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Abstract. In this article, an approach to improving the performance of robot continuous-path operation is 
proposed. This approach utilizes a multilayer feedferward neural network to compensate for model uncertainty 
associated with the robotic operation. Closed-loop stability and performance are analyzed. It is shown that the 
closed-loop system is stable in the sense that all signals are bounded; it is further proved that the performance of 
the closed-loop system is improved in the sense that certain error measure of the closed-loop system decreases 
as the network learning process is iterated. These analytical results are confirmed by computer simulation. The 
effectiveness of the proposed approach is demonstrated through a laboratory experiment. 
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1. Introduction 

In many industrial operations, a robot is required to follow a continuous path accurately. 
An example of this type of operation is arc welding, where the end-effector of the robot 
is required to follow a prescribed path with a prescribed velocity. Currently, industrial 
robots for continuous-path operation (also known as trajectory tracking) are "programmed" 
by the so-called "walk-through" method, where an operator physically guides the robot 
through a sequence of desired movements which is then stored in the controller's memory. 
Such a programming method is time consuming and uneconomical, because during the 
walk-through, the robot is out of production activity. 

An alternative to the walk-through method is the so-called "off-line programming" method, 
where a high-level programming language is used to write a control program which speci- 
fies actions of each actuator that would produce the desired motion of the robot. Currently 
industrial robots are PID-controlled. (A PID controller is a controller with three terms 
in which the output of the controller is the sum of a proportional term, an integral term, 
and a differentiating term, with adjustable gain for each term (Doff, 1992).) Off-line pro- 
gramming for continuous-path operation based on PID control may not produce the desired 
robot motion for the following reason. Since the robot dynamics is nonlinear while PID 
control is a linear-control method, applying PID control to the trajectory tracking problem 
would require a gain scheduling approach using local models; that is, the robot dynamics is 
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linearized about some operating points so that the control gains can be selected to achieve 
certain performance specification. The trajectory, however, varies with time (as opposed to 
a set-point), therefore the gains so selected may not be appropriate due to the linearization. 
As a result, significant tracking error may occur. 

A technique known as "computed torque" (Spong & Vidyasagar, 1989) has been shown 
to be an effective alternative to PID control under a condition called "exact cancellation 
of nonlinearity". In the computed torque method, control actions are generated based on 
a mathematical model of the robot. Exact cancellation of nonlinearity would result in a 
linear decoupled system, but it requires that the parameters in the dynamics model of the 
robot be known exactly. Failure to meet this condition leads to certain undesirable signals 
called "uncertainty", which must be compensated in order to improve the performance of 
the robot in continuous-path operation. 

Investigations dealing with uncertainty reported in the robotics literature can in principle 
be classified under the following two approaches: robust control and adaptive control. The 
premise of robust control (Corless & Letimann, 1981) is that although the uncertainty is 
unknown, it is possible to estimate the "worst case" bounds on its effect on the tracking 
performance of the manipulator. The robust control law is designed with the objective to 
overcome the effect of the uncertainty (rather than to "cancel" the uncertainty so that a linear 
decoupled system is obtained). In the adaptive control approach (Ortega & Spong, 1989), 
the basic premise is that by changing the values of gains or other parameters in the control 
law according to some on-line algorithm, the controller can find a set of values for these 
gains or parameters so that the trajectory tracking error is reduced. Stability analysis of 
these approaches often makes use of the Second Method of Lyapunov, which guarantees 
that the tracking error will be reduced to zero or a small neighborhood of zero as time 
goes to infinity. Other than in the context of exponential stability, which is much more 
difficult to obtain, Lyapunov stability generally provides no clear insight about the transient 
performance of the manipulator (Spong & Vidyasagar, 1989). 

A class of computational models known as neural networks has been applied to system 
control in general and to robot control in particular, e.g., (Miller, Sutton & Werbos, 1990). 
(The use of the word "neural" to describe such computational models stems solely from 
modern convention. Although their structure may have been derived from neuronal mod~ 
els of the central nervous system, the computational models discussed in this article are, 
at most, only mathematical abstractions of biological neuronal systems.) Justification for 
using neural networks for robot control is based on the following properties of neural net- 
works: (i) The ability of the neural network to "learn" (through a repetitive training process) 
(McClelland & Rumelhart, 1986) enables a controller incorporated with a neural network 
to improve its performance. (ii) The ability of the neural network to "generalize" what 
it has learned (Denker, et al., 1987) enables the controller also to respond to unexpected 
situations. (iii) The structure of neural networks allows massive parallel processing, es- 
pecially when the neural networks are implemented in hardware using VLSI technology 
(Gelsner & P6chmiiller, 1994); such inherent collective processing capability enables the 
neural network to respond quickly in generating timely control actions. 

