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The designer of a relational data base must use dependency structures of data to 
model semantic situations that arise in data. He must further ensure that these 
dependencies are not violated during operations on the data base. In this paper 
we study a subclass of dependencies, namely, root-dependencies and introduce a 
common graphicai picture (S-diagram) for all of them. This effort offers a 
possible application of graph theory to the study of relational data bases. The S- 
diagram offers a pictorial insight to all the root-dependencies. We also discuss, 
briefly, other possible uses of our work such as automatic constraint checking 
and recovery of data in a damaged data base. 

KEY WORDS: Data base design; hypergraphs; information systems; 
relational model. 

1. INTRODUCTION 

Before the advent of data base management  systems, the rote of data in a 
computer system was to serve as an input to the various programs. If data 

was to have any structure, it was defined in the program. This meant  that 
each program had its own data to work with. However, it became 

increasingly clear that several programs used the same data and that data 
played a vital role in the functioning of an enterprise. Efficient handling and 

storage of data became a desirable goal. This very logically ted to data base 

management  systems, 
In a data base management  system, the data are structured and stored 

in the computer. The programmers do not impose their own structure on the 
data. They are constrained to use the data in the computer. Data are a 
resource of the enterprise which is available to several users and must  be 

managed properly. As data became more important,  considerable effort was 
devoted to studying the properties of data. An important  outcome of this 
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study is the various dependency structures that may be found in data and 
may be usefully exploited to improve the performance of the data base. 

Dependency structures have been studied using set theory, tl~ 
propositional logic, (12~ and Boolean algebra. (9) In this paper we study a 
subclass of dependencies, namely, root-dependencies using a theory of well- 
connected relations. (2) As a result a very neat graphical picture of root- 
dependencies emerges in the form of an S-diagram. It should be noted that 
the S-diagram is a hypergraph. Zaniolo Cag) has also applied hypergraphs to 
the study of relational data bases. However, his study is not directed towards 
dependency structures. 

In Section 2 we familiarize the reader with root-dependencies and the 
necessary portions of the theory of well-connected relations (WCR's). Before 
interpreting root-dependencies graphically (Sections 4 and 5), we introduce a 
graphical representation (S-diagram) of an instance of a relation (Section 3). 
Finally, in Section4, we briefly discuss possible practical uses of our 
approach to the study of root-dependencies. In the Appendix, we present 
three properties of the natural joins which are used throughout this paper. 

2. BACKGROUND 

In this section, we first introduce the reader to dependencies in general 
and root-dependencies in particular. This paper is concerned with finding a 
graphical interpretation for all root-dependenCies. In section 2.1, we take an 
example given in Ref. 26 and extend it to show the semantic differences 
btween various root-dependencies in the literature. We also include formal 
definitions for every root-dependency. In Section2.2, we present some 
definitions and results (without proof) from the theory of WCR's. ~2) We also 
indicate how the formalism of WCR's can be applied to binary as well as n- 
ary relations. In this paper we use this formalism to obtain the graphical 
interpretation of all root dependencies. 

2.1. Root-Dependencies 

Dependencies are a systematic way of dealing with semantically useful 
situations that arise in data. People think in terms of semantic connections 
among data rather than in terms of relational algebra which is highly 
mathematical. For example, in a company each employee may have a 
distinct employee number. The data base designer is faced with the rank of 
modeling this semantic connection between an employee and his employee 
number. He must further ensure that no two employees ever get the same 
employee number during operations on the data base. For this situation, we 
have the functional dependency (FD), see for example Refs. 1, 6, and 8. The 
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data base designer uses the FD between employee number and employee in 
his design process and also specifies it as an integrity constraint which must 
not be violated during operations on the data base. 

In Ref. 26, the authors point out that FD is not adequate to model some 
semantic situations that arise in data. They give the following example. 
Suppose an employee works in several departments, then EMPLOYEE ~ DEVT 
(EMPLOYEE does not functionally determine DEPT), and suppose that each 
department has only one contract type, DEPT~ CTYPE. Clearly, there is 
knowledge about employees and contract types on which they are working. 
But it cannot be expressed as an FD. Since Ref. 26 was published, other 
dependencies have been identified in the literature which capture or model 
the knowledge present in the above example. We can look at it in two 
different ways. If we wish to look at each employee and his relation to DEPT 
and CTYPE then it can be expressed by a mutual dependency (MUD), (19'2~ 
or a contextual dependency (CD), (3) i.e., EMPLOYEE ~ DEPTICTYPE. The 
data base designer can now specify this MUD as an integrity constraint. 
However, if we wish to look at each department and its relation to 
EMPLOYEE and CTYPE then it can be expressed by a multivalued dependency 
( M V D ) ,  (ll'z9) i.e., DEPT--~ ~ EMPLOYEE I CTYPE, We extend the example of 
Ref. 26 as follows. Suppose each contract type is divided into several 
portfolios and each employee of the department has access to all the 
portfolios in that department. We can model the knowledge about 
departments, employees, contract types, and portfolios by a hierarchical 
dependency (HD), (1~ i.e., DEPT: EMPLOYEE[CTYPEIPFOLIO. Here we are 
looking at each department and its relation to EMPLOYEE, CTYPE, and 
PFOLIO. 

