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The objective of this paper is to present a practical approach to image restoration for 
computer vision applications. Emphasis is placed on the practical application of restoration 
processes to images obtained from a commonly employed camera (vidicon) possessing typical 
degradation sources. A brief review of applicable standard image processing techniques is 
given in conjunction with the description of a typical distortion process. Three types of 
preprocessing are found to be effective: noise filtering, radiometric correction, and inverse 
filtering. A case study outlining a practical approach to extract the original input image from 
its distorted counterpart is then presented. 0 1988 Academic Press, I I I C .  

1. INTRODUCTION 

In the literature, there exists much work concerning all aspects of image processing 
theory, whether it be linear filter theory or nonlinear correction algorithms [l]. 
However, very few researchers have presented a more practical approach to dealing 
with the entire restoration process, linear and nonlinear methods alike. In addition, 
even less work seems to exist in the area of image restoration directed at applica- 
tions for computer vision. A complete model of the distortion process exhibited by 
the commonly employed vidicon camera is thereby presented, followed by a 
practical procedure to extract the original input image from its given distorted 
counterpart. 

Emphasis is placed on preparing the image for subsequent computer vision 
processing as opposed to human vision processing. This point cannot be over- 
stressed, for the two processes are quite unique and distinct. Computer vision 
processes which include edge finding and segmentation algorithms [29] are clearly 
not as robust as those exhibited by the human visual system. They may be easily 
fooled and led astray by local perturbations in the imagery. The human system, 
however, easily overlooks minor distortions and further unambiguously interprets 
most images which would seem to be grossly distorted and buried in noise. 
Therefore, in order to quantitatively analyze the results of an image restoration 
process, as a computer vision algorithm does, graphical plots not grey-scale images 
are required. Grey-scale images which seem acceptable in quality to humans may, in 
fact, be quite unacceptable to a computer. Only through plots can we accurately 
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observe any resulting noise, blurring, and radiometric distortion which may confuse 
a computer vision algorithm. To this end, the images presented are in the form of 
graphical plots of the grey-scale images. 

In some computer vision domains where geometric precision is critical, it may be 
necessary to account for nonlinear geometric distortions of the camera. The follow- 
ing restoration process does not account for such effects and the interested reader is 
urged to refer to [30] which describes a general methodology for geometric correc- 
tion in three-dimensional space. Nevertheless, many computer vision tasks still 
require calibration of the camera to determine the correspondence between the 
image geometry and the actual 3D geometry. Provided that significant geometric 
correction is not necessary, the calibration stage should occur after preprocessing. 
This is necessary to account for any further geometric distortion introduced by the 
preprocessing stages. That is, both radiometric correction and inverse filtering may 
adversely afIect the relative geometric position of the imagery which will un- 
doubtedly affect any prior geometric calibration. 

All imaging systems have non-ideal image formation processes due to several 
degradation sources. Three types of degradation [2-31 are considered with respect to 
a vidicon camera: 

l intensity nonlinearities (radiometric distortion) 
l bandwidth reduction 
l noise distortion. 

Nonlinearity occurs in every recording process. This nonlinearity, to be referred 
to as radiometric distortion, may involve intensity nonlinearity as well as spatial 
nonuniformity, i.e., radiometric distortion may be viewed as a nonlinear shift 
variant (NLSV) process. All physical recording systems are also band limited, 
causing a loss of resolution. This blurring process is assumed to be linear shift 
invariant (LSI). The measurement process introduces noise to the image as well. 
This noise must be filtered out without causing a further blurring effect on the 
image. 

The overall recording process for the case of a vidicon camera can be described 
by (1): 

g(x, r> = s( 1” I” h(x - r, Y - s)f(r, s) drds, x, Y) + n(w); (1) 
-m -cc 

SC., *, .) represents the radiometric distortion which is a function of the intensity 
and position (x, y) of the particular pixel, h( ., .) is a linear spatial operator that 
takes into account the bandwidth limitation, n(. , 0) is the random noise, which is 
assumed to be additive, f( . , .) is the ideal image, and g( . , .) is the measured image. 
A discretized version of (1) follows: 

g(k,Z)=S 
r 

f f h(k-m,z-n)f(m,n),k,Z +n(k,z). (2) 
ma-00 UC-m 1 

The preprocessing to be described will attempt to recover f( ., .) from g(. , .). 
However, this restoration process is extremely difficult due to lack of exact informa- 
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tion concerning S( . , . , s), h( . , e), and n( . , . ). These degrading processet are 
measured experimentally whenever possible in order to compute an estimate f( . , .) 
of f(. , .) given the information g(. , m). The mean square error is used as the 
criterion to determine this optimum estimate. 