It is due to these properties that a neural-network-based approach to uncertainty compen- 
sation could be considered potentially advantageous over both robust control and adaptive 
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control. The learning ability of neural networks is especially desirable in controlling robots 
that perform repetitive manufacturing tasks. One reason for using robots instead of human 
workers in manufacturing is that robots can perform repetitive tasks with better quality and 
consistency. Unavoidable in repetitive robotic operation in an industrial setting, however, 
is the sustained "wear-and-tear" (e.g., joint friction, wear of gears, etc.) of the robot. Such 
wear-and-tear inevitably effects the dynamic characteristics of the robot. In other words, the 
wear-and-tear introduces uncertainty into the robotic system, and consequently degrades 
its performance. A neural network that learns (iteratively) to compensate for the effect 
of such wear-and-tear would enable the manipulator to maintain satisfactory performance 
consistently throughout its expected lifetime. 

In this article, we propose an approach to robot trajectory tracking using a multilayer 
feedforward neural network. (In the sequel, the term "neural network" or just "network" is 
sometimes used instead of"multilayer feedforward neural network" for convenience.) The 
neural network is used explicitly to compensate for the uncertainty in the manipulator. We 
address the dynamical behavior of the manipulator in a two-step analysis. First we show 
that the closed-loop system based on the proposed approach is stable in the sense that all 
signals in the system are bounded. We then show that the neural network improves the 
performance of the robot in the sense that certain error measure of the closed-loop system is 
reduced as the learning process of the neural network is iterated. We subsequently present 
simulation results that confirm the analytical conclusions, and experimental results that 
demonstrate the effectiveness of the proposed approach. 

The contributions of this work to the application of neural networks to robot control are: 
(i) The insight obtained (through the analysis on the dynamics of the neural network) on 
the stability and performance of the closed-loop system with the neural network learning 
on-line is significant. The results of the analysis confirm that neural networks could be 
used as plausible tools for robot control within the context of uncertainty compensation. 
(ii) The experimental implementation of the proposed approach together with the positive 
experimental results reported in this article clearly demonstrate the effectiveness of the 
neural network as an uncertainty compensator for practical robotic tasks. Many studies 
on the application of neural networks to system control in general and to robot control in 
particular rely on numerical simulation to verify the conclusions therein; very few proposed 
schemes have been physically implemented to verify their effectiveness. Extensive and 
conclusive experimental results are needed in order to affirm neural networks as viable 
tools for robot control. The experiment reported in this article represents an incremental 
step in gathering such results. 

This article is organized as follows. Section 2 reviews the literature on the application 
of neural networks to robot trajectory tracking. Section 3 formulates the dynamics of 
the robotic system and presents the control law that incorporates a compensating signal 
from the neural network. Section 4 shows that a compensator exists in the form of a 
multilayer feedforward neural network, and describes the algorithm used for neural network 
learning. Section 5 presents analysis of stability and performance. Section 6 describes the 
computer simulation conducted to verify the analytical conclusions, and presents the results. 
Section 7 describes the experimental implementation of the proposed approach, and presents 
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the experimental results. Section 8 discusses the implications of the results and suggests 
directions for future research. 

2. Literature Review 

Various robot control techniques using neural networks reported in the literature can in 
principle be classified into two general schemes according to the role of the neural network. 
Figure 1 illustrates the first scheme. 

Controller 

/ 
Neural t 
Network 

/ 

Robotic 
System 

q,4 

Figure 1. Neural Network as Inverse Dynamics Model. 

In this first scheme, the neural network is to repetitively learn to represent the inverse 
dynamics of the manipulator, so that by feeding the desired trajectory into the neural 
network, the desired torque signal is produced as the output of the network. The PD 
controller is used mainly to stabilize the closed-loop system and to guide the repetitive 
learning process of the neural network. (A PD controller is a controller with two terms in 
which the output of the controller is the sum of a proportional term and a differentiating 
term, with adjustable gain for each term (Doff, 1992).) Gomi and Kawato (1990) use this 
scheme for robot trajectory tracking, and present computer simulation results involving a 
two-link manipulator. Clhz and I~lk (1990) utilize this scheme to control a manipulator 
under payload variation. Yabuta and Yamada (1991) apply this scheme (without the PD 
controller) to manipulator control, and demonstrate its effectiveness using an one degree-of- 
freedom servomechanism. Arai, Rong and Fukuda (1993) study the possibility of increasing 
the speed of the learning process. 

In the second scheme, illustrated in Figure 2, the neural network is used to deal with 
uncertainty in the model parameters. The inverse dynamics control law is used to generate 
an approximate torque signal. This torque signal is then augmented by a compensating 
signal generated by a neural network. The neural network is to learn to generate the proper 
compensating signal by adjusting its weights so as to maximize some performance measure, 
such as reduction of the tracking error. Okuma and Ishiguro (1990) apply this scheme to the 
control of a manipulator with consideration of joint friction, and present results of computer 
simulation involving a two-link manipulator. Kuan and Bavarian (1992) also study, again 
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through computer simulation, the problem of dealing with joint friction using this scheme. 
Zomaya and Nabhan (1993) apply this scheme, without the PD controller, to control a 
manipulator, and conduct computer simulation using the dynamics model of a PUMA 560 
robot. 
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Figure 2. Neural Network as Compensator. 

