey
(2) ER[X, Y] (2)
and
(Vi) ER[Y,, Y] )

from the definition of S-diagram.
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Also in the join’
Ry = R[Y,, Y,)

no new tuples are added to R,. Some tuples in R, whose projection over
|Y,, Y,] is not present in R|Y;, Y,] are removed from R,.
Again, from Egs. (1) and (2), it follows

(v, 7)) ERIX, Y} *R[X,Y,| =R,
But
(xylyz)eR[Xa Yl’ Yz]

(11 y)ER[Y,, Y]

This is a contradiction to (3).

Only if
Let every loop in the S-diagram be a tuple. Assume

XYY,

L€.,
RIX, Y., Y,|#R[X, Y] *R|X, Y,] « R[Y,, Y,] Q)
Case 1. Let
(v, ¥,)ER[X,Y,, Y,| € r.hs. in Eq. (4)
But from Theorem A.2 in the Appendix
(x¥, ¥,) € r.hs. in Eq. (4)—contradiction
Case 2. Let
(xv,7;) € R[X,Y,,Y,] Erhs.inEq. (4)
Therefore

(xp,) € R[X, Y| = A path exists from x to y, in S-diagram
(xy,) € R|X, Y,] = A path exists from x to y, in S-diagram

and

(y1¥,) € R|Y,, Y,] = 4 path exists from y, to y, in S-diagram
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Therefore
(xy,y,) is a loop in the S-diagram
therefore
{xy, y,) is a tuple-contradiction
therefore

R[X,Y,,Y,| =R[X, Y,] = R[X, ¥,] * R[Y,, ]
Hence, the proposition is true.
Proposition 4.3. 1In a relation RIX, Y, .Yzﬁ the MVD
XYY,
holds if and only if the L-T condition and the C-condition are satisfied.

Proof. The proof follows along the same lines as Proposition 4.2 and
uses the fact that MVD is a special case of MUD.

Proposition 4.4. In a relation R[X,Y,,Y,,...Y,}, if the LT
condition holds then so does the COD:

X=Y | Y] Y,

Proof. Let all loops in any S-diagrambe tuples.
Assume, COD does not hold.
That is

RIX, Y, Yoo V] # RIX, Y, ] x R[X, ¥, ] % .- * R[X, ¥, ]
* R[Y,, Y] # R[Y,, Y] x - xR[Y,_,, ¥, ] (5}
Case 7. Let

1y, M ERX Y, Y, Y]
& r.hs. in (5)

But by Theorem A.2 in the Appendix

Xy, -+ y,) € r.hus. in {§)}—contradiction
Case 2. Let

Gy Y, V) ERIX, Y, Y, Y, ] Erhs.in (5)
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therefore

() ER [X, Y,] = A path exists from x to y, in S-diagram
(y1y,) ER|Y,, Y,]| = A path exists from y, to y, in S-diagram

(xy,) ER[X, Y,| = A path exists from y,toxinS-diagram
therefore

(xy,y, -+ y,)is aloop in the S-diagram

(xy, y, -+ v,) is a tuple—contradiction
therefore

the COD,
X=Y,|Y,| | Y,holds

Proposition 4.5. 1f in a relation, R[X,Y,,Y,,.,Y,], the L-T
condition and the total C-condition hold then so does the HD:

XY | Y-,

Proof. The proof follows along the same lines as Proposition 4.4
when we consider the fact that in (§5) the joins with the branch-projections
remove no tuples if the total C-condition holds.

Proposition 4.6. If in a relation, R[X,Y,,Y;,.,Y,], the L-T
condition and a partial C-condition hold then so does the appropriate MD:

X:YIIY2|"'IYn

Proof. Follows along the same lines as Proposition 4.4 when we
consider the fact that in (5) the joins with those branch-projections in which
the C-condition is satisfied remove no tuples.

Proposition 4.4. If in a relation, R|X, Y, Y,,..., ¥, ], the HD
XY, | Y, ||,
holds then the L-T condition need not be satisfied.

Proof. We give an example of a relation (Fig.3) in which the HD
holds, but the L-T condition does not.
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Sy IX]
N
N\

5

R[X,Y,,Y

2 Y3l =%y vy vy vy

X2 Y11 Va2 Y31

X = YlleiYS ¥#p» L-T condition.

(X; ¥y Y95 Y3y) is a loop but not a tuple.

Fig. 3. Violation of L-T condition.

Proposition 4.8. If in a relation, R[X, Y, Y,,.,Y,], an MD or
COD hold then the L-T condition need not be satisfied.

Proof. Obvious from Proposition 4.7 and the fact that HD is a special
case of MD or COD.

