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ABSTRACT 

The simple concept of a well-connected relation (WCR) is defined and then developed 
into a theory for studying the structure of binary relations. Several interesting partitions of a 
binary relation are identified. It is shown that binary relations can be separated into families 
which form a hierarchy. Finally, concepts of universal algebra are extended to the family of 
“prime” relations. One application for the theory is in the logical design of data bases. 

INTRODUCTION 

Data in an information system have been studied from several points of 

view [2, 4, 9, 10, Ill. With the growing interest in data base systems, the 

possibility for structuring the data in various ways has been explored by 
several authors. For example, Delobel [9] defines “elementary functional 
relations” and proposes a theory based on this building block; Zaniolo [lo] 
defines “atomic relations” as a basic building block for data; Furtado and 

Kerschberg [ 1 l] have “quotient relations.” Further, many authors have noted 

and studied specific data structures, such as “functional dependencies” [4], 
“multivalued dependencies” [5], “contextual dependencies” [6], “mutual de- 

pendencies” [12] (which happen to be same as contextual dependencies), and 
“hierarchical dependencies” [ 13 1. 

In this paper we define a new building block, “well-connected relations,” 
and propose a theory to study binary relations. Elsewhere [6] we have applied 
this theory to the study of dependency structures of data. We have also studied 
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a manipulation language for these building blocks [8]. An overview of these 
applications is given as part of the conclusion. 

This paper is divided into three parts. Part I introduces the basic concept of 

a well-connected relation (WCR) and a few of its properties which are useful 
later. Part II uses a WCR as the basic building block of any binary relation. 

Several interesting partitions of a binary relation are identified, as a result of 
which they can be separated into families that form a hierarchy. Part III 

studies one such family from universal algebraic point of view. It is to be noted 

that the Part III just introduces the broad concept of an algebra of WCRs 

without going into the details of the operations. The operations have been 

studied elsewhere [8]. 

PART I 

The concept of a binary relation may be found in the appropriate books of 
mathematics (for example [l]). In this part, we define and study a well-con- 
nected relation, which is nothing but a cross product between two sets. We also 
review some of the set theoretic operations for the sake of completeness. The 

concepts of contraction and expansion are introduced because they are useful 

[8]. Some of the theorems proved here will be used in the subsequent parts of 

this paper. 

DEFM~TION 1. A binary relation R[A, B] on the sets A and B is a mapping 

from set A to set B such that every element of A is mapped to at least one 

element of B. 
The binary relation is partial if some elements of A are not mapped to any 

element of B. 

DEFMITION 2. A well-connected relation (WCR) is a binary relation W on 

two sets A and B such that 

(vx)(x EA)(‘G)(y E B)(x WY). 

The sets A, and B are called the constituents of the WCR. 

NOTE 1. 

(1) 

(i) A binary relation is R[A, B], while a WCR is W[A, B]. We also use 
S,[AB] and S,[A], which mean the following: 

S,[AB]={(a,b):(aEA), (bEB), (aRb)} 

= R, S 

S,[A]={(~):(~EB) and(%)(aEA)(aRb)} 

=B=ImagesetofA inR[A,B]. 

(2) 

(2a) 

(3) 
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By definition, 

S,[AB]=0 iff A=0 or B=0. 

(ii) In this paper there is no need to consider partial binary relations. Also 
the mapping from set A to set B is always taken to be onto. 

Set operations can be defined for binary relations. 

(i) The union of two relations R and R, is 

where 

&bW%l=R[4B]u R&4,3,], 

and (aRb) or (aR,b)}. 

(ii) The intersection of two relations R and R, is 

where 

SR2[A2B21={(a,6):a~(A2~An~,), ~E(B,cB~B,), 

(uRb) and (uR,b)}. 

The relations R and R, are disjoint if SR, is null. 
(iii) The difference of two relations R and R, is 

where 

R,[A,,B,l= R[AB]- R,[A,,B,], 

(uRb) and (up,b)}. 

(4) 

(5) 

(6) 

From the above definition it is clear that 

(iv) Containment: A relation R is contained in another relation R,, i.e., 

R[AB]CR,[A,,B,], 
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A CA,, B c B1 and &[AB] C &,[A,B,]. 

It is a proper containment, i.e., 

R[A,B]c~[A&], 

(7) 

A CA,, 

It is equality, i.e., 

B G B, and &JAB] c&,[A,B,]. (8) 

R[A,B]=R,[A,,B,], 

A=A,, B= B, and S,[AB] = S,,[A,B,]. @a) 

(v) The complement of R[A, B] with respect to R,[A,,B,] is defined if 
R[A, B] C RJA,, B,]. It is 

R[A,B]= &[A,,B,l, 

where 

S,,[A,B,I={(~,~):~E(A~~A,), BE(B,cB,), 

(AR,b) and (ARb)}. (9) 

THEOREM 1. The intersection of two WCRs is a WCR. 

Proof. Let W[A,B] and W,[A,,B,] be the two WCRS, and let R2[A2,B2J= 

wn w,. 
Assume R2 is not a WCR, i.e., 

(3x)(x -z)(%)(Y EB~)(xRzv) 

But A,CAnA, and B2cBn B1 [from (5)]. 

[from WI 

. . @x)(x l 4 n 4)(W(y E B n 4)WW. 
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But 

and 

(Vx)(xEA)(vY)(Y EB)(x WY) 

Hence, 

(Vx)(x E A ,)(VY)(Y E Bi)(X WIY) [from (l)]. 