Although attempts have been made, among the studies cited above, to analyze the stability 
and performance of these schemes, the results reported remain inconclusive, mainly because 
they are obtained based on very restrictive assumptions. It appears that in the current 
literature on the application of neural networks to robot control, the issues of closed-loop 
stability and performance have not been resolved. The importance of resolving these issues 
is underscored by the fact that, as part of the control system, the dynamics of the neural 
network is coupled with that of the manipulator; consequently, the dynamical behavior of 
the neural network, namely the process of weight adjustment, will inevitably affect the 
stability as well as the performance of the closed-loop system. 

It also appears that many studies on the application of neural networks to robot control 
rely on numerical simulation to verify the conclusions therein; very few proposed schemes 
have been physically implemented to verify their effectiveness. 

It is in the context of these observations that the work described in this article comple- 
ments other studies reported in the literature. In this article, we show that the closed-loop 
system based on the proposed approach is stable and that the neural network improves the 
performance of the closed-loop system through iterative learning. Our analytical results 
confirm that neural networks can be used as effective tools to improve the performance 
of a manipulator in continuous-path operation. We subsequently present the results of the 
experimental implementation of our proposed approach involving a laboratory manipula- 
tor. The experimental results clearly demonstrate the effectiveness of the neural network 
in improving the performance of the robotic system. In short, the work presented in this 
article complements other published studies both in analytical aspect and in experimental 
aspect. 
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3. Dynamics and Control 

In general, the dynamics of  a manipulator with n joints can be described by a set of nonlinear 
differential equations, compactly expressed in the form (Spong & Vidyasagar, 1989) 

M(q)o" + h(q,  (t) = T, (1) 

where q E ~ n  (1 C T~ ~, and / /  E 7Z n are respectively the joint position, joint velocity, 
and joint acceleration vectors, M( . )  E "/Z ~x~ is the inertia matrix, h(-) E ~ is a vector 
containing the Coriolis, gravitational, centrifugal and frictional terms, and ~- E 7Z n is the 
input torque vector. With regard to an industrial robot, the following characteristics usually 
apply: (i) the manipulator is composed of serial links; (ii) the manipulator is not redundant; 
and (iii) the links and joints of  the manipulator are rigid. 

Supposing that the terms M (-) and h(.) are known precisely, the inverse dynamics control 
law can be written as 

~- = M ( q ) u  + h(q,  gl), (2) 

where u is a control input to be specified. Substituting (2) into (1) yields: /j = u. Let u be 
a PD-type control of  the form 

u = i]d + K v ( q  d - (1) + K p ( q  d - q), (3) 

where  qd E 7Z n, (1d E ~j~n, and ~/d E "]-¢~ are respectively the desired joint position, joint 
velocity, and joint acceleration vectors, and /(~ E 72~ ~xn and B2p E T).. nxn are diagonal 

0 
gain matrices. Let e = (1d (1 - - K p  - - K v  . Then the error dynamics of 

the closed-loop system can be expressed as 

= Ae, (4) 

which represents a linear decoupled system whose dynamical behavior can be completely 
specified by selecting appropriate values for the gains K v  and Kp (Doff, 1992). 

The inverse dynamics control law (2) is idealized because it results in a linear decoupled 
system only if the the values of the parameters in M(- )  and h(.) are known precisely. In 
practice, such precise knowledge about a physical system is not available. Thus the realistic 
inverse dynamics control law takes the form 

= + h(q, 4), (5) 

where/1~/(-) and h(-) are respectively the estimates of  M(- )  and h(-). Now with (3) and 
(5), the resulting closed-loop error dynamics becomes 

= A e  + B~?(q, q,/J), (6) 

where B = [0, l IT,  and r](q, gt, q) = ( l ~ -  l M - I ) 0  + ~/[-1(  h - h )" Note that for brevity, 

the arguments of M,  h, M ,  and h have been omitted. 
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The system (6) is exactly the same as the linear decoupled system (4) if the term r/(-) is 

identically zero. This term exists whenever _/~/(-) ¢ M and/or h(.) ¢ h(.),  and is referred 
to as the u n c e r t a i n t y .  Due to the presence of r/, the dynamical behavior of  the system (6) 
can no longer be "shaped" as desired by simply selecting appropriate values for the gains 
K v  and Kp. 

To reduce the effect of the uncertainty, a compensating signal v is introduced as part of 
the control signal u as follows 

u = ~t "d + Kv( (1  d - (1) + K p ( q  d - q)  + v .  (7) 

Substituting (5) and (7) into (1) yields the error dynamics of the closed-loop system 

= A e  + B A y ,  (8) 

where Av = ~(q, (1, ~/) -- v is referred to as the c o n t r o l  error .  If  v is generated such that 
A v  ~ 0, then (8) becomes: ~ = A e ,  which is again the linear decoupled system (4). 
The benefit gained through uncertainty compensation (i.e., A v  ~ 0) is that, because the 
robotic system is rendered linear and decoupled even in the presence of the uncertainty % 
the dynamics of  the robotic system can now be controlled to meet specific performance 
requirements by selecting appropriate values for the gains. Figure 3 schematically depicts 
the closed-loop system. 

qd o T; ' <  ql Compensator 

q,(1 

Figure 3. Uncertainty Compensation in Robot Control. 