Theorem 4.7. 1In a relation R the following statements are true. The
left-hand side of each statement is a dependency in the intension of R while
the right-hand side is a condition on the extension of R. The number in the
middle is the order of the S-diagrams under consideration:
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FD < (L-T condition)

MVD < (L-T condition) and (C-condition)
MUD <* (L-T condition)

HD <" (L-T condition) and (Total C-condition)
MD <" (L-T condition) and (Partial C-condition)
COD <" (L-T condition)

Proof. Follows from earlier propositions.

5. MODIFIED LOOPS

In Section 4, we presented a graphical interpretation of root-
dependencies. The results of Section 4 are summed up by Theorem 4.1. In
this theorem the implication statements for FD, HD, MD, and COD are
unidirectional while for MVD and MUD they are bidirectional. Stronger,
bidirectional implication statements can be proved in the case of HD, MD,
and COD if we consider a subset of all the loops in the S-diagrams of a
relation. We call this subset of loops—modified loops—and present these
stronger results in this section. Again we have left out some proofs which
can be constructed on the same lines as the proof in the case of COD
(Proposition 5.3).

Definition 5.1. In a relation, R[X,Y,,Y,,.,Y,|, we define a
modified loop as any path in an S-diagram which starts from an element x, in
the root-segment, passes in the order specified through those elements in the
branch-segments which are in the image sets of x;, and then returns to x;.

Definition 5.2. The extension of a relation, R{X,Y,Y,,.,Y,]
satisfies the modified loop-tuple condition (ML-T condition) if every modified
loop in its S-diagrams is also a tuple in the corresponding instances.

Proposition 5.71. There exist relations which do not satisfy the ML-T
condition.

Proof. We give an example of a relation in Fig. 4 which does not
satisfy the ML-T condition.

Proposition 5.2. In a relation R the following statements are true.
The left-hand side of each statement is a dependency in the intension of R
while the right-hand side is a condition on the extension of R. The number in
the middle is the order of the S-diagrams under consideration:
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FG =?* (ML-T condition)
MVD «* (ML-T condition) and (C-condition)
MUD «* (ML-T condition)
Proof. The result in the case of FD is trivial. For MVD and MUD it

follows easily by showing that every loop is a modified loop also in their
case.

Proposition 5.3. In a relation, R[X,Y,,Y,,..Y,], the COD
X=Y,|Y,| 1Y, holds if and only if the ML-T condition is satisfied.

= X

R[X, Y ,Y,,Y

3] 1 711721 V5

X1 Y2 Y2 V31

X3 Y11 72 V3

(xl Y11 Y22 'VZI) is a modified loop but nota tuple.

Fig. 4. Violation of ML-T condition.
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Proof. If
Let the COD hold in R[X, Y, Y,,..., ¥,]. That is,

R[X,Y,,Y,,.,Y,| =R|[X,Y,| * R[X, Y,] * ---  R[X, Y,] * R[Y}, Y,]
* R[Y,, Y ] xR[Y,_,,Y,] (6)
Assume the ML-T condition is not satisfied.
Case 1. Let the modified loop
ey, ¥, YV ER[X, Y, Yy, Y, | € r.hus. in (6)

Because (xy,y, -+ ¥,) is a modified loop

(1) ER[X, Y]
(xy2) ER[X, Y,]

() ERIX, Y,
(F1y2) ER[Y, Y]

and
(yn—lyn)eR[Yn—l! Yn]

therefore
(xy, y,) ER[X, Y ] * R[X, Y,] * R[Y,, Y,]
(v, 72 73) ER[X, Y ] # R[X, Y, ] % R[X, Y;] x R[Y,, Y, | * R[Y,, Y]

(xp, ¥, -+- y,) € r.his. in (6)}—contradiction
Case 2. Let the modified loop
iy, V)ER[X, Y, Y,,.,Y,]Erhs. in (6)

This is impossible by Theorem A.2 in the Appendix.

Only if
Obvious from Theorem 4.1 and the fact that modified loops are a subset

of the loops in an S-diagram.
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Proposition 5.4. In a relation, R[X,Y,,Y,,.,Y,], the MD, X >~
Y,|Y,rY,}---rY,, holds if and only if the ML-T condition and an
appropriate partial C-condition are satisfied.

Proof. Follows along the same lines as Proposition 5.3 when we
consider the fact that in (6) taking natural joins with the branch-projections
in which the C-condition is satisfied removes no tuples.

Proposition 5.5. In a relation, R{X,Y,,Y,..,Y,], the HD, X:
Y,|Y,|--|Y,, holds if and only if the ML-T condition and the total C-
condition are satisfied.

Proof. Follows along the same line as Proposition 5.3.