(VX)(XEA ~A,)(VY)(Y EB nB,) (x WY) and (x J+‘,Y). 

Hence, 

liO1 

(vx)(x~~n~,)(v~)(~~BnB,)(xRzv) [from (5)]. (1’) 

Here (11) contradicts (10). Hence the assumption is wrong, i.e., R2 is a 
WCR. 

DEFINITION 3. The contraction of a binary relation R[A, B] on the sets A, 
and B,, where A, GA and B, G B, is the binary relation R,[A,, B,] such that 

S,,[A,B,]={(u,b):uEA,, bEB,, (aRb)} (‘2) 

It is a minimul contraction if A, = A or B, = B. 

It is a null contraction if A, = A and B, = B. 

DEFINITION 4. The expansion of .a binary relation R [A, B] within another 
binary relation RJA,, B,] on the sets A2 and B, is defined if R,[A1,B1] contains 
R[A,B]andACAzcA,andBcB,cB,.ItisabinaryrelationR6A,,B,]such 
that 

SR,[A,B,]={(U,~):UEA,, bEB,, (a&b)} (‘3) 

It is a minimul expansion if A2 = A or B, = B. 

It is a null expansion if A2 = A and B, = B. 

THEOREM 2. Any contraction of a WCR is a WCR. 

Proof. Let W[A,B] be a WCR, and let M,[A,,B,] be a contraction of W. 
Then 

A,CA and B,CB [from Definition 31. 



102 SUDHIR K. ARORA AND K. C. SMITH 

Now, 

(Vx)(x EA)(VY)(.Y E B)(x WY) [from (l)]. 

Substituting A, and B, for A and B, we can say 

(Vx)(x l ,)(VY)(.Y EB,)(x WY) * ~M,Y [from (12) and (2)]. 

Hence, 

(VX)(XEA,)(V~)(~EB~)(XM,~) rs M, isa WCR [from(l)]. 

COROLLARY 1. The complement of a minimal contraction of a WCR with 

respect to the same WCR is a WCR. 

Proof. The proof is got by showing that the complement itself is a minimal 

contraction of the given WCR. 

THEOREM 3. Any minimal expansion of the intersection of two WCRs within 

the union of the same two WCRs ‘is a WCR. 

Proof. Let 

and 

Rs[&J,] = W,[A,,B,l u W2[&Bzl, (14) 

W,[-&B,l= W,[A,,B,ln Wd&J,l [from Theorem l] (15) 

M,[A,, B,] = a minimal expansion of WdA, B4] 

within R3[A3, B3]. (16) 

From the definition of minimal expansion, let 

A5=A4 and B,CB,CB,. (17) 

We have to show that M5[A5,B5] is a WCR, i.e., (V-X)(X EA&Vy)(y E 
B,)(xMg). We have 

and 



A THEORY OF WELL-CONNECTED RELATIONS 103 

from (1) and Theorem 2. From the above two expressions, with (4) and (14) 

(Vx)(x E A 1 f-l A2)(bW E 4 lJ B2)(X &Y). 

This is the definition of a WCR, i.e., the minimal expansion of the 

intersection of W, and W2 within R, is a WCR if B, = B,. Again A5 = A, G A, 
nA2 [from (5), (15) and (17)], and B5G(B3=B,u B2) [from (4), (14) and (17)]. 

Applying Theorem 2, we can write 

(Vx)(x~A,)Oly)(y~B~)(xM,y) [from (13) and UW9 

i.e., MS is a WCR. 

THEOREM 4. Two WC&, W,[A,, B,] and W2[A2, B2], are disjoint ifund on& if 
A, is disjoint from A2 or B, is disjoint from B2. 

Proof. Let A,nA2=0 and W,n W,= W,= W,. Then 

S,~A,B,I=((a,b):aE(A,CA,nA,),bE(B,cB,nB3, 

(uW,b) and (uW2b)) [from (5)]. 

But A, n A2 -0. Hence A3 -0, i.e., S,[A,B,]=0 [from (2a)], i.e., W, and W, 
are disjoint. 

Again, let 

W,n W2= W,, where &,[ A3B3] = 0. 

Then 

SW,[A~B~I={(~,~):~E(A,~A,~A~, bE(B,cB,nBd, 

(a W, b) and (a W,b)} [from (5)]. (18) 

We have 

(Vx)(x -i)(V~)(y E&)(X WIY), 

(V-x)(x EAz)(Vr)(r E B2)(x Wfl) 

from (1). From the above two expressions, we can write 

+)(x-t, ~A,)(~Y)(Y ~4 n B2) (x WY) ad (x W,Y). (19) 
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From (18) and (19), we can write 

S,~[A,B,]=C(a,b):aE(A,=A,nAz), bE(B,=B,nBJ, 

(a W, b) and (a W,b)}. 

But &,JA,B,]=0. HenceA,=A,OA,=Oor B,=BtnB2=0 [from (2a)]. 

NOTE 2. Consider a binary relation 1p [A, B ] where 

S,[AB] -0. 

Then R by definition is a WCR. 

THEOREM 5. Two WCRr are equal if and on& if their ~o~~it~~~~ are equal. 

Proof. The proof is trivial and follows from the definitions of a WCR and 
the equality of two WCRs, i.e., from (1) and (8a). 

PART II 

In this part we establish a hierarchy of the families of binary relations 
(Theorem 16). The families of binary relations are based on different ways the 
binary relations can be partitioned. Some of these partitions are unique for the 
binary relation, and this fact is brought out by appropriate theorems. Also, 
algorithms are given to find these unique partitions. Finally, this section also 
contains theorems to establish different parts of the hierarchy, which is 
summed up neatly in Theorem 16. 