4. Uncertainty Compensation 

The objective of  uncertainty compensation is to generate the appropriate compensating 
signal v such that the control error A v  vanishes, i.e., A v  ---+ 0. An ideal compensator 
is a function whose output v exactly equals that of the function ~/(.). Based on such a 
premise, the problem of  uncertainty compensation can then be considered as a function 
approximation problem. A multilayer feedforward neural network represents an attractive 
mechanism for dealing with such a problem, because it is capable of approximating any 
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continuous function, and more importantly, it can learn to approximate any given continuous 
function (McClelland & Rumelhart, 1986). 

A multilayer feedforward neural network consists of a collection of processing elements 
(or units) arranged in a layered structure (McClelland & Rumelhart, 1986) as shown in 
Figure 4. 

k = l  j = l  
R 

zf Vi 

i 
k =  K~ j = &~ 

Input Hidden Output 
Layer Layers Layer 

Figure 4. Neural Network Structure. 

For the neural network with two hidden layers, as depicted in Figure 4, the mapping 
realized by the network can be described as follows. Let the number of  units in the input 
layer, the first hidden layer, the second hidden layer, and the output layer be Ln, Kn,  J~, 
and In respectively. Let ?k, r j ,  and ri represent the input to the first hidden layer, the 
second hidden layer, and the output layer respectively, and let ~k,~j and vi represent 

L rl the corresponding output of  these layers, then ?k = ~ l = 1  Sktz~, ~k = 9(?k),  Yj = 
K~, J ~ k = l  Rjk~k, V~ = 9(~j), r~ = E jL1  W~jvj, and v~ = g(~), where 9(x)  = c t anh (x ) ,  

and c is a scaling factor. For convenience a generalized weight vector O is defined as: 
O - [Wt, .., Wi,  .., W I , ,  R1, .., R j ,  .., R & ,  $1,.-, Sk, .., SKi, I, where ( ')a represents the 
a th  r o w  of the matrix (.). The mapping realized by the network can then be compactly 
expressed as: v = N ( Z ,  O), where Z is the input vector, i.e. Z -- (Zl, z2, ...zl, ...zr,~), 
and N is used as a convenient notation to represent the mapping achieved by the network. 

It has been proven that a multilayer feedforward neural network with one hidden layer 
(containing a sufficient number of units) is capable of approximating any continuous func- 
tion to any degree of  accuracy (Cybenko, 1989). It is in this sense that multilayer feedfor- 
ward neural networks have been established as a class of"universal approximators". Thus, 
for the uncertainty function r/(Z), where Z = (q, q,/J), there exists a set of  weights @* for 
a neural network (with a sufficient number of hidden units) with the output v a - N ( Z ,  0*)  
such that, for some E _> 0, l i t / -  vdll <_ c, where II(')ll denotes the supremum of (.). 

Note that the above statement only assures that the weights O* exist, it does not indicate 
what their values are, or how to find them. To determine these weights is the objective of 
neural network learning. Let the cost function to be minimized be: JA,, = ½ A v T A v .  
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Applying the error-backpropagation algorithm (McClelland & Rumelhart, 1986) yields: 
(~ = -.,nX OJA~,oe = - A n A v T - ~ o  v '  where An is the learning rate. Since Av = v d - v,  where 

Ov ct v a is the unknown desired output of the network, and -5-6- = 0, the weight update rule be- 
comes: O . A T o. Specifically, the dynamics of the weights W i j  R j k ,  and Skl can 

be expressed (Muller & Reinhardt, 1990) as: Vv'ij = A~Fi~j, Rjk = ),~f'j~k, and Skz = 

A~f~kzt, where Fi = A v i g ' ( v i ) ,  Pj ~- gt(~j) EiI~l F i W i j ,  ~k  = g '@k)  EjJ~I ~ j R j k ,  and 

9,( .)  _ og(.) The learning process is illustrated in Figure 5. 
o ( . )  • 

Z . Uncer t a in ty  r/ 

Z ~ N e t w /  v Av 

Figure 5. Neural Network for Uncertainty Compensation. 

The control error Av can be determined in real-time, according to (8), as follows 

A v  -- qd _ O" + K~((1 d -- (1) + K p ( q  d -- q). (9) 

The closed-loop dynamics of the robotic system with the neural network learning on-line 
is described by 

{ ~ = A e  + B A y ( q ,  (t, i], (~) 
_ A n A v T ( q , =  :: gAS?,OAv(q,4,//,O ) ( 1 0 )  : t/~ t/, , J )  O~- • 

Stability and performance of the system (10) are examined next. 