So far we have seen FD, MVD, MUD, CD, and HD. All of them 
[MUD and CD are equivalent (21)] are semantically useful in modeling 
situations that arise in data. However, there are many other dependencies in 
the literature for which it is difficult to identify semantic situations in data. 
We do not deal with them in this paper, but mention them in passing--join 
dependency, (23) algebraic dependency, (2s) transitive dependency, (22) subset 
dependency,(25) template dependency,(24) general dependency,(16) generalized 
mutual dependency, (18) boolean dependency, (L ~) and implication 
dependency. (13) The dependencies FD, MVD, MUD, CD, and HD are all 
special cases of JD. In all of these, as is demonstrated by the earlier 
discussion and underlining of the word "each," we are looking at every value 
of an attribute or attribute set and its relation to values of other attributes. 
We choose to call the former (i.e., left-hand side of these dependencies) the 
root-attribute. Summing up, we can easily identify semantic situations in data 
which can be modeled by a dependeney with a root-attribute. And  it is 
difficult to identify a semantic situation in data which eould usefully be 
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modeled by a JD without a root-attribute. Hence, it is useful to introduce 
other dependencies which have a root-attribute and model semantic situations 
in data which cannot be modeled by the existing dependencies with a root- 
attribute. In Ref. 4 we introduce the  mixed dependency (MD) and the co- 
dependency (COD) and show their usefulness. 

We again extend the example of Ref. 26 as follows. Suppose EMPLOYEE, 
DEPT, and CTYPE have the same constraints as before, but in addition, an 
employee works on several projects and each project is assigned to one 
department. Clearly there is knowledge about pRo J, DEPT, CTYPE, and 
EMPLOYEE which cannot be modeled by FD, MVD, MUD, or HD. This 
knowledge can be modeled for each employee by a COD, i.e., EMPLOYEE- 
PROJ [ DEPTt CTYPE. The MD is a special case of COD. If we modify this 
example and say that an employee can work only on one contract type at a 
time then we can model this knowledge for each employee by an MD, i.e., 
EMPLOYEE ~ PROJ [ DEPT J" CTYPE, 

It can now be pointed out that an FD is a dependency with two sets of 
attributes (one root-attribute set on the left-hand side and another attribute 
set on the right-hand side which we choose to call a branch-attribute set). An 
MVD has three attribute sets--one root and two branch. An HD is an 
extension of MVD to 'n '  attribute sets----one root and ' n -  1' branch. An 
MUD has three attribute se t s - -  one root and two branch. A COD is an 
extension of MUD to 'n '  attribute sets--one root and 'n - 1' branch. An MD 
is also defined on 'n' attribute sets--one root and 'n - 1' branch. However, it 
exhibits features of both MVD and MUD. FD, MVD, MUD, HD, MD, and 
COD form a class of  dependencies which we choose to call root-dependencies. 

We now give definitions for each root-dependency for the sake of 
completeness of this section. From these definitions, it should be noted that: 

1. MVD is based on a linear 2-join; 

2. MVD is based on a cyclic 3-join; 

3. H D  is based on a linear n-join; 

4. MD is based on a combination of a linear n-join and 'p'  cyclic 3- 
joins where p < n; 

5. COD is based on a combination of a linear n-join and 'n '  cyclic 3- 
joins. 

For futher information on linear and cyclic joins the reader is referred 
to Ref. 7. 

A functional dependency, X ~  Y~, exists in a relation, R[X, Yt], if in 
every instance of the relation some function f :  X ~ Y~ exists. 

In a relation, R[X, Y~, Y2], the MVD, X-~ ~ Ya I Y2 holds if and only 
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if R IX, Y,, I12] is the natural join of its projections, R [X, Y~] and R [X, r2j. 
Here X, Y~, and Y2 are disjoint sets of attributes. 

In a relation, R[X, Y~, 112], the MUD, X~-. Y~i Y2, holds if and only if 
R[X, Y,, Yz] is the natural join of its three projections--R [X, Y~], R[X, 112], 
and R[Y 1, Y21. In a relation, R[X, Y1, Yz], the contextual dependency, 
X ~  Yll I12 (X "determines" Y~ in the context of Y2), holds if and only if 
when (xiYlly21), (xiylZy22), and (xjylly22) a r e  tuples in R[X, Y~, }I21 then 
(x~y~y2~) is also a tuple, and this is true for all x~ and all instances of 
R IX, Y~, Y2]. Hence, X, Y~, and Y2 are mutually disjoint sets of attributes. 
Both of these dependencies are equivalent. 

In a relation, R[X, Y~, Y2,..., Y,], the HD, X: YI i Y21 "'" i Yn, holds if 
R[X,Y~,Y2, . . . ,Y ,]=R[X,Y~]*R[X,  Y2]* . . .*R[X,Y , ,  ] where * is the 
natural join. Here X, Y~, Y2 ..... Yn are mutually disjoint sets of attributes and 
R[X, Yi] are projections of R[X, Y~, Y2,..., Y,]- 

The COD 

X - Y ~ I Y 2 I . . , ! Y  . 

holds in a relation R IX, Y~, Y2 ..... Yn] if 

R =R[X,  Y~], R[X, 112] * "'" * R[X, r , ] ,  R[Y~, r2] 

, R[Y2, r31 * ... �9 R [ r , _ ~ ,  Y,] 

Here X, Y~, Y2 ..... Y, are mutually disjoint sets of attributes and each 
relation on the right-hand side is a projection of R IX, Y~, Yz ..... Y,]. 