NOTE 3. We use the following terminology: 

(i) A set A can be expressed as 

A= fi A,=A,uA2u-.. uA, 
i-l 

= m(A) -partition of A, 

where AinAj=O for 1 <i,j<n and i#j. 
(ii) A set A can be expressed a& 

A= ;1 Ai=AluA2... uA,, 
i-l 

=C(R)=cover of A, 
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where A,nA,20 for 1 <i,j <n. 
(iii) A relation R [A, B] can be expressed as 

= V( R ) = partition of R, 

where &[A,, Bi] n Rj[Aj, B’] = 0 for i #j, 1 < ij < n, and 

A=;Ai and B&3,. 
i-l i-l 

(iv) A relation R[A,B] can be expressed as 

R[A,B]= (J &[Ai,Bi] 
i-l 

“R,[A,,B,]uR~[A~,B~]u... uR,,[A,A] 

= C’( R ) = cover of R, 

where &[Ai, Et] n Rj[Aj, Bj] > 0 for I< ij <n, and 

A=l;A, and B=I;B,. 
i-1 i-l 

DEFINITION 5. Two partitions, n,(R) and &R), of a relation R[A, B] are 

equal if 

n2(R)= fi R2i[A2i,&i]v 
i-l 

and 

(vi)(3j)(RIi= Ru)(l <i, jc;n). 



106 SUDHIR K. ARORA AND K. C. SMITH 

THEOREM 6. Any binary relation is a partition of WCRs. 

Proof. A trivial partition of WCRs of any binary relation is one in which 

each tuple of the binary relation is considered to be a WCR. 

DEPINITTON 6. A partition 

R[A,B]= fi Wi[Ai,Bi] 
i-l 

of a binary relation R[A,B] is a canonicalpartition if 

(i) Wi[Ai, Bi] is a WCR for 1 < i <n, 

(ii) Bi is a set with a single element for 1 <i <n, 

(iii) B,#l$ for i#j and 1 <i,j<n. 

THEOREM 7. Any binary relation has one and on& one canonical partition. 

Proof. Let R[A, B] be a binary relation. Let 

B={b,,bz,...,bn}, (20) 

where b,#b. for i+j and i<i,j<n; 

Bi={bi} fori<i<n; (21) 

Ai={a:(aEA), (biEB), (aRbi)} for i<i<n. (22) 

Now, for 1 <i<n, 

A,=0 [from Definition 1 and Note l(ii)], 

&[A,,B,]=0 [from (21) (22) and (23)] 

= Wi[Ai, Bi] [from (l), (21) and (22)]. 

(23) 

(24) 

We have to show that 

R[A,B]= fi Wi[Ai,Bi]=Tc(R). 
i-l 

(25) 

It then follows that q(R) is canonical [from Definition 6 and (20), (21) and 
(24)]. Hence a canonical partition exists for R[A,B]. 

To show (25), we have to show: 

(i) A = LJ y_ ,Ai. 
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(ii) K[A,,Bi]n W,[A&J=pI for 1 <i,j<n and i#j. 

w mm- ~*L4,,4lU ~,[&B,lU * * ’ u K{A,,B,l= C&R). 

(i) Assume 

But A lr U y_,Ai (‘_’ each A, CA) [from (22)]. 

A> 6 Ai. 
i-l 

(3~) (uEA) and (u@ lJy_,Ai). 

:. (3@) (l+EB) and (aR4) [from Definition 1 and Note 1 (ii)]. 

. I aEAj [from (22)]. 

Hence, 

-a contradiction. Hence, 

A= ; A,. 
i-l 

(ii) We have 

B;n I$=0 for i+j and lrc;i,j<n [from (20) and (21)]. 

Wi{Ai,BiJn W$[Aj,Bi] -0 (from Theorem 4). 
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iii)Asslme 

. * (~(a,b))((~,b)ES,)((u,b)B{~w,u~w*U”’ u&J). 

f 
0 * 

Let 

bEB. 

b=b where 1 <j<n. 

1 

. * (a,b)ESSw,, where 1 <j<n, [from (Z), (22) and (24)], 

. . (a,b)~{&+&v,u-* uSvn} 

-a contradiction. 
Iience 

R[ABl= G(R). 

We have to show the converse, i.e., n,(R) is the only canOniCXd partition Of 

R [A,B]. Assume, there is another canonical partition V(R) and 

nc(R 1 #a(R) 

From (23, 

gen,(R)= & K[Adil. 

Now, for 1 < i <m, from Definition 6, 

Di = { 4) = a set with a single element 
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and 

B&t [from Note 3(iii) J. 
i-l 

But 

[from Note 3(iii)] 

and 
Oi #Oi for i#j, 

Bi#Bj for i#j I 
(from Definition 6). 

. . 

and 

M = n, 

(3i)(3/1(1 <ij<;n)(D,=Bj), 

from (21), (26), (27), (28) and (28a). 

(27) 

P-9 

(284 

(29) 

But 

i=l 

[from Note 3(iii)]. 

* . 

. 
. . 

(ilj)(l <j<n)(iZ$==I$) [from (29)]. 

%[ c,J!P] c q44] [from (22) and (24)J. 

(31) 

But op[ C”, O,l # y[A/, 41 [from (30)]. 

(32) 
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But (a,b)~S, (‘: (a,b)~S? and B+$,Bi]Eq(R)). 