5. Analysis 

We first prove that the closed-loop system with the neural network learning on-line is 
stable in the sense that all signals in the system are bounded. We then show that the 
performance of the system is improved in the sense that certain measure of the control 
error Av decreases as the learning process is iterated (i.e., as the number of learning trials 
increases). The conjecture is that reduction in the control error eventually leads to reduction 
in the trajectory tracking error. This conjecture is verified by the results of the computer 
simulation presented in Section 6. 
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5.1. Stability 

THEOREM 1 Given a continuous and twice-differentiable reference position trajectory 
qd(t), the system (10) is bounded-input bounded-output (BIBO) stable for sufficiently large 
gains Kv and Kp. 

Note that a system is said to be BIBO stable if for a bounded input, the output of the 
system is also bounded. This term is defined rigorously in Appendix A. Proof of  the above 
theorem is presented in Appendix B. It suffices to state here that this theorem asserts that 
for sufficiently large gains, the control input u and the trajectory tracking error e in (10) are 
bounded. 

COROLLARY 1 The acceleration signal ~(t) is bounded 

COROLLARY 2 The control error Av is bounded. 

COROLLARY 3 The weights of the neural network remain bounded during a given trial. 

Proofs for Corollaries 1, 2, and 3 can be found in Appendix C, D, and E respectively. We 
next examine how the network learning process affects the performance of the manipulator. 

5.2. Performance Improvement 

Preliminaries 

Let t represent the continuous time variable, i.e., 0 _< t < oc. Let learning start at time 
t = 0, and let each trial last T seconds. Then the pth trial spans the time period from 
t = (p - 1)T to t = pT. Note that p is thus implicitly defined as a positive integer. 

Let ~ be the time variable associated with one trial, i.e., 0 _< ~ _< T. (The notation 5: from 
dx  dx here on means either -3/ or ~ as it should be clear from the context.) Let x(p, ~) denote 

the value of  the variable x at the ~th second of the pth trial. Then x(p, 0) represents the 
value of  the variable x at the beginning of the pth trial, and x(p, T) represents the value of 
the variable x at the end of the pth trial. Note that x(p, O) = x(p - 1, T). Let Om be an 
element of the weight vector O. Let AOm(p, ~) denote the change of  O,~ during the first 

seconds of  the pth trial, i.e., AOm(p, ~) = f~o ~m(P, or)do'. 
The L ~ - n o r m  of a Lebesgue integrable function f ( t )  : R+ ~ R n, denoted by Ilf[l~, 

is defined as: Ilfl[~ = esssupt~[o,o~)Hf(t)ll < oc. The extended Ln~-space (with the 
truncated L n - n o r m  II()TI[~), denoted by L~e ,  is defined as: L ~  = { f  : R+ 

f ( t )  f o r t e  [0,T] 
R~ [fT E L ~ , V T  < oc}, where fT(t)  = 0 otherwise For convenience, the 

notation [[fllT~ is used to denote IIfTll~. 
Let C[0, T] denote the family of Lebesgue integrable function f~(~) for all ~ c [0, T]. 

The L2-norm of a vector function f ( ( )  = (f l ,  f2, ..., f i ,  .--, fn), fi E C[0, T], over the 
1 

interval [0, T] is defined (Vidyasagar, 1992) as: Ilfll2T = ( J j  fT(¢) f (¢)d¢)  
g 

time For 
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convenience, the notation ]l" II instead of II" II ZT is used to denote this norm in the subsequent 
analysis. 

PROPOSITION 1 For the closed-loop system (10), there exists some small )~n > 0 such 
that llAOr~(p 4" 1, ~) - AOm(p, ~)lIToo < <  1,for all ~ E [0, T]. 

The proof of this proposition is presented in Appendix F. 

Remark:  Since AOm(p 4" 1, ~) represents the amount of weight change during the first 
seconds of the (p + l)  th trial, and AOm(p, ~) represents the amount of weight change 

during the first ~ seconds of the pth trial, this proposition (illustrated in Figure 6) means 
that, for An < <  1, the difference between the change in ~,~ of any two successive trials 
can be considered negligible, i.e., AO,~(p 4- 1, ~) ~ AO,~(p, ~), V~ E [0, T]. 

A qualitative interpretation for this proposition can be constructed based on observation 
on the time-scale difference between the dynamics of the manipulator and the dynamics 
of the on-line learning process of the neural network. With a small learning rate As, the 
overall robotic system can be considered as a two-time-scale system with the manipulator 
exhibiting a "fast" dynamics while the network exhibiting a "slow" dynamics. As the 
learning rate An approaches zero, the change in the weights per trial can be expected to be 
infinitesimally small. Such small change in the weights will not have significant effect on 
the state of the robot. Therefore, between any two successive trials, the change in the state 
of the robot, and consequently the difference between the two amounts of weight change, 
can be considered negligible. This proposition is verified by computer simulation presented 
in Section 6. 

era(p+ 1,0) 

(p, 0) 

i I 

. . . . . . . . .  m 

i I i 

. . . . . .  :SJ  
I I 
I I 
I I 

(p -1 ) r  vm (p+ l ) r  

zxO (p+ 

t 

Figure 6. Weight and Weight Change. 