The MD 

x ~ r l  ~ r~ t Y3 ~ Y41 r~ I "  ~ r~ 

holds in a relation R[X, YI, Y2 ..... Ynl if 

R =R[X, r , ] .  R[x,  r2J * ... * R[x,  r~] .  R[Y,,  r2] 

�9 R[r3, Y,] ,  . . . ,  R[r,_~, Y,l 

Here X, Y~, Y2 ..... Y, are mutually disjoint sets of attributes and each 
relation on the right-hand side is a projection of R IX, Y~, Yz ..... Y~]. 

Finally, we mention in passing that FD's, MVD's, and MUD's have 
been defined for the case where the sets of attributes are not mutually 
disjoint. Also in Ref. 17, MVD's have been defined for relations with null 
values and in Ref. 5 they have been defined for joins other than natural, i.e., 
NMVD's and operator multivalued dependencies (OMVD's). We do not 
address the problem of trying to find graphical interpretations for these cases 
in this paper. 
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2,2 Well-Connected Relations 

A theory of WCR's  has been presented in Ref. 2. In this paper we 
present a graphical interpretation of all root-dependencies based on WCR's.  
For this purpose, it is sufficient for the reader to know only a few definitions 
and results from Ref. 2. These are presented in this section. WCR's  are 
essentially a very restricted binary relation. In the context of a relational 
data base, they are a generalization of quotient relations. (x4) 

Definition 2.1.2. A WCR is a binary relation. W on two sets A and 
B such that 

(u E A )(Vb )(b E B )(aWb ) 

The sets A and B are called the first and the second constituents of the 
WCR. 

An elementary WCR (EWCR) is a WCR in which the first constituent 
has a single element. The second constituent is then called the "image set" of 
the first constituent. 

A trivial WCR (TWCR) is a WCR in which both the constituents have 
a single element. 

Note 2.1.1 

1. In this paper we do not consider partial binary relations. Also the 
mapping from set A to set B is always taken to be an onto mapping. 

2. A binary relation is R[A,B] while a W C R  is W[A;B]. We also use 
SR[AB ] and SR[B ] (or SR[A]) which mean the following: 

SR[AB l = {(a,  b): (a CA), (b ~ B), (aRb)} 

~- S R 

S,[B] = {(b): (b E B) and (3a)(a E A)(aRb)} 

Definition 2.1.3. 

where 

A relation R[A,B] can be expressed as 

R[A,B l = ~ R,IA,,B,] 
i = 1  

= R,[A,,B,] LA R2[A2,Bz] LA ... LA R,[An,B,] 

= ~(R) = partition e r r  

Ri[Ai, B~] (3 Rj[Aj, BjI -= 0 
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for 

i 4= j,  1 ~ i, j ~ n, and A = U A i and B = B i 
i ~ l  i = 1  

Definition 2.1.4. 
canonical partition if 

where 

t. 

2. 

3. 

A partition of a binary relation R[A,B] is 

R [ A , e l  = VCi[A,;B,I 
i = 1  

Wi[Ai;Bi] is a WCR for 1 ~i<~n. 

A i is a set with a single element for t ~< i <~ n. 

Ai4=A j for i4=j  and 1 <~i,j<~n. 

3. GRAPHICAL REPRESENTATION OF A RELATION 

Before we can interpret root-dependencies graphically, we need a 
graphical representation of a relation. In this section we present a few 
definitions (3.1, 3.2, and 3.3) which lead to the S-diagram of an instance of a 
relation (Definition 3.4). We identify loops in the S-diagram which, in 
general, correspond to the tuples of the particular instance of the relation. 
This paper is concerned with a study of the properties of S-diagrams and 
their loops. In this section, we define four distinct properties of an S- 
diagram, namely 

1. L-T condition; 

2. C-condition; 

3. total C-condition; 

4. partial C-condition. 

Since an S-diagram is a graphical representation of an instance of a 
relation, the above four properties are of necessity on the extension of a 
relation. Also properties (2), (3), and (4) involve the concept of a WCR. We 
show in Section 4 that the various root-dependencies can be interpreted in 
terms of these properties of the S-diagram and its loops. 

Definition 3.1. In a relation, R[X, Y1, Y2 ..... Y,], we call SR[X ] the 
root-segment and SR[Y1], SR[Y2] .... the branch-segments (see Note3.1). 
Throughout this paper, we assume X, Y~, Y2,.-., Y, to be mutually disjoint 
sets of attributes. 

828/I0/3-2 
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Definition 3.2. Any binary projection of R[X, Y1, Y2 ..... Y,] on the 
root-segment and one of the branch-segments is called a root-projection. For 
example, R IX, YI ], R [X, Y2] .... are root-projections. 

Definition 3.3. Any binary projection of R[X, Yl, II2, Y3, .... }1,] on 
any two adjacent branch-segments is called a branch-projection. For 
example, R [ Y1, Y2 ], R [ Yz, Y3] .... are branch-projections (see Note 3.1). 