. . (~~~)-wq, where oq[ C,,D,] ET(R). 

. . bEBj and bED,. 

But Bj and Dq are both sets with a single element. 

. . 

But Bj = DP [from (3 l)]. 

I$=D,. 

. . DP=Dq. 

. . wP[ C,, D,,] =wp[ C,,D,] [ *: a(R) is a canonical partition]. 

.*. (a,b) E S9 and S%[ C, D,]corresponds to Wj[ Aj, Bi] [from (32)]. 

This is a contradiction to (30). Hence, 

q(R) = r(R) = the only canonical partition of R [A, B]. 

NOTE 4. In a binary relation R[A, B], let 

A = {W%,.*.,%}, 

where ui #uj for i #j and I< i, j <n. Then 

S,[a,]=Image set of {a,} in relation R[A,B] 

={b:(bEB), (u,Rb)} 

If A,CA, then 

S,[A,] = Image set of Ai in relation R [A, B] 

Algorithm 1. To find the canonical partition of a binary relation R[A, B]. 

1. Findset B={b,,b2 ,..., b,}, where b,#6, for i#j and 1 <i, j<n. 
2. Find image sets S,Jb,J for i <i <n. 
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3. Let {b,}=B, andS,[bi]=Ai, andform WCRs Wi[Ai,Bi]for l<i<n. 

4. Then 

T,( R ) = the canonical partition of R [A, B ] 

= ic, W,[AiyBi] for 1 <i<n. 

Proof. The proof is quite straightforward when we note the following: 

(i) The set B here is the same as in (20). 
(ii) The sets Bi are the same as in (21). 
(iii) The image sets S,[b,] are the same as the sets Ai in (22). 

(iv) The WCRs Wi[Ai,Bi] are the same as in (24). 

Hence from (25) it follows that T=(R) is the canonical partition of R[A, B]. 

DEFINITION 7. A partition of a binary relation R[A, B] is a strongpartition if 

and 

R[A,B]= fi R,[Ai,Bi]=rs(R), where n>l, 
i-l 

A= fiAi B=fiBi 
i-l i-l 

= v(A), = q(B). 

Here R,[Ai,Bi] are called the blocks of n,(R); T,(A) and vrI(B) are called the 
image partitions of To; and R[A, B] is called a strong relation. If n = 1, then 

In, has only one block, and R [A, B] is called triuialh strong. 

NOTE 5. In the rest of the paper, and in general, a strong relation is always 
nontrivially strong unless otherwise specified. 

THEOREM 8. The famib of strong relations is a proper subset of the fami& of 

relations. 

Proof. We give a simple example of a binary relation R[A, B] which is not 
strong. Let 

S~[ABl={(a,,b,),(a,,b,),(a,,bz)}, 

A=tal,a2}, 

B={W,}. 
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It is obvious that there are only four different partitions of this relation in 

which n > 1, and all four are not strong, because we do not have a,(A) and 

7r,(B) for any of them. 

DEFINITION 8. A partition 

R[A,B]= li Wi[AilBi] where n > 1 
i-l 

of a binary relation R[A, B] is a prime partition if 

A=fiA, B=fiB, 
i-l i-1 

= TI(A), = r,(B). 

Here each block of vJR) is a WCR, and R [A, B] is called a prime relation. If 
n = 1, then R[A, B] is a WCR and is trivially prime. 

NOTE 6. In the rest of this paper, and in general, a prime relation is always 

nontrivially prime unless otherwise specified. 

THEOREM 9. Any prime relation has one and only one prime partition. 

Proof. Let R[A, B] be a prime relation. By definition a prime partition 

vp,(R) exists. To show that ITJ,,(R) is unique, assume another prime partition 

FJR) exists and 

n,,(R)+%*(R)* 

Let 

rp,(R)= fi WIi[Ali,B,i’J, 
i-l 

rpl(R) = fi W2i[A,i,B,i], 
i-l 

and let 

A= i A,i= fi Ali 
i-l i-l 
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and 

But 

SW,, ESR. 

(3j)@k)(W,in W2jZ0and Wlin W2,#m). 

Let 

from Theorem 4. 

Without loss of generality, we can assume that WV and W2, are the only 
two WCRs in r_,,JR) which have common elements with Wli. This is because 

the following argument can be extended to the more complicated case where 

more than two WCRs in rp2(R) are assumed to have common elements with 

wli* 

Let 

aEAii, 

b2 E B,i n Bx. 

. . (0,) E SW,,, 
(aA) E SW,, 

( Wn is a WCR). 

. . . (a,b,) and (a,bz) occur in W2j and W,. We have three cases: 
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Case i: (a,b,)~ W, and (a,b,)E W,,. 

. . aEAy and aEAzk, 

i.e., vr,_(R) is not a partition. 
Case ii: (a, b,) E W, and (a, 6,) E W,,.. Then 

But 

b, E B2k 

. . B, and BZk are not disjoint, 

i.e., np,(R) is not a partition. 

Case iii: (a,bl)E W,, and (a, b,)E Wzk. Then 

4 E Bzk, b2 E Bar 

But 

. . B, and B,, are not disjoint, 

i.e., .rp2(R) is not a partition. 

Hence every case leads to a contradiction. 

. . ~~,(R)=rr~~(R)=primepartition of R[A,B]. 

THEOREM 10. The fami& of prime relations is a proper subset of the farnib of 
strong relations. 

Proof. We give a simple example of a strong relation which is not prime. 
Let R[A,B] be the strong relation. Then 

SR['-]= {(al,bl)t(a,,b2),(az,b,),(u~,b~)}. 