Main Results 

Recall from Section 4 that the objective of neural network learning is to reduce the 
control error Av. The following theorem establishes rigorously that such an objective can 
be achieved. 
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THEOREM 2 The L2-norm of the control error Av  decreases as the number of  trials p 
increases, i.e., I[Av(p + 1)11 < ][Av(p)l [. 

Proof: Since (from Section 4) JA,(p,  4) = ½AvT(p, ~)Av(p, ~), from the definition of 

the L2-norm, we have HAy(p)[[ 2 = 2foTJA~(p,~)d~. To prove that HAv(p + 1)[] < 
[]Av(p)t ], it suffices to show that [[Av(p + 1)[[ 2 - [[Av(p)H 2 < 0. Now [[Av(p + 1)H 2 - 

[[Av(p)l[ 2 = 2 fom (JAv(P + 1, 4) -- JA~(P, 4))d~. Based on the fact that the change in 
the control error A v  between any two successive trials p and (p + 1) is a direct consequence 
of the change in the network weights, we expand JAv(P + 1,4) about JA~(P, ~), while 
ignoring the higher order terms, to obtain 

J A v ( p + l , ~ ) - - J A v ( P , ~ ) ~  i -~-~-- - (Om(p+l ,~) - -Om(p,~))  , (11) 
m=l 

where co is the total number of  weights, i.e., co = In × Jn + Jn × KB + Kn × Ln. Because 
OJA,,(p,~) OJav(p,~) oav(p,~) = ArT(p ,  4) OAv(p,~) (11) becomes 00m(p,~) -- OAv(p,~) OO.,(p,~) Oe.m(p,~)' SO 

JAv(P+ I,~) -- JA~(p,() 

[ 1,4)- (12) = AvT(p,  4) OOm(p, ~) 
r n = l  

Note that @,~ (p + 1, 4) and @,~ (p, {) can be expressed as O,~ (p + 1, {) = @~ (p + 1, 0) + 
A0m (p + 1, ~), and ~ m  (; ,  ~) = O m  (p, 0) + AOm (p, ¢), where ~ m  (P + 1, 0) = E)m (; ,  T)  
represents the weight value at the end of the pth trial, while O ~  (p, 0) represents the weight 
value at the beginning of the pth trial. From Proposition 1, we have I[A0,,~(p + 1, 4) - 
A 0 ~ ( p , ~ ) I I T ~  << 1, hence ~, , , (p  + 1,{) - E),,~(p,~) .-~ ~,,~(p + 1,0) - @~(p,  0), and 
consequently 

II Av (p  + 1)II ~ - l iAr(p) I I  = 
T 

= 2 L ( J A ~ ( p + l , ~ ) - J A , ( p , { ) ) d ~  

LT [ OAv(p'~) (Orn(p-F l,0)-(~m(~o,O))] d~ : 2 

0 m = l  

m = l  

Since Om (p + 1,0) and Om (p, 0) are no longer functions of 4, so (13) becomes 

I t A v ( p  + 1)11 z - I IAv(p) l l  

Note that ( ~ ( p  + 1,0) - 6)~(p,O) = for (3~(p,~)d~. But from the learning rule pre- 

sented in Section 4, we have (3re(p, ~) = -AnAvT"(p,  c~ aAv(p,~) ~ , / ~ -  Thus O ~ ( p +  1,0) - 
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@~(p, O) = for (3,~(p, {)d4 = -An for ArT(p, ~ ) ~ d 4 .  Consequently, 

IlAv(p + 1)112 - HAv(p)l] 2 

r OAr(p, 4) r .  r ,  ~. OAv(p, 4) 
- 2,~=, ~,v CP, ¢) O-gT~(p,-(5 

r OAr(p, () 
= -2A,~ Av:r(P, 4) OOm(p, () 

m = l  

< 0. 

_ . co OA~,(p,() d~: = 0. But this Now ilAv(p + 1)II 2 llAv(p)lI 2 = 0 if ~,,~=1 f?  A v T ( p , ~ ) ~  ., 
implies that for Omd{ = 0, which states that the total change in the weight (gin for the 
trial p is zero. This means that the gradient search conducted by the error-backpropagation 
algorithm has reached either a global minimum or a local minimum. If this is not the case, 
then we have ][Av(p + 1)112 - [[Av(PDl[ 2 < 0, that is, []Av(p + 1)11 < HAv(p)N, which 
implies that the controller error Av  decreases as the number of trials p increases. 