Note 3.1. The above definitions raise two questions. Firstly, are we 
implying an ordering among the attributes of a relation while in the 
relational model the ordering of attributes is immaterial? Secondly, how do 
we decide which attribute is the root-segment? In this section, we are going 
to introduce a graphical representation for any instance of a relation. This 
representation is easier to study if we draw it with the attributes in a certain 
order. For example, R[X, Yl, Yz, Y3] is the same relation as 
R [X, I12, Y~, Y3 ]; however, the graphical representation of the former may be 
more meaningful than that of the latter. In the rest of this paper we will 
assume that for the relation under consideration, the optimum ordering has 
been obtained. We do not address the problem of how to obtain this ordering 
in this paper. It was pointed out in an earlier section of this paper that the 
root-segment is that attribute or attribute set of a relation for which there is a 
semantic connection between each of its values and values of the other 
attribute sets. Hence, the choice of the root-segment is solely dependent on 
the semantic connection we wish to model or examine. 

Definition 3.4. Any instance of an n-ary relation R[X, Y1, I12 ..... Y,], 
can be drawn graphically as follows: 

1. Take the root-projections and the branch-projections Of the relation. 

2. Represent each projection as a mapping between the corresponding 
segments. 

3. Draw all these mappings together in a single diagram. 

We call this diagram an S-diagram of the relation. The order of an S- 
diagram is the number of segments in it. In Fig. 1, we show an example of an 
S-diagram of order 4 and the corresponding instance of the relation. 

Definition 3.5. A loop is any closed path in an S-diagram of 
R IX, Yl, Y2 ..... Y,] which starts at an element in the root-segment and passes 
once through each of the branch-segments, in the order specified, and then 
returns to the same element in the root-segment. 

A loop in an S-diagram of order 2 is a simple edge while a loop in an S- 
diagram of order 1 is a simple point. 
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R[X'YI'Y2'Y3] = xl Yll Y21 Y31 

Xl YI2 Y21 Y32 

xl YI2 Y21 Y31 

sa{x] 

x I 

SR[Y21 

Order = 4 

Fig. 1. S-diagram (order 4). 

For any instance of R IX, Y1, gz,..., ILl, it is trivially tpae that ever), 
tuple is a loop in the S-diagram. In S-diagrams of order less than 3 the 
converse of this is also true, i.e., every loop is a tuple. However, in S- 
diagrams of order 3 or more, every loop need not be a tuple. For example, in 
Fig. 1, (xzyuYz~) is a loop, but there is no corresponding tuple in 
R[X, Y,, }721. 

Definitiot~ 3.6. The extension of a relation is said to satisfy the 
toop-tuple condition (L-T condition) if every loop in its S-diagrams is also a 
tuple in the correspondirlg instances. 
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We can redraw an S-diagram of a relation as follows: 

1. Draw the canonical partition of each root-projection. Now each 
element in the root-segment will have an image set in each of the branch- 
segments. 

2. The image sets, in adjacent branch-segments, of a particular 
element in the root segment are themselves connected by a binary subrelation 
called a branch relation. Hence, a branch-projection is made up of a set of 
branch-relations. 

3. An S-diagram for order 3 is shown in Fig. 2. In general, the image 
sets in a branch-segment need not be disjoint. The diagrams show them to be 
disjoint only for the sake of clarity. 

Definition 3.7. In the extension of a relation, R[X, Y1, Y2 ..... Y,], a 
branch-projection satisfies the completeness condition (C-condition) if every 
branch-relation in it is always a WCR. 

Definition 3.8. The extension of a relation, R[X, Y1, Y2 ..... Y,], 
satisfies the total C-condition if every branch-relation in every branch- 

sR[x] 

x, 

x I 

Canonical Partition of 
one root-projection 

Branch- Branch- 
Projection Relation 

Image Set 

Fig. 2, Components of S-diagram, 
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projection is always a WCR. It satisfies the partial C-condition if every 
branch-relation in at least one of the branch-projections is always a WCR. 

4. G R A P H I C A L  I N T E R P R E T A T I O N  OF D E P E N D E N C I E S  

In Section 3, we have defined four properties of an S-diagram. In 
general, the S-diagrams of a relation need not satisfy these properties. 
However, if some of the root-dependencies hold in the relation then some of 
these properties are always satisfied. Again if some of these properties are 
always satisfied then some of the root-dependencies hold in the relation. 
These facts have been presented in this section as a series of propositions, 
leading to Theorem 4.1 which sums up the results. We have left out some 
proofs which can easily be constructed on lines, similar to other proofs in 
this section. 

Proposition 4.1. In a relation R[X, Y~], if the F. DX~  Y~ holds 
then so does the L-T condition. 

Proof. Trivially true. 

Proposition4.2. In a relation R[X, Y1, I12] the MUD X ~  YIIY2 
holds if and only if the L-T condition is satisfied. 

Proof. I f  
Assume X ~ Y~I Y2 in R [X, Y~, I12]. It is trivially true that every tuple 

in instances of R is a loop in the S-diagrams. So we assume that every loop 
is not a tuple. Let (x, y~, Y2) be a loop in the S-diagram and not a tuple in 
an instance of R. By definition of an MUD 

Let 

R IX, Y1, I12] = R [AT, Y~ ] * R [AT, Y2] * R [ Y1, Y2] 

Now 

and 

R1[X, Y1, Y21 = R [ X ,  Y~] �9 R[X, Y2] 

R[X, Y~, Y2] = R I  , R[Y1, Y2] 

(xy , )eg fx ,  rl] (I) 

(xYz) E R[X, ]"2] (2) 

(yl y2) e R[ rl,  r2] 

from the definition of S-diagram. 