R[A,B] has only one partition with image partitions on A and B, and this is 
not a prime partition. 
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Amcmmm 2. To find the prime partition of a prime relation, R[A, B]. 

1. Find set B={b,,b, ,..., b.} where b,+bj for i#j and 1 <i,j<n. 
2. Find image sets S,[b,] for 1 <i <n. 
3. Let S,[b,]=Ai, andfind image sets S,JA,] for i<i<n. 
4. Let S,[A,J= Bi, and form WCRs W,[A,, Bi] for i <i <n. 
5. Then 

?r,(R) = theprimepartition of R [A, B] 

= fi W,[Ai,Bi]for 1 <i<m, 
i-l 

where m < n, duplicate WCRs have been removed and the remaining WCRs have 
been renumbered from 1 to m. 

Proof. To show that 

(i) R[A,B]= UzlW,[Ai,Bil, 
(ii) ~~nA~=0 and Bin Bj=O for i<i, j<m and i#j, 
(iii) W,[A,,BJn y[Aj,Bj]=O for 1 Gi, j<m and i#j. 

. . 

(i) Let (a,bJE R[A,B]. 

i.e., a EA,. 

i.e., bj E Bi. 

(a, bi) E K[Ai,Bi] 

E II; Wi[Ai,Bi]. 
i-1 

R[A,B]C lJ Wi[Ai,Bi]- 
i-l 
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(aJ+)E II; &{Ai,Bj] 
i=t 

E W;,[A&]. 

bj EBj 

E &&%I 

and 

i.e., (Urbi>ER[A,B]. 

Hence R[A, B ] = U y_ I ~i[A,, Bi]. 
(ii) LRt A,nA,+0 for i#j and I <i,j <m, and let 
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i.e., SR[Ai] = SR[Aj]. Again, if Bi = Bj, 

&[Bil=&[B,]~ 

i.e., Ai==Aj, -.* Wi[Ai, B,] = Wj[Aj, B,] (from Theorem 5). But duplicate WCR’s 
have Been removed in step 5 of the algorithm. So i-j-a contradiction. 

. . AinAj=0 for i#j and i<i,j<m. (33) 

Again, let 

BinBi#@ for i+j and i<i,j<m. 

Let 

Then 

bpEBi 

EBj. 

SR[bp]=Ai 
=Aj 

(‘: H$ and q are WCRs). 

. . Ai=Aj. 

Hence i = j [from (33)]. This is a contradiction. Hence, 

Bin Bj=O for i#j and 1 <i, j<m. (34) 

(iii) This follows from (33) and Theorem 4. 

DEFINITION 9. An elementuty WCR, W[A,B], is one in which the second 
constituent B has a single element. 

A trivial WCR, W[A, B], is one in which Both the constituents have a single 
element. 

DEFINITION 10. A functional relation R[A,B] is a prime relation in which 
the prime partition has only elementary WCRs. 

THEOREM 11. The family of functional relations is a proper subset of the 
family of prime relations. 
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Proof. We give a simple example of a prime relation R[A, B] which is not 

functional: 

Tr-moruzhr 12. In u jhctiond relation, the canonical partition is equal to the 

prime partition. 

Proof. Let R[A, B] be a functional relation, n,(R) be the canonical partition 
given by Algorithm 1, and T_(R) be the prime partition given by Algorithm 2. 

Assume T,(R)#TJR). Let 

. . @Wj)( Ki# &)(i <i <n, 1 <j Gm). 

But W,[A,,BJ is an elementary WCR (from Definitions 6 and 9), i.e., 

Bci={bi}, where bi E B. 

Then 

S,[b,] =llci [from Algorithm l] 

= Api [from Algorithm 21, 

sR[Api] =Bpi [from Algorithm 21. 

From the previous two steps, 

bi E Bpi. 

But R [A, B] is a functional relation and Wpi[Api, Bpi] is an elementary WCR; 

. L 

. . 

Bpi={bi}=B<i, 

W,= Wpi [from Theorem 51. 
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This is a contradiction. Hence, 

n,(R) = Ir,(R)* 
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THEOREM 13. The family of functional relations on sets A and B is in one to 
one correspondence with the farnib of nonpartial, onto functions from A to B. 

Proof. Let R[A,B] be a functional relation. Define f :A+B as 

f(a)=b if andonlyif (a,b)E&[AB]. 

To show that 

(i) f: A+B is functional, 
(ii) f: A+B is nonpartial, 

(iii) f: A+B is onto. 

(i) Assume f: A+B is nonfunctional, i.e., 

. . 

f(a) = b, and b,, where b, #b2 

(a,b,) E S,[AB] and (a,h) E &[ABl. 

R [A, B] is a functional relation; 

. . R[A,B]= fi Wi[Ai,Bi] [by Algorithm 11. 
i-l 

Consider W,[A,, B,] and W,[A,, BJ, where 

. . 

. . 

B,={b,} and B,={b,}. 

&[B,]=A, and &[&]=A2 [from Algorithm 11. 

aEA and aEA, (.‘. (a,b,) and (a,bz)E&[AB]), 

i.e., A, n A2#0, i.e., R[A,B] is not a functional relation. This is a umtradic- 
tiOll. 

(ii) From Definition 1, 

@+(a EA)@b)(f(a)= b). 

(iii) From Note l(ii), it follows that f: A-B is’ onto. 
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Again, let f :A+B be a nonpartial, onto function. Define R[A,B], a binary 
relation, as 

(a,b)~&[ABl ifandonlyif f(u)=b. 