Remark :  An important practical issue concerning neural network learning is whether the 
weights will remain bounded. This issue can be resolved (in the context of  the above 
analysis) by observing the facts that (i) the weights are bounded during a given trial (i.e., 
Corollary 3), and (ii) from an implementation standpoint, the learning process can be 
terminated once the L2-norm of the control error no longer decreases from trial to trial. 
Thus, if we start the learning process with a set of  finite weights, and if the weight dynamics 
condition (i.e., Proposition 1) is satisfied, then it is assured that the weight values are finite 
at the point when the learning process is terminated. 

6 .  S i m u l a t i o n  

The purpose of  conducting computer simulation is to verify the analytical results presented 
in Section 5. Specifically, we conducted the simulation to confirm, through a numerical 
example, that (i) for a small learning rate A,~, the proposition that the weight change between 
two successive trials can be considered negligible is valid, (ii) upon confirmation of (i), the 
L2-norm of the control error A v  decreases as the number of learning trial p increases, and 
(iii) reduction in the control error A v  results in reduction in trajectory tracking error e. 

The manipulator considered in the simulation, as shown in Figure 7, consists of two links 
with point masses; that is the mass of  each link is assumed to be concentrated at the tip of 
each link. 

The dynamics of this manipulator can be formulated (Craig, 1986) as 

r l  = 'Y/%212(01 -}-02) -~ 'n221112(201 -l-02)cosq2 + ('/~1 -~-'rr~2)1201 
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Figure 7. A T w o - L i n k  M a n i p u l a t o r .  

/Yt 2 

q2 

~ n  1 

-m21112~t 2 sin q2 - 2rn2111~01(t2 sin q2 + m212g cos(q1 + q2) 

+(rnl + rn2)llgcosqx, 

7-2 z T t ~ 2 / 1 / 2 ~ 1  COS q2 -}- T/'b2/l/2012 sin q2 + rn2129 cos(q1 + q2) + m2/z z (///1 + q2), 

where ql and q2 are the angles of  the two joints (as indicated in Figure 7) with the corre- 
sponding torques ~-1 and T2, ml  and ms  are the mass of  the links, 11 and 12 are the length of 
the links, and 9 = 9.8 rn/s 2. To simulate the dynamics of  the manipulator, the following 
parameter values were used: m l  = 5.0 kg, rn2 = 4.0 kg, 11 = 0.7 m, and 12 = 0.5 m. 
In implementing the inverse dynamics control, the values for the masses were altered to 
introduce uncertainty into the system by setting: ~ 1  = 4.5 k9 and ~ 2  = 5.0 k9. The 
desired position trajectory for both joints, generated by a 5th-order polynomial, is as shown 
in Figure 8. 

q 
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1 

0.8 

0.6 
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Figure 8. Desired Position Trajectory. 

A network consisting of six input units, two hidden layers with twenty units in each layer, 
and two output units was used in the simulation. The learning A~ was set at a very small 
value of 5 x 10 -5, so as to be consistent with the argument for Proposition 1 discussed in 
Section 5. The initial weights of  the neural network for the first trial were set to arbitrary 
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values in the order of 10 -4.  The control gains were set to be: Kp = diag[30, 30] and 
K~ = diag[10, 10]. A series of simulation runs (i.e., trials) were carried out. The control 
error Av was calculated according to (9), which requires the acceleration signal q. In the 
simulation, ?j was estimated on-line based on q. 

To examine the dynamical behavior of the weights between two successive trials, Figures 
9 and 10 show respectively the dynamics and the difference between the change of a 
connection weight R(xo,lo) (the weight between the 10 th unit of the first hidden layer and 
the 10 th unit of the second hidden layer) during the 10 th trial and the 11 th trial. 

2.726 

2.722 

R(lo,lo) 2.718 
( l o7  3 ) 

2.714 

2.71 

I I I I I 

11-" ~ 

I I I I I 

0.5 1 1.5 2 2.5 
Time (Second) 

Figure 9. Dynamics of'Weight R(10,10): 10 th and 11 *h Trial, 
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2 
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Figure 10. Difference between Change of Weight R(10,10): 10 th and 11 th Trial. 
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It is shown here, as an example, how the difference between the change in R(lo,lo) of 
the two trials, 10 th and 11 th, is calculated. Using the notations defined in Section 5, the 
difference of weight change between trial 10 and trial 11 can be written as: Ar(lo, lo)(() -- 
~R(lo , lo  ) (11, ~) - A/:{OO,lO) (10, ~), where AR(lo,lo ) (11, ~) = R(lO,lO) (11, ~) - _ROo,lo) 
(11, 0), AR(lO,lO)(10, ~) = /:~(lO,lO)(10, ~) - /~( lO, lO) (10, 0), and ~ is the time variable, 
i.e., ~ c [0, 3]. 

Figures 11 and 12 show respectively the dynamics and the difference between the change 
of the same weight during the 20 th trial and the 21 st trial. From Figures 9-12, it can be 
seen that the difference of the weight change between two successive trials (i.e., 10 th and 
11 th, 20 th and 21 st) is indeed negligible. 