(3) 
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Also in the join 

R, * R[Y,, }I2] 

no new tuples are added to R 1. Some tuples in R 1 whose projection over 
[Y1, Y2] is not present in R[Yi, Y2] are removed from R1. 

Again, from Eqs. (1) and (2), it follows 

But 

(xy, y2) ER[X, Y,] , R [ X ,  II"2] = R ,  

(xy, y2) q~ R [X, Y,, Y2] 

(Y, Y2) ~= R [ Y~, Y2] 

This is a contradiction to (3). 

Only if 

Let every loop in the S-diagram be a tuple. Assume 

X*e* Y11Y 2 

i.e., 

R[X, Y,, Y2] #= R IX, Y,] * R[X, }721 * R[Y,, Y~] 

Case 1. Let 

(xy~ Y2) E R IX, 71, Y2] ~ r.h.s, in Eq. (4) 

But from Theorem A.2 in the Appendix 

(xy 1 y~) @ r.h.s, in Eq. (4)----contradiction 

Case 2. Let 

(xy x Y 2) ~ R [X, Y, , Y21 E r.h.s, in Eq. (4) 

Therefore 

and 

(xyl) ~ R [X, Y~] => A path exists from x to Yl in S-diagram 

(xy2) E R IX, Y2] =~ A path exists from x to Y2 in S-diagram 

(Y~ Y2) E R [ Y1, }72] =~ A path exists from y~ to Y2 in S-diagram 

(4) 
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Therefore 

therefore 

therefore 

(xy~ Y2) is a loop in the S-diagram 

(~vt Y2) is a tuple-contradiction 

R[x, rl ,  r21 =R[X, rl] .R[X, rd  �9 R[rl ,  r2] 

Hence, the proposition is true. 

Proposition 4.3. In a relation R[X, Y1, Y2] the MVD 

X-~ + Yl l Y: 

holds if and only if the L-T condition and the C-condition are satisfied. 

Proof. The proof follows along the same lines as Proposition 4.2 and 
uses the fact that MVD is a special case of MUD. 

Proposition 4.4. In a relation R[X, Y~, Y2,..-, }~1, if the L-T 
condition holds then so does the COD: 

x -  Y, lY2t...! r ,  

Proof. Let all loops in any S-diagrambe tuples. 
Assume, COD does not hold. 
That is 

e[x ,  Y~, r2 ..... Y,] eR[x ,  r~] ,R[x,  r : l  �9 ... ,R[x ,  g,] 

�9 RIg,, r2] * R[}<2, r , ] . . . .  �9 R[Y._,, r~ (5) 

Caso 7. Let 

(xy~y~ ... y , ) ~ R [ ~  r 1, ~ ..... L ]  

r.h.s, in (5) 

But by Theorem A.2 in the Appendix 

(xyl Yz "" Y,)  C r.h.s, in (5)--contradiction 

Coso 2. Let 

(xy~ Y2"" Y~) ~ R IX, Y~, Y2 ..... Yn] E r.h.s, in (5) 
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therefore 

(xy 1) E R IX, Y1 ] ~ A path exists from x to y 1 in S-diagram 

(YlY2) C R[Y~, Y2] ~ A  path exists from yl to Y2 in S-diagram 

(xy.) C R [X, I1.] ~ A path exists from y. toxinS-diagram 

therefore 

( X y l  Y 2  " ' "  Y,) is a loop in the S-diagram 

(Xyl Y2 " ' "  Y,) is a tuple--contradiction 

therefore 

the COD, 

X =  Y, I Y21"" I Y. holds 

Proposition 4.5. If in a relation, R IX, Y1, I12 ..... Yn], the L-T 
condition and the total C-condition hold then so does the HD: 

x :  YI I Y2 [ " "  I Y. 

Proof. The proof follows along the same lines as Proposition 4.4 
when we consider the fact that in (5) the joins with the branch-projections 
remove no tuples if the total C-condition holds, 

Proposition 4.6. If in a relation, R[X, Y1, Y 2 ..... Y,], the L-T 
condition and a partial C-condition hold then so does the appropriate MD: 

X ~  Y~: Y2l"'s Y. 

Proof. Follows along the same lines as Proposition 4.4 when we 
consider the fact that in (5) the joins with those branch-projections in which 
the C-condition is satisfied remove no tuples. 

Proposition 4.4. If in a relation, R [X, Y1, Yz ..... Y,], the HD 

x :  YII  Y2I " "  I Y. 

holds then the L-T condition need not be satisfied. 

Proof. We give an example of a relation (Fig. 3) in which the HD 
holds, but the L-T condition does not. 
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sa[x] 

x 1 

S ~ SR[Y3] 

Y22 
SR[YI] SR[Y2] 

R[X'YI'Y2'Y3] = Xl Yll Y21 Y31 

x2 Yll Y22 Y31 

X ~ YlIY21Y3 ~ L-T condition. 

(Xl YlI Y22 Y31 ) is a loop but not a tuple. 

Fig. 3. Violation of L-T condition. 

Proposition 4.8. If in a relation, R[X, Y1, Y2 ..... Y,], an MD or 
COD hold then the L-T condition need not be satisfied. 

Proof, Obvious from Proposition 4.7 and the fact that HD is a special 
case of MD or COD. 