Theorem 5.1, In a relation R the following statements are true. The
left-hand side of each statement is a dependency in the intension of R while
the right-hand side is a condition on the extension of R. The number in the
middle is the order of the S-diagrams under consideration:

FD <2 (ML-T condition)

MVD «* (ML-T condition) and (C-condition)
MUD <* (ML-T condition)

HD <" (ML-T condition) and (total C-condition)
MG «" (ML-T condition) and (partial C-condition)
COD <" (ML-T condition)

Proof. Follows from earlier propositions.

6. UTILITY CONSIDERATIONS

In this paper we have demonstrated how WCR’s can be used to give a
graphical insight into the various root-dependencies in data. Root-
dependencies are useful in modeling knowledge about the real world and also
in preserving the integrity of the data base. We now discuss other possible
uses of our approach to the study of root-dependencies. The discussion is
brief and meant only to demonstrate the utility of our approach. We assume
that derived relations are obtained only by projection and natural join
operations. We do not address the wider problem of how dependencies,
especially, HD, MD, and COD behave under other operations in relational
algebra.

Firstly, we show a possible use in constraint checking to preserve
integrity during operations on a derived relation. Consider the following set
of base relations:



206

AGENT-LOC|AGENT #, TOWN]| = g,
a,
a;

SALESMAN[SALESMAN #, AGENT #] =,

PRODUCT [PRODUCT, AGENT #| = p,
2
P

SALESMAN-AREA [SALESMAN #, TOWN| = 5,

§

$2

From these a user obtains his derived relation as follows:

DISTRIBUTION [AGENT #, TOWN, SALESMAN #, PRODUCT |

Arora and Smith

== AGENT-LOC % SALESMAN * PRODUCT * SALESMAN-AREA

a, Iy St~
a, L S P
a, L § P
a, L S ny
a L S D
a, ty S Py
a, L S Dy
a, L S35 Dy

In DISTRIBUTION, the following MD holds:

AGENT # =~ TOWN j SALESMAN # ] PRODUCT

Now consider the following operations on this derived relation.

1. The user deletes the following tuple:

(@, & s, py)



A Graphical Interpretation of Dependency Structures in Relational Data Bases 207

What will be the effect of carrying out this command on the base relations as
well? The new base relations will be

AGENT-LOC =g, |,

a, &

SALESMAN =§, a,

S, 4

§, a,

PRODUCT = p, a,
Py 4y

SALESMAN-AREA =§, 1,

LER &

And the derived relation should be

DISTRIBUTION =a, f, §, P,
a, I s py
a 4L s Py

to truly reflect the information contained in the base relations. Here we have
actually carried out the command on the base relations and then recomputed
the derived relation to proserve the integrity of the data base. To avoid
modifying the base relations and to know the effect of the user command
before executing it we can use the results in this paper. From Theorem 5.1
we know

MD <" (ML-T condition) and (partial C-condition)

Deletion of tuple (a, ¢, s, p,) and modification of base relations wiil mean
that {£,}, {s,}, and {p,} will no longer be in the image sets of {a,}. Hence, in
the S-diagram of DISTRIBUTION any loop involving {t,} or {s,} or {p,} and
{a,} will no longer be a modified loop. Hence, the corresponding tuples must
be removed leaving us with a derived relation exactly as the one obtained by
actually modifying the base relations and recomputing the derived relation.
We check for partial C-condition and find that it holds true in the new
relation. In passing we point out that in the S-diagram of the modified
derived relation (a, ¢, s, p,) is a loop, but not a modified loop and, bence,
it is also not a tuple. Of the two approaches presented here which one
requires lesser computation is unknown at the moment.
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2. The user adds the following tuple
(a; 5, s; py)

Modifying the base relations and recomputing the derived relation indicates
that another tuple (a, ¢, s, p,) must also be added to preserve the integrity
of the data base. Alternatively, the image sets of {a,} are {¢,,%,}, {5;, 5.},
and {p,,p,). In the branch projection DISTRIBUTION|SALESMAN #,
PRODUCT] every branch relation must be a WCR to preserve the partial C-
condition. Hence (a, ¢, s, p,) must also be added to the modified
DISTRIBUTION. Again we do not know at this point which approach requires
lesser computation.

3. If we take a projection of the derived relation, the MD still holds
true as long as the root-attribute set is in the new relation (Theorem A.3 in
the Appendix) and the new relation can be examined as in the earlier two
examples.

For further information on modifying a data through derived relations
the reader is referred to Refs. 15 and 27. We now show another possible use
for our approach in the partial recovery of information in a damaged data
base.