To show 

(i) R [A, B] is non partial and onto, 
(ii) R[A,B] is a functional relation. 

(i) This follows from the definition of R[A,B] and the fact that f :A+B is 
nonpartial and onto. 

(ii) We first prove that 

R[A,B’]= I; Wi[AipBi], 
i-l 

where 

Bi={bi} for l<i<n 

B={b&,...,b,,}, where bi #4 for i#j, 

and 

Ai = S,[ BJ. 

Let (a,bi)ER[A,B]. But {bi}=Bi. 

. . SR[Bi]=Ai 

and a E Ai. 

. . 

Again, let (a, bi) E LJ y_, Wi[Ai, Bi]. Specifically, let 

(a,bi) E W,[Ai,Bi]* 

. . Bi= {bi} 
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and a EA,. But Ai = S,[B,]. 

. . (a,b,)~~[AJ]. 

. . R[A,B]= ;1 Wj[Ai,Bj]* 
i-l 

But K n Wj -0 for i#j and 1~ i, j < n. This follows from Theorem 4 together 
with 

Bi={bi} and Bj={bj} 

and 

for i#j. 

. . R[AyB]= fi Wj[Aj,Bj]* 
i=l 

In the above, the r.h.s. would be a prime partition if 

AinX4j=0 for i#j, l(i,j<n. 

Assume 

Let 

Air-lAj#O. 

aEA, 

EAj, 

Ai= sR[bi], 

Aj=SR[h]. 

(a,b,)ER[A,B] and (a,bJER[A,B], 

i.e., 

f(a)=bi and f(a)=b, 
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i.e., f: A+B is not a function. This is a contradiction. Hence R[A,B] is a 

prime relation and 

R[A,B]= i$, Wi[Ai,Bi] 

= 7rJR). 

But W,[A,,B,] is an elementary WCR for all 1 <i <n by definition. Hence 
R[A, B] is a functional relation. 

DEFINITION 11. A bijectional relation R[A, B ] is a functional relation in 
which the prime partition has only trivial WCRs. 

THEOREM 14. The family of bijectional relations is a proper subset of the 
family of functional relations. 

Proof. We give an example for a functional relation R [A, B] which is not a 
bijectional relation: 

THEOREM 15. The famifv of bijectional relations on sets A and B is in one to 
one correspondence with the fami& of bijections from A to B. 

Proof. The proof is simple and on the same lines as that of Theorem 13. 

NOTE. From this point, we use the following interchangeably: 

(i) “functional relation” and “nonpartial onto function,” 

(ii) “bijectional relation” and “nonpartial, onto bijection.” 

THEOREM 16. Any binary relation lies somewhere in the following hierarchy: 

where 

~~3~~3~p3”~3~~, 

“I? = family of binary relations, 

%s = family of strong relations, 

gP = family of prime relations, 

5fF = family of functional relations, 

‘%B = family of bijectional relations. 

Proof. Obvious from Theorems 8, 10, 11 and 14. 
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PART III 

The concepts of universal algebra are well known [7]. In this section, we 
apply some of these concepts to the family of prime relations. Most of the 
universal algebraic concepts used here are from the chapter on Algebraic 

Structures in [7]. 
It is well known that the concepts of morphisms, congruence relations and 

functions can be interrelated [7]. We show that the concepts of “morphic 
relations,” congruence relations and prime relations can also be interrelated in 

a very similar way, thus generalizing the known interrelations. 
We first define an “algebra of WCRs,” an “image algebra” and a “morphic 

relation.” We then show that morphic relations are a more ‘general concept 

than morphisms (Theorem 17). We then show the interrelation between equiv- 

alence/congruence relations and the hierarchy of binary relations (Theorems 
18 and 19). We then show the interrelation between quotient algebras and the 

algebra of WCRs (Theorem 20). Finally the morphic congruence theorem 

(Theorem 21) follows very simply. 

DEFINITION 12. An algebra of WC%, $, over a prime relation P, is a pair 
(P, !J) where s2 is a set of operations on the WCRs in the prime partition TJP), 
i.e., 

P= fi Wi=7rp(P), 
i-l 

where Wi E rp(P) for 1 <i <k and Wj E wp(P), 

k = “A&y” of o, 

DEFINITION 13. An image algebra !?A ($) is an algebra (A, a’) such that: 

(i) P[A,B] is a’prime relation. 

(ii) ($ = (7$,, 0). 
(iii) For every w EB there exists a unique w’ Es2’. 
(iv) Both o and o’ are of the same arity. 
(v) If o[ W,, W,, . . ., W,]= 4, then 

w’[u,,u2 ,..., Uk]‘Uj, 
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where 4 EAi for 1 <i <k and aj EAj, with Ai,Aj the first constituents of Wi, 

5 
(~9 (A,~)~~~(~~). 

DEFINITION 14. A prime relationp is morphic if &!.., S,(4) and !l,($) exist. 

THEOREM 17. 7% fami& of onto morphism is in one to one correspondence 
with the family of morphic, functional relations. 

Proof. We show that for every morphism there exists a morphic, functional 
relation and vice versa. 