Theorem 4. 1. In a relation R the following statements are true. The 
left-hand side of each statement is a dependency in the intension of R while 
the right-hand side is a condition on the extension of R. The number in the 
middle is the order of the S-diagrams under consideration: 
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FD <>2 (L-T condition) 

MVD <>3 (L-T condition) and (C-condition) 

MUD <>3 (L-T condition) 

HD <;:n (L-T condition) and (Total C-condition) 

MD ~ "  (L-T condition) and (Partial C-condition) 

COD r (L-T condition) 

Proof. Follows from earlier propositions. 

5. MODIFIED LOOPS 

In Section 4, w e  presented a graphical interpretation of root- 
dependencies. The results of Section 4 are summed up by Theorem 4.1. In 
this theorem the implication statements for FD, HD, MD, and COD are 
unidirectional while for MVD and MUD they are bidirectional. Stronger, 
bidirectional implication statements can be proved in the case of HD, MD, 
and COD if we consider a subset of all the loops in the S-diagrams of a 
relation. We call this subset of loops--modified loops--and present these 
stronger results in this section. Again we have left out some proofs which 
can be constructed on the same lines as the proof in the case of COD 
(Proposition 5.3). 

Definition 5.1. In a relation, R[X, Y1, Y 2 ..... Y,], we define a 
modified loop as any path in an S-diagram which starts from an element x i in 
the root-segment, passes in the order specified through those elements in the 
branch-segments which are in the image sets of x~, and then returns to x~. 

Definition 5.2. The extension of a relation, R[X, Y1,Y2 ..... I1,], 
satisfies the modified loop-tuple condition (ML-T condition) if every modified 
loop in its S-diagrams is also a tuple in the corresponding instances. 

Proposition 5.1. There exist relations which do not satisfy the ML-T 
condition. 

Proof. We give an example of a relation in Fig. 4 which does not 
satisfy the ML-T condition. 

Proposition 5.2. In a relation R the following statements are true. 
The left-hand side of each statement is a dependency in the intension of R 
while the right-hand side is a condition on the extension of R. The number in 
the middle is the order of the S-diagrams under consideration: 
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FG =>2 (ML-T condition) 

MVD o 3 (ML-T condition) and (C-condition) 

MUD ~=>3 (ML-T condition) 

Proof. The result in the case of FD is trivial. For MVD and MUD it 
follows easily by showing that every loop is a modified loop also in their 
case. 

Proposition 5.3. In a relation, R [X, Y~, }'2,..., Y,], the COD 
X = Y1 t Y21 "'" ] Y, holds if and only if the ML-T condition is satisfied. 

SR[X] 

x 1 

x 

/ 

Yll " SR[Y3] 

Y121 

SR[Y 1 ] Y22 \ 

SR[Y 2 ] 

R[X'YI'Y2'Y3] = Xl Yll Y21Y31 

Xl YI2 Y22 Y3i 

x2 Yll Y22 Y31 

(Xl Yll Y22 Y31 ) is a modified loop but nora tuple. 

Fig. 4. Violation of ML-T condition. 
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Proof. I f  
Let the COD hold in R[X, Y1, Y2 ..... Y,]. That is, 

R [X, Y~, Y2 ..... Y~ ] = R [X, Y1 ] * g [X, Y2] * " "  * R IX, Y~ ] * R [ Y~, Y2] 

�9 R[r2, r3 ] ,  . . . ,  R[r ,_ l ,  r,] 

Assume the ML-T condition is not satisfied. 

Case 1. Let the modified loop 

(xYl Y2"'" Y,) C R IX, Y1, Y2,..., Y~] ~ r.h.s, in (6) 

Because (xy 1 Y2 "'" Y,) is a modified loop 

(Xyl) ~ RIx, rl] 

(xyd ~ R [x, rd  

(xyn) ~R[x,  r~] 

(y~ y~) ~ R [rl,  r2] 

and 

Arora and Smith 

(Y,,_lYn)~R[Yn-~,Yn] 

therefore 

(xylyz) C R[X, Y1] * R[X, Y2] * R[Y, ,  Y2] 

(xYl YEY3)C R [X, Y1] * R IX, Y2] * R IX, Y3] * g [Y1, Y2] * R[Y2, Y3] 

(xyl Y2 "'" Yn) C r.h.s, in (6)--contradiction 

Case 2. Let the modified loop 

(xYl Yz"" Yn) q~ R IX, YI, Y2 ..... Y,] E r.h.s, in (6) 

This is impossible by Theorem A.2 in the Appendix. 

(6) 

Only ff 

Obvious from Theorem 4.1 and the fact that modified loops are a subset 
of the loops in an S-diagram. 
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Proposition 5.4. In a relation, R[X, Y1, Y2,...,Yn], the MD, X~- 
YllY2s Y31""r Yn, holds if and only if the ML-T condition and an 
appropriate partial C-condition are satisfied. 

Proof. Follows along the same lines as Proposition 5.3 when we 
consider the fact that in (6) taking natural joins with the branch-projections 
in which the C-condition is satisfied removes no tuples. 

Proposition 5.5. In a relation, R[X, Y1,Y2,...,Yn], the HD, X: 
Y~] Yz[ "'" ] Y,, holds if and only if the ML-T condition and the total C- 
condition are satisfied. 

Proof. Follows along the same line as Proposition 5.3. 