First of all, a filter is applied to the image g(. , .) such that n (. , .) is eliminated as 
much as possible without affecting the actual image f(. , a) signikantly. The filter to 
be used must have certain properties, such as noise reduction and edge preservation. 
The new image produced is 

g’(k,I) = s 2 
i 

f h(k - m,l-iz)f(m,n),k,I +n(k,I)-li(k,l) 
m--co ?I==--co ) 

(3) 

where n (k, 1) - A (k, I) is the reduced noise in the image g’( k, r), and it is assumed 
that f(m, n) has been unall’ected by the noise filtering process. 

A radiometric correction NLSV process, S-‘, is applied to g’(., .) in order to 
compensate for this type of distortion. S-’ is measured experimentally and is 
obviously not ideal. The new image produced has the general form of (4): 

g”(kJ) = f f h(k - m,l- n)f(m,n)+ n,(k,Z). (4 
m---m n=-m 

It is assumed that nS(k, I) is negligible, resulting in (5): 

g”(k,l)= F 2 h(k- m,I-n)f(m,n). (5) 
m---m n--m 

It may be noted from (5) that the input and output images are related by a 
convolution operation. In order to extract the original image, f(k, I), from the 
output image, g”(k, I), a deconvolution is required. In the frequency domain, this 
may be expressed as an inverse filter. Rewriting (4) in the Fourier domain as (a), 

G”(u, u) = I+, u)+, u) + N(u, U) (6) 

an inverse or restoring filter, R(u, u), may easily be found from H(u, u); 

H*(u, 4 R(u9 u, = IH(u, u) I2 (7) 

where H*(u, u) denotes the conjugate of H( U, u). This quite trivial filter assumes 
that h(k, 1) is known exactly and that no noise is present. It is therefore very 
inefficient near the zeroes of H(u, u), where R(u, u) goes to infinity. If the noise is 
non-zero at these frequencies, the estimated image will be poor: 

I+, u) = R(u, u)G"(u, u) + 
Nu, u)H*b, 4 

IH(u, u> I2 
(8) 
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FIG. 1. Restoration process. 

Additional noise is added due to the approximations of h(k, I) to the true impulse 
response and of r(k, I) to the true inverse of h( k, I). The former approximation is 
due to an inaccurate estimate of the true camera response and the latter is due to the 
actual filter implementation. 

Rewriting (8) in the space domain and including the aforementioned additional 
noise, (9) is obtained, 

f(k, I) = r(k, j>*{ g”(k, I) + n,(k, l>} + q(k, f), (9) 

which may be simplified to (lo), 

{(k, 1) = r(k, I)*g”(k, I) + n(k, I), (10) 

where * signifies convolution, and fik, 1) represents the approximation to the 
original image f( k, I). The noise term, n(k, I), may become quite sign&ant, as 
mentioned previously. This is dealt with by further processing with a filter having 
similar properties as the noise filter discussed earlier. Figure 1 summarizes the 
overah process discussed above. 

2. NOISE FILTERING 

An image may be subject to noise and interference from several sources including 
electrical sensor noise, scanner noise, noise introduced by an optical system, and 
noise due to analog-to-digital conversion. These noise effects can be minimized by 
classical statistical filtering techniques (restoration filters) or spatial ad hoc processing 
techniques [l]. The success of each of these filters is dependent on the type of noise 
to be filtered and on the tolerable additional noise introduced to the image as a side 
effect. 

In many computer vision systems, edges are of prime importance since they define 
object boundaries from which features and other information are extracted. Any 
noise filtering process, then, should remove unwanted noise such as random im- 
pulses without further blurring. Two filters have been investigated in this regard [4]: 
(1) a mean filter and (2) a median filter. The mean or low pass filter simply replaces 
the center pixel of a sliding two-dimensional window with the average or mean of 
the pixels within the window. The median value of a discrete sequence of length N 
is defined to be that member for which (N - 1)/2 elements are smaller or equal in 
value, and (N - 1)/2 elements are larger or equal in value. 

Median filtering has two main advantages [5]: (1) it preserves sharp edges and (2) 
it is very efficient for smoothing spiky noise. These advantages led to their adoption 
as pre-filters for smoothing images with spiky noise distributions and post-filters for 
smoothing amplified noise or spurious oscillations due to high-emphasis or restora- 
tion filtering [6]. However, in cases where the noise is not spiky, the mean filter has 
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FIG. 2. Sample image, g(k, I). 

better noise suppression characteristics [5]. Figure 2 represents a degraded image 
which exhibits spiky noise [4], thereby warranting the use of a median filter. 

The real-time hardware implementation of a two-dimensional median filter can be 
quite costly since n pixels must be sorted before their median is actually known. A 
separable median filter has a much simpler implementation at the cost of a slight 
decrease in performance. It consists of successive applications of a one-dimensional 
median filter on the rows and columns of an image. Table 1 compares the actual 
performance obtained for the two types of median filters for observed levels of input 
intensity and noise. A separable five-by-five tilter seems to present the best trade-off 
between noise suppression, edge preservation, and cost [4]. Figure 3 represents the 
image in Fig 2 after processing with such a filter. Various software and hardware 
implementations may be found in [6-121. 