(i) Let f :A-+B be a morphism where f is onto and nonpartial (follows 
easily from the definition of morphism@, i.e., there exist two algebras (A,QJ 
and (B,&,) such that for every oA, in St, there is a unique we, in Qt,, wA, and 
os, are of the same arity, and 

f(fh,(aba2, . . ..ak))~ws.(f(a,),f(al),...,f(ak))= 4. (35) 

Now f is a functional relation (from Theorem 13 and Note 7). Let the prime 
partition off be 

rp(f)= fi W,[Ai,Bi]* (36) 
i-l 

Define Q, =(n,,o), where for every pair w,,,w,, there is a unique w of the 
same arity and 

where 

and 

ai E Ai in Wi[A,,Bi] for l<iQ;k 

6,~ Bj in FQ[A$3,]. 

To show that SJ~(($}=(A,Q,) and !IB(6$,)=(B,S&). From Definition 13, 
conditions (i) to (iv) are met by the co~~ction of ISa. In (36), 

Wi[Ai, Bi] for 1 < i <n are elementary WCRs 

(‘.’ f is functional), i.e., Bi = {Z+) =a single element set. Again, in (37), 

aiEAi and f(aJ= bj for l<i<k. 
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Hence from (35), 

where 

~s,(f(a*),f(a,),...,f(u,))=~8,(~1,b2,...,~k)=~j, 

6, E B,, b, E B2, and so on. 

Hence s,(6Tp)-(B,P,). Again, from (35), 

where 

al EA,, +E& and so on. 

This is true even if a,, uz,. . . are replaced by other elements in A ,, AZ,. . . , i.e., 

where u,, EA,, a*, EAT, and so on. But 

f(ad = b, f(a2,) = b2, ad SO on. 

To prove this, let 

f@d +h 

= bi where i#l, 

i.e., 

Ull EAi h Wi[Ai,Bi]. 

But 

011 EA, in W,[A,,B,], 

i.e., Ai II A, #0 (violates definition of prime partition). 

. . 

. . 

f(~,,) = b, f(u2,) = 4, and so on. 

f(W”,(u,,,u,,,...,ukl))=~B,(bl,q,...,4) 

-4. 
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Hence from (37) and the above expression, it follows that 

(ii) Let f[A,B] be a morphic, functional relation; 

. . rp(_f)= fi Wi[Ai,Bi] 
i-l 

and 

where w( W,, W,, . . . , W,)= Wj for w~s2. From Theorem 13 and Note 7, 

f is a non partial, onto function, f : A-B. 

By definition of a morphic, functional relation, 

S,($) and J,(&$,) exist. 

It is a simple matter to show that 

and (35) is true in this case, makingf a morphism. 

THEOREM 18. If R[A, B] is prime and each WCR in the prime partition has 

equal constituents, then R is an equivalent relation, and vice versa. 

Proof. We show that R[A, B] is reflexive, symmetric and transitive. Let 

71,(R)= I! Wi[Ai,Bi], 
i-l 

where Ai = Bi for 1 Q i <n. Consider a, b, c E A. Let a E Ai. Then 

aEBi (‘.* A,=B,) 
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and 

aRa (“.’ Wi[Ai,Bi] is a WCR). 
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Hence R[A,B] is reflexive. 
Again, let 

aEA, and aRb. 

Then 

&~3i (‘.’ IVJ&Bi] is a WCR in or,). 

. . 

. . 

bEAi and aEBi (‘: Ai=Bi) 

bRa (‘.’ W,[A,,Bi] is a WCR). 

Hence R[A,B] is symmetric. 
Again, let 

aRb, bRc and aEA,. 

1 

. . bE& and bEAi 

(‘.’ w[A,,B,] is a WCR and Ai=&). 

CEBi 

aRc I f’.’ Wj[Ai,Bj] is a WCR) 

Hence R[A, B] is transitive. 
To prove the converse, we can assume R[A, B] to be reflexive, symmetric 

and transitive and A = B. A partition of A (and hence B) exists because R is an 
equivalence relation. 

Consider one class [a] of elements related to a where a EA and a E B. Let 
RJ[a],[a]]gR[A,B] be a relation such that 

Then R, is a WCR whose constituents are equal (trivially true). 

. . R[A,B]=R,uR,U-** uRm 
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where n is the number of elements in A (or B). Again, 

&n Ri=O 

(. * * each is a WCR and their constitutents are disjoint) for i #j and 1 < i, j <n. 

. . R[A,B]=,,+=T~(R). 

Here wp(R) is prime and each WCR has equal constituents. 

~EOREM 19. Zf R[A,B] is equivalent and morphic, then it is a congruence 

relation, and vice versa. 

Proof. Let 

R[A,B]= fi Wi[Ai,Bi]=~JR) 
i-l 

and $, !l,(Q..) and 5,($) exist. This follows from Theorem 18 and definition 
of a morphic relation. Further, 

A=B, 

A,=B, for l<i<n, 

from Theorem 18 and the definition of an image algebra. 

NOTE 8. [Implicit here is the definition that two algebras are equal, i.e. 

%A(%> = %3(%) 

if A =B and the operations are identical for both.] 

Let 

$ = (rf$J), ~“($)=sB(~~)=(A,~“)~(B,S2,). 

. . WI(W~9W*t**-,wk)=wj for w,EQ 
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and 

%,(w%,...,%)‘aj 

for wA, EQ,, (I, EA,, UREA, and so on, 

ag,(bi,&,***,bk)=bj 

for o,,, Es2,, b,EB,, b2E B, and so on. But 

A,= B,, A,= B,, 

and so on (’ . * R is an equivalence relation). Also 

a,Rbi, a&r, 

andsoon(‘.‘W,,W, ,... areWCRs).Similarly, 

ajEAj, b’Bj, Aj=Bj and ajR4. 