Theorem 5.1. In a relation R the following statements are true. The 
left-hand side of each statement is a dependency in the intension of R while 
the right-hand side is a condition on the extension of R. The number in the 
middle is the order of the S-diagrams under consideration: 

FD <,2 (ML-T condition) 

MVD <=~3 (ML-T condition) and (C-condition) 

MUD <:>3 (ML-T condition) 

HD <=>n (ML-T condition) and (total C-condition) 

MG <=~" (ML-T condition) and (partial C-condition) 

COD ,>" (ML-T condition) 

Proof. Follows from earlier propositions. 

6. UTILITY CONSIDERATIONS 

In this paper we have demonstrated how WCR's can be used to give a 
graphical insight into the various root-dependencies in data. Root- 
dependencies are useful in modeling knowledge about the real world and also 
in preserving the integrity of the data base. We now discuss other possible 
uses of our approach to the study of root-dependencies. The discussion is 
brief and meant only to demonstrate the utility of our approach. We assume 
that derived relations are obtained only by projection and natural join 
operations. We do not address the wider problem of how dependencies, 
especially, HD, MD, and COD behave under other operations in relational 
algebra. 

Firstly, we show a possible use in constraint checking to preserve 
integrity during operations on a derived relation. Consider the following set 
of base relations: 
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AGENT-LOC[AGENT #5 TOWN] -~ a 1 t 1 

as t 1 

a2 t2 

SALESMAN[SALESMAN ;#, AGENT # ]  = S1 al 

s2 as 

s 2 a~ 

S 1 a2 

PRODUCT[PRODUCT, AGENT # ]  = P l  a l  

Pl as 

P2 as 

SALESMAN-AREA]SALESMAN # ,  TOWN] ---- s 1 t~ 

S2 t l  

S2 t2 

From these a user obtains his derived relation as follows: 

DISTRIBUTION [AGENT # ,  TOWN, SALESMAN 7~, PRODUCT] 

~--- AGENT-LOC * SALESMAN * PRODUCT * SALESMAN-AREA 

ax tl sl Pl 

a l  t~ s2 P~ 

a2 l~ s z p~ 

a2 tl sl Pl 

a~ t~ s 2 pa 

a2 tl sz 192 

a2 tl s1 Pz 

as t2 s3 P2 

In DISTRIBUTION, the following MD holds: 

AGENT 7~ ~- TOWN J SALESMAN 7~ I PRODUCT 

Now consider the following operations on this derived relation. 

t. The user deletes the following tuple: 

(a2 t2 s2 P2) 
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What will be the effect of carrying out this command on the base relations as 
well? The new base relations will be 

A G E N T - L O C  ~ a I t 1 

a 2  g2 

S A L E S M A N  = S 1 i21 

S 2 a 1 

S1 r 

P R O D U C T  = P l  a l  

Pl az 

S A L E S M A N - A R E A  ~ S 1 t 1 

$2 t l  

And the derived relation should be 

D I S T R I B U T I O N  = a I tl S1 Pl 

a 2 t 1 s~ Pl 

a 1 t~ s l  P~  

to truly reflect the information contained in the base relations. Here we have 
actually carried out the command on the base relations and then recomputed 
the derived relation to proserve the integrity of the data base. To avoid 
modifying the base relations and to know the effect of the user command 
before executing it we can use the results in this paper. From Theorem 5.1 
we know 

MD ~ "  (ML-T condition) and (partial C-condition) 

Deletion of tuple (a2 t2 S2 P2) and modification of base relations will mean 
that {t2}, {s2} , and {P2} will no longer be in the image sets of {a2}. Hence, in 
the S-diagram of DXSTRIBUTION any loop involving {t2} or {s2} or {P2} and 
{a2} will no longer be a modified loop. Hence, the corresponding tuples must 
be removed leaving us with a derived relation exactly as the one obtained by 
actually modifying the base relations and recomputing the derived relation. 
We check for partial C-condition and find that it holds true in the new 
relation. In passing we point out that in the S-diagram of the modified 
derived relation (a 2 t 1 s2 Pl) is a loop, but not a modified loop and, hence, 
it is also not a tuple. Of the two approaches presented here which one 
requires lesser computation is unknown at the moment. 
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2. The user adds the following tuple 

(RE t2 Sl Pl)  

Modifying the base relations and recomputing the derived relation indicates 
that another tuple (RE t2 Sl P2) must also be added to preserve the integrity 
of the data base. Alternatively, the image sets of {a2} are {tl, t2} , {81, s2} , 
and {Pl, P2). In the branch projection DISTRIBUTION[SALESMAN 7~, 
PRODUCT] every branch relation must be a WCR to preserve the partial C- 
condition. Hence (a 2 t 2 S 1 P2) must also be added to the modified 
DISTRIBUTION. Again we do not know at this point which approach requires 
lesser computation. 

3. If  we take a projection of the derived relation, the MD still holds 
true as long as the root-attribute set is in the new relation (Theorem A.3 in 
the Appendix) and the new relation can be examined as in the earlier two 
examples. 

For further information on modifying a data through derived relations 
the reader is referred to Refs. 15 and 27. We now show another possible use 
for our approach in the partial recovery of information in a damaged data 
base. 