3. RADIOMETRIC DISTORTION 

The vidicon camera introduces radiometric distortion into the imagery that it 
produces. There are two primary causes for this distortion. The first is due to the 
nonlinear response of the camera to light intensity in object space. The second is 

TABLE 1 

Noise Performance of Median Filters 

Input 
intfmsity 

go4 

Input 
noise 

2 
0” 

output no& (n = 9) 

2-D Separable 
median median 

Output noise (n = 25) 

2-D Separable 
median median 

205.3 12.917 1.8153 2.1693 0.8073 0.9776 
102.9 2.0199 0.3700 0.4162 0.2303 0.2484 

64.92 0.9578 0.2014 0.2327 0.0815 0.0965 
40.96 1.8119 0.7955 0.8349 0.6251 0.6576 
32.54 1.9974 0.9483 0.9821 0.7889 0.8152 
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FIG. 3. Figure 2 after median filtering, g’(k,l). 

due to the lack of spatial uniformity in the system’s response to light. That is, the 
camera’s nonlinear response varies with respect to its field of view [13]. 

Computer vision algorithms are also adversely affected by radiometric distortion 
when grey level intensities are required. This distortion becomes even more sign% 
cant in the case of colour vision systems [4,31]. For example, thresholds [29] are 
commonly utilized in computer vision algorithms; however, they are not dependent 
on either the particular area of the image in which they are applied nor the intensity 
level of that area. Although two ditferent regions of the output image from a camera 
may have similar intensities, their true intensities may vary sign&antly in the 
original image, thereby potentially causing a vision algorithm to make an incorrect 
decision based on a given threshold level on the output image. In other words, 
radiometric distortion which varies with the particular area of an image, may quite 
easily lead a vision algorithm astray. It is imperative that a uniformly ilhuninated 
shade of grey (or red, green, blue) produce a uniform grey level image in the camera 
output. It is also vital that the input-output intensity relationship be linear. 

One very simple correction technique is to use a template for all images (Fig 4). 
By recording a uniformly illuminated shade of grey at an average level of intensity, 
this template may be used to remove spatially varying shading effects [13]. An 
implementation may be found in [14]. More complex correction techniques require 
the recording of several uniformly ill&ted shades of grey at varying levels of 
intensity within the camera’s dynamic range. Interpolation techniques are then 
applied to remove the distortion effects. The result in an image whose intensity 
varies linearly with the ideal image intensity. 

Due to the nature of the vidicon camera’s radiometric distortion, a best-fit cubic 
polynomial was chosen as the interpolating function. This provides a more precise 
correction exhibiting a greater degree of precision throughout the entire dynamic 
range of the camera. 

If the response is slowly varying enough, as it is in this case (Fig 5), the same 
correction factor may be applied for all pixels within a given region of the field of 
view. It was decided to compute the cubic coefficients for each two-by-two pixel 
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FIG. 4. Typical radiometric correction function, S-‘(g’(G), U). 

area, thereby effectively reducing the computational and/or memory cost by a 
factor of four, without significanlly affecting the precision. 

The most general input/output relation for system intensity nonlinearities is 
given by (11) [15], 

where f( k, 1) is the input intensity and g( k, I) is the output signal. Perfect intensity 
correction would be possible if we could return to the ideal image f(k, I) with the 

FIG. 5. Uniformly illuminated shade of grey after camera distortion. 
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knowledge of g(k, 1) at any point (k, 1). This operation can be written as 

S(k I) = s-y !a, % k, I> = Sk,: { dk O}, 02) 

where S-’ is the inverse distortion operation and fik, I) is the ideal image estimate. 
Since the nature of the sensor response is approximately third order and it is not 
desired to limit its dynamic range, the approximation to S-’ is made, 

f(i-4) = d,(i) + d,(ii)g(ii) + d*(ii)g*(ii) + d3(U)g3(U), (13) 

where Ii is the position of the pixel (k, I), and the d,(U) are the position dependent 
coefficients. 

Using five plates [16] representing uniformly illuminated shades of grey of known 
intensity, as inputs, the coefficients, di( U), are determined for each two-by-two pixel 
area. Linear least squares estimation theory is used to fit a cubic polynomial such 
that the mean squared error is minimized. A typital polynomial is plotted in Fig 4. 
Using Fig 5 as the input, g(E), to (13), Fig 6, f(k), results. f(U) is the intensity 
estimate of the original plate having a uniformly illuminated shade of grey. Figure 7 
is the resulting image after radiometrically correcting the image of Fig 3. 