Lastly 

Q,, =a, and oA,=ws.,. 
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Hence, 

aiRbi for l<i<k 

* wA(ui,az, . . . . ak)=OA(b,,b*,...,bk). 

This is the substitution property, and hence R[A,B] is a congruence relation. 

Conversely, let R be a congruence relation on an algebra (A,S2,), i.e., 

aiRbi for l<i<k 

* OA(al,az,...,ak)=OA(b,,bZ,...,bk) for aAEStA. 

From Theorem 18, R[A,A] is prime and each WCR of the prime partition has 
equal constituents. Let 

R[A,A]= fi Wi[Ai,Ai]=Tp(R). 
i-l 
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To show that R[A,A] is morphic, we have to show that 9 and $,(@,) exist. 
Let 

be such that 

w(W*, w2,..., Wk)= Wj if and only if ~,+(at,fz~,...,~~)‘=~~ 

where 

UlEA,, UZEA, ,..., a,EAj, wE!J and tiAEaA. 

8.. is unique because of the following: if 

Qb,,bz ,..., b,)=b, 

where a,#b,, a2+=b2,...,q#~ and 

alRbl, a2Rb, ,..., ajR4., 

then 

b,EA,, b,EA, ,..., @EAi 

(‘.’ TJR) is a prime partition). Hence again we get 

W(W,,Wz I..., W,)= wj. 

Also 

W$)=WQ (trivially true). 

Hence R[A,A] is morphic. 

DEFINMTON 15. Let (A, a,,) be an algebra and R a congruence relation; then 
the motifs algebra of R, i.e. (A/R, Q), is 

where 

w([a,l, [+I,. . . , [akl)=[WA(al,a2,...,ak)], 
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THEOREM 20. The quotient algebra of a congruence relation R [A,A] is 
isomoqhic to the algebra of WCRs, apa( 

Proof. All this theorem states is that the quotient set A/R can be replaced 
by the set of WCRs in the prime partition of R[A,A]. The proof is simple and 
is left as au exercise for the reader. 

THEO- 21 (Morphic-congruence theorem). 

(i) On two sets A and B, if a morphic relation R[A,B] exists, then two 
congruence relations, C’ on A and C, on B, always exist such that the quotient 
algebras are isomorphic to the algebra of WCRs. 

(ii) On two sets A and B, if two congruence relations C, on A and C, on B 
exist such that the quotient algebras are isomorphic, then a morphic relation 
R [A, B ] always exists. 

Proof. (i) Let R[A,B] be a morphic relation, i.e., 

R[A,B]= I! Wi[Ai,Bi]=rr,(R), 
i-l 

and 

all exist. Also, 

A= fiAi 
i-l 

and 

B= fiBi 
i-l 

(from the definition of a prime partition). Define C’ as follows: 

(aCAb) ifandoulyif 

(3i)(l <i<n) (aEAi) and (bEAi). 
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Similarly C, is given by 

(aC,6) ifandonlyif 

(3i)(l <i<n) (uEB~) and (bEBi)* 

~/CA={4,&..,4#} 

and 

B/G={B,,B,,...,B,}. 

Let the quotient algebras be 

such that 

where w,~&, o”,EG” and u,EA,, +EA,, and so on, and 

where y E& wBz E& and b1 E B1, &E BZ, and so on. The proof that $, 
(A/C,, a,) and (B/C’, 51,) are isomorphic follows easily from the above 
definitions and is left as an exercise. 

(ii) Let C, and C, be two congruence relations, and let (A/C,,Q,) and 
(B/C,, &) be two quotient algebras which are isomorphic, i.e., 

where 

f :A/C,t*B/Cg (i.e. a bijection), 

and 
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Then define R[A,B] as 

133 

and 

where 

for o EQ. The proof that R[A, B] is morphic follows from the above defini- 
tions and the definition of an image algebra, and is left as an exercise. Here the 
image algebras are in fact the original algebras based on which the quotient 
algebras were defined. 

CONCLUSION 

The theory developed in this paper has been applied to the dependency 
structures in a relational data-base which were originally studied by Codd [2, 
31. When one tries to express functional dependencies and multivalued de- 
pendencies in terms of WCRs, the more general contextual dependencies 
follow in a natural way. (It is to be noted that contextual dependencies are the 
same as Nicolas’s mutual dependencies. However the approaches taken by 
Nicolas and us differ considerably. Our contextual dependencies only confirm 
Nicolas’s conclusions). In Part III we have studied the family of prime 
relations from a universal algebraic point of view. In particular we have 
defined an algebra of WCRs. The types of operations on WCRs have been left 
out and have been studied elsewhere [a]. One can conceive of several opera- 
tions to manipulate WCRs. For example, in a canonical partition, the WCRs 
are all elementary and we can think of the union, intersection, difference and 
so on of WCRs belonging to two binary relations. Other operations can be 
thought of if one considers the two canonical partitions in a binary relation- 
namely, one in which all WCRs have a single element in the first constituent, 
and the other in which they have a single element in the second constituent. 
Now any intersection of two WCRs from these two partitions will always give 
a single “tuple” of the binary relation or null. This could be thought of as the 
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basis of conversion from a canonical partition to the trivial partition in which 
every “tuple” is a WCR. 

Lastly we note two interesting points. Firstly, in [14] the concept of a 

DBTG set has been introduced. A DBTG set is nothing but a partition of 
elementary WCRs. Secondly, in [ 151 Fagin has introduced the concept of a 

boolean dependency. We note that any boolean dependency describes some 

particular arrangement of elementary WCRs. 
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