Consider a data base with a set of base relations and a set of derived
relations. We know beforehand the type of dependency, HD, MD, or COD,
that holds in each derived relation. Now if the data base is damaged (inad-
vertently or willfully) we are faced with the task of recovering lost data.
Using results in this chapter we can examine each derived relation which
yields a set of tuples (possibly empty) which must be added to preserve the
dependency. Now the base relations must have had at least the tuples
necessary to compute the new derived relations. This could be one of the
ways to partially recover lost data.

7. CONCLUDING REMARKS

In this paper, we have studied the class of root-dependencies using a
theory of WCR’s. Both of these—the class of root dependencies and a theory
of WCR’s—have been presented in the literature. Our effort results in a
graphical representation of an instance of a relation. We have called it the S-
diagram of the relation. Several properties of the S-diagram have been
defined, namely, the L-T condition, C-condition, partial C-condition, total C-
condition, and ML-T condition. Based on these properties, we are able to get
a graphical interpretation of all root-dependencies in the literature. This
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approach, besides giving a pictorial insight to all the root-dependencies, can
also prove useful in automatic constraint checking in a relational data base.
Another possible use can be in the recovery of data in a damaged data base.

8. APPENDIX. PROPERTIES OF NATURAL JOINS

Theorem A.1. 1If R[A] is a relation over the set of attributes 4, then
for every set of attributes, ¥, and Y,, contained in 4,

R[Y,|* R[Y,]2R[Y,, Y,

where R{Y,], R[Y,], and R[Y,,Y,] are projections of R[4] and * is the
natural join.

Proof. Trivial

Theorem A.2. If R[4] is a relation over the set of attributes 4, then
for sets of attributes Y, ¥5,..., ¥, contained in 4

R[Y ] *R[Y,]* - R[Y],2R[Y}, V3., ¥,]

ni
where R{Y,] for 1 i< n and R[Y, Y,.,..., ¥,] are projections of R[4 ].

Proof. Let t{A] be a tuple in R{4].
Let ¢[Y;] be a projection of t[4] on the attribute set ¥;. Therefore

Y] € R[Y,]
HY,] €R[Y,]

and
tY,, Y, ER]Y,, Y,]
But,
R[Y,,Y,| €R[Y,] «R{Y,] (TheoremA.l)
therefore

Y, Y] ER[Y ] % R[Y,]

828/10/3-3
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Again,
tY,,Y,, Y,JER[Y,,Y,, Y,]
and
R{Y,,Y,, Y;] €R|Y,,Y,] *R[Y;] (Theorem A.1)

and
RY,, Y] # R[Ys) SR[Y,] # R[Y,] * R[Y,] (Theorem A.1)
1Y, Yy, Y3] € R{Y, | xR[Y,] * R[Y;]

Similarly,
HY 1 Yy ]GR[ % R{Y,] % -+ x R[Y,]
RY\|* R[Y;] % - % R[Y,| 2R[Y}, Yy, ¥, ]

Theorem A.3. U
R{X,Y,,Y,,...Y,]=R[X, Y] *R|X, Y] * --- * R[X, ¥,]
#* R[Y, Yo ¥ R[Y,, Yyl % -+ R[Y, _y, V]

then
RIX, Y, Y., V] =R{X, Y{] * R{X, ¥,] # -+ % R]X, ¥, ]
« R{Y}, Y, %« R[Y,, Ya] % - xR[Y,_,, Y,]
where

Yi€Y;and X, Y,,7Y,,.., ¥, are mutually disjoint.

Proof. Let
RIX,Y,, Yypou Y, =RIX, Y 1 % RIX, V)] % --- s R|X, ¥, |
* RIY, Y, ] #R{Y,, Yyl - 5 R[Y, 1, ¥, ]
Assume,

R[X, Y}, Yy ¥, | = RIX, Y] % RIX, Y3 % -+ x R|X, Y,
« R[Y!, Y,] «R[Y,, Y3] % < % R[Y,_,, Y,]



A Graphical Interpretation of Dependency Structures in Relational Data Bases

i.e.,

(xy1) ER[X, Y]
(xy;) ER[X, V)]

() ERIX.Y,]
(P1y2) ER[Y, Y,]
(1, Y3) ER[Y,, Y5]

(yn~1!yn)€R[Yn—l’ Ynj!
and

(e ¥ Var V) ERIX, YL, Y, Y]

But R[X, Y}, Y,,.., Y,] is a projection of R{X, Y,,¥,,... Y, ]|
There is no y{ for which

(1 yiys - V) ERIK Y, Vs ¥y
Again

R[X, Y] is a projection of R X, Y|
and

R{Y;,Y,]is a projection of R[Y,, ¥, ]

Therefore there exists y{, such that

(i YD) ER[X, Y]

and

(y{yiy) ERLY,, Y,]

v yiy, - Y ERIX Y, Y,,.., Y, |—contradiction

Hence, the tneorem is true.

211
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