4. INVERSE FILTERING 

As mentioned previously, edges are of prime importance to computer vision 
algorithms. It is therefore necessary to enhance the blurred edges produced by the 
camera. However, the transfer function or impulse response of the camera used 
must be determined before an inverse filter can be designed. Due to the extreme 
difficulty and impracticality of experimentally measuring its response it seems that 
the best approach is to estimate it. 

)_\\,,,/ /. NfX 
FIG. 6. Figure 5 after radiometric correction. 
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FIG. 7. Figure 3 after radiometric correction, g”(k, I). 

Several papers [17-191 discuss the modulation transfer function of electro-optical 
devices, which may be expressed in the form of (14) 

H( to,, toy) = exp - [ (“l”i’], 

where n is the modulation transfer index, w, is the frequency constant in cycles per 
millimeter, wX is the spatial frequency, U, in the x direction, and w,, is the spatial 
frequency, U, in the y direction. From the manufacturer’s specikations [20] and the 
papers previously mentioned, the values of n and w, have been determined to be 
approximately equal to 1.6 and 26 cycles per millimeter, respectively, for the 
particular vidicon tube used. Figures 8 and 9 illustrate the transfer function and 
impulse response, respectively, using these values. 

FIG. 8. Camera transfer function, H( ax, y,). 
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Y X 

FIG. 9. Camera impulse response, h( k, I) 

The inverse restoration filter, R( u, u), is now computed using (15): 

(15) 

The Fletcher-Powell nonlinear minimization algorithm is used to design a seeond- 
order infinite impulse response (IIR) two-dimensional filter by minim&kg the mean 
squared error, (16), between the ideal filter R( u, u), and the designed filter, R'( u, u) 
PI, 

meansquarederror= t ;IR(k,I)--R'(k,l)/*, 
k-0 I=0 

(16) 

where N represents the maximum spatial frequency in the x and y directions. That 
is, (16) represents the mean squared error over the entire frequency space. Figure 9 
illustrates the transfer function of the ideal filter, R(u, u). The designed f&r takes 
the following form in the 2 domain: 

,io ,+(L +tw 
R'(zl,z2) = ;- ;= 

c c b(k,, k*)ZpZ;k" ' 
k,=O k,=O 

(17) 
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TABLE 2 

IIR Filter Coefficients 

a(i, A 1 2 3 

1 -9.135 x 10-z - 0.1982 -8.546 x 1O-2 
2 - 0.1982 3.412 5.3666 
3 -8.546 x 1O-2 5.3666 1.196 

b(i, j) 
1 3.853 4.018 0.8475 
2 4.018 4.177 0.8753 
3 0.8475 0.8753 0.1797 

where a(l,, I,) and b(k,, k2) are computed from (16) and tabulated in Table 2. 
These values define a filter which seems indistinguishable from the ideal [4] and will 
therefore not be reproduced here. Had the filter specifications been more stringent, a 
fourth or higher order implementation may have been required. Figure 11 represents 
the image of Fig 7 after inverse filtering by convolution with the filter specified by 
(17). Although somewhat difficult to observe, the restored image does indeed have 
pronounced edges. Various hardware implementations of inverse filters may be 
found in [21-281. 

It is also noted that the matrices represented by the filter coefficients in Table 2 
are symmetric due to the symmetry of the inverse filter transfer function (Fig 10). 
R’( U, u) is not isotropic as predicted from (14) since it has been shown [32] that the 
imposition of exact circular symmetry on the class of causal recursive filters results 
in a denominator polynomial of unity. Therefore, to achieve a good approximation 
to a circularly symmetric filter, octagonal symmetry was imposed. This leads to 
numerator and denominator matrices which are symmetric (Table 2). 

Due to noise and spurious oscillations which may be introduced into the digital 
imagery by the restoration filter, a separable three by three median filter is further 

FIG. 10. Inverse transfer function, R(w,, a,,). 
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FIG. 11. Figure 7 after inverse filtering, f( k, I). 

utilized to reduce these effects. Figure 12 gives the image of Fig 11 after further 
noise filtering. Unfortunately, due to the nature of the degradation problem the true 
ideal image, f(k, l), is not available for comparison with its approximation, 
f’(k, I), in Fig 12. 

5. CONCLUSIONS 

A practical approach to image restoration for applications in computer vision has 
been presented. It has been shown that four preprocessing stages are necessary for 
acceptable image restoration. A separable median filter is required to eliminate 
noise as well as preserve edges at a relatively low cost for real-time applications. A 
radiometric correction procedure employing a best-fit cubic polynomial is necessary 
to achieve an acceptable level of quality. Finally, a second order IIR inverse filter is 
required to reduce any blurring effects followed by noise filtering to further 

FIG. 12. Figure 11 after median filtering, f(k, I). 
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eliminate noise and spurious oscillations. This practical approach has been applied 
as a preprocessing stage for the authors’ work in colour computer vision [4, 311. 
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