Consider a data base with a set of base relations and a set of derived 
relations. We know beforehand the type of dependency, HD, MD, or COD, 
that holds in each derived relation. Now if the data base is damaged (inad- 
vertently or willfully) we are faced with the task of recovering lost data. 
Using results in this chapter we can examine each derived relation which 
yields a set of tuples (possibly empty) which must be added to preserve the 
dependency. Now the base relations must have had at least the tuples 
necessary to compute the new derived relations. This could be one of the 
ways to partially recover lost data. 

7. C O N C L U D I N G  R E M A R K S  

In this paper, we have studied the class of root-dependencies using a 
theory of WCR's .  Both of these--the class of root dependencies and a theory 
of W C R ' s - - h a v e  been presented in the literature. Our effort results in a 
graphical representation of an instance of a relation. We have called it the S- 
diagram of the relation. Several properties of the S-diagram have been 
defined, namely, the L-T condition, C-condition, partial C-condition, total C- 
condition, and ML-T condition. Based on these properties, we are able to get 
a graphical interpretation of all root-dependencies in the literature. This 
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approach, besides giving a pictorial insight to all the root-dependencies, can 
also prove useful in automatic constraint checking in a relational data base. 
Another possible use can be in the recovery of data in a damaged data base. 

8. APPENDIX. PROPERTIES OF NATURAL JOINS 

Theorem A. 1. If R [A] is a relation over the set of attributes A, then 
for every set of attributes, Y~ and Y2, contained in A, 

R[Y~] �9 R[Y2I _=R[Y~, I121 

where R[Y1], R[Y2] , and R[Y1, Y2J are projections of R[A] and * is the 
natural join. 

Proof Trivial 

Theorem A.2. If R[A] is a relation over the set of attributes A, then 
for sets of attributes Y1, Ir Y, contained in A 

R[Y,] , R[Y2],  ... , R[Y]n~_R[YI, Y2 ..... Y~] 

where R [Y/] for 1 < i ~< n and R [Y1, Y2,..., Y,] are projections of R [A ]. 

Proof. Let t[A] be a tuple in R [A ]. 
Let t[Yi] be a projection of t[A] on the attribute set Yi. Therefore 

t[r,] E eIr,]  

t[Y2] @R[Y~] 

and 

But, 

therefore 

R[Y1, I12] c R[y~] *R[Y2] (TheoremA.t) 

tire, e R [ r d  ,R [ rd  

828/10/3-3 
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Again, 

and 

and 

t[Y, ,  Y2, Y3] @ R[Y~, Y2, Y~] 

R[Y , ,  Y2, Y31 c R[Y~, r21 *R[Y3] (TheoremA.i) 

R[Y , ,  Y2] * R[Y3] ~ R[Y1] * R[Y2] �9 RIYal (Theorem A.1) 

t [ r l ,  I12, }73] @ R[Y,] *R[Y:] * R[Y3] 

Arora and Smith 

Similarly, 

then 

where 

t[Y,, Y2 ..... 1%1 ~R[Yd  �9 R[Y=] �9 . . . ,  R [Y , I  

R [:Y,I * R[Y=],  . . . ,  R [Y,,] ~_R[Y,, Y2 ..... Y,] 

Theorem A.3, If 

R[X, r , ,  Y2 ..... Y.] =R[X, Y1] . R [ X ,  Y2] * '"  . R [ X ,  Y.] 

�9 R[Y , ,  YEI * R[Y2, r3] �9 ... �9 R [ Y , _ , ,  Y,] 

RIX,  Y~, Y2 ..... IT.] - -R[X,  Y'~] * R[X, Y~] �9 ... * R[X, Yn] 

�9 R[Y~, Y2I * R[Y2, Y3] * "'" * R[Yn-~,  Y.] 

Y~ ~ Y~ and X, Y1, Ya, .... I1. are mutually disjoim. 

Proof, Let 

R[A~, rl ,  Y2 ..... ~ ]  =R[X, Yd ,R[X, Y21 * "- ,R[X, r~] 

�9 R[Y1, Ya] * R[Y~, Y31 * "': * R [ Y , _ , ,  Y.] 

Assume, 

R[X, Y~, Y2 ..... Y .14:R[X,  g~] * R[X, Y2] * "'" . R[X, r,,l 

. R[Y; ,  I ~ ) .  R [Y~, Y3] * "'" * R[Yn_I,  1f.1 
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i.e., 

and 

(xy~)~R[X,  Yi] 

(xy~) ~ R [X, Y d  

(xy.) e R IX, Y~] 

(YlY2) E R[Y~, I12] 

(Y2 Y,) E R [ Y2,113] 

( Y n - , , Y ~ ) E R [ Y . - ~ , Y . ]  

(x, y l ,  y2 ..... y . ) ~ a [ x ,  r l ,  r2 ..... r .]  

But R[X, Y~, Y2 ..... Y.] is a projection of R[X, YI, Y2 ..... Y.]. 
There is no y~' for which 

(xy'[ y~y z ... y , ) ~ R [ X ,  Y, ,  Y2 ..... Y,] 

Again 

and 

R [X, Y~] is a projection of R IX, g~ ] 

R [Y~, Y2] is a projection ofR [Y1, I(2] 

Therefore there exists y{', such that 

(xy~' yl) ~ R[X, r , ]  

and 

i.e., 

(y~* y~ .]22) ~ R [ gl ,  Y2 ] 

(xYi' Yl Y2 "'" Yn) ~ R [X, Y1, II2 .... , Yn] -cont radic t ion  

Hence, the theorem is true. 
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