2.678 

2.676 

2.674 
R(lo,lo) 
(10-a)  2.672 

2.67 

2.668 

;/ 
I 

I 

0 0.5 

I I I I 

1 1 . 5  2 2.5 
Time (Second) 

Figure 11. Dynamics of Weight/~(lO,lO): 20th and 21 s~ Trial. 
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Figure 12. Difference between Change of Weight R(lo,lo): 20 th and 21 st Trial. 
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Figures 13-16 show the dynamics and the difference between the change of another weight 
W(1,1o) (the weight between the 10 th unit of the second hidden layer and the 1 st unit of the 
output  layer) during the same pair  o f  trials (i.e., 10 th and 11 th,  20 th and 21st). 

I~/(1,10) 
(10 -4  ) 

-1.34 

-1.38 

- 1 . 4 2  

-1.46 

-1.5 

- 1 . 5 4  

- - I - -  I I f I 
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O.5 1 1.5 2 2.5 
~me(Second)  

Figure 13. Dynamics of Weight W(1,1o): 10 th and 11 th Tria£ 
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Figure 14, Difference between Change of Weight W(1,1o): 10 eh and 11 th Trial. 
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Figure 15. Dynamics of Weight W(1,]o): 20 th and 21 st Trial. 
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Figure 16. Difference between Change of Weight W(1 ' lo) : 20th and 21 st Trial. 

Comparing Figures 9, 11, 13, and 15 with Figure 6 (which illustrates the proposition that 
the difference between the weight change of any two successive trials is negligible), it is 
evident that, when the learning rate is small, the neural network does indeed possess the 
dynamical  behavior as predicted. 

Recall that the analytical conclusion in Section 5 based on Proposition 1 is that the L2- 
norm of the control error A v  decreases as the number of trials p increases. Figure 17 shows 
the L2 norm of the control error A v  versus the trial number p for this simulation. 

It can be seen that the control error A v  indeed decreases as the number of trials p increases. 
This confirms the theoretical conclusion presented in Section 5. It is conjectured that 
reduction in the control error A v  eventually results in reduction in the trajectory tracking 
error. Figures 18 and 19 show the joint  errors without compensation (i.e., v = 0) and during 
the 3 0 0  th trial. It can be seen that the joint  errors are reduced as the learning of the network 
progresses. 
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Figure 1Z Control Error. 
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Figure 18. Error in ql. 
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Figure 19. Error in q2. 
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From the results of the simulation, it can be seen that both the proposition (that with 
a small learning rate, the weight change between two successive trials can be considered 
negligible) and the analytical conclusion (that the L2-norm of the control error decreases as 
the number of trials p increases) are valid. It can also be seen that reduction in the control 
error Av indeed results in reduction in the trajectory tracking error. A laboratory experiment 
conducted to demonstrate the effectiveness of the proposed approach is described next. 

7. Experiment 

The robot used for implementing the proposed approach is of a five-bar parallel link con- 
figuration operating in the horizontal plane (Lokhorst, 1990) as shown in Figure 20. 

/3 
14 

  OtOrB 
- -  Motor A 

Figure 20. A Laboratory Manipulator. 

High torque, brushless direct current motors are used to drive the manipulator without gear 
reduction. The motors used are manufactured by Yokogawa Corporation. "~" ~ations of 
the motors are listed in Table 1. 

Table 1. Direct-drive Motor Specification. 

Specification Motor A Motor B 

Manufacturer Yokogawa Yokogawa 
Model DMA 12000 DMB 1045 
Maximum Torque (Nm) 200 45 
Maximum Speed (rev/s) 1.2 2.4 
Encoder Resolution (pulse/rev) 1024000 655360 
Diameter (turn) 264 160 
Length (ram) 188 143 
Weight (hg) 29 9.5 

The dynamics of this manipulator can be formulated as (Lokhorst, 1990) 

[SB[dadlA d3SBA OA --d3CBAO2B blOA TA 
b20B + b4sgn(OB) ~rB : 
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where SBA = sin(0u - OA), Ct3A = cOS(0B -- OA), OA and 0B are the angles of  the two 
motors with the corresponding torques "rA and ~-B, dl = mll~l + m312c3 + ra41~ + I1 + I3, 
d2 = m212c2 + m31~ +m4/c24 + / 2  + / 4 ,  and d 3 = m3121c3 - m4lllc4. Here mi is the mass of 
the i-th link, li is the length of  the i-th link, lci is the distance from the joint to the center of 
mass of the i-th link, and [i is the moment of inertia of the i-th link. The lengths of the finks 
are: ll = 13 = 14 = 0.5 m, and 12 = 0.3 m. The parameters bl and b2 are the coefficients 
of viscous friction and the parameters ba and b4 are the coefficients of  static friction. The 
values of the parameters have been experimentally determined (Lawryshyn, 1993) and are 
shown in Table 2 under the heading "True". 

Table 2. True and Estimated Parameter Values for Robot Trajectory Tracking Experiment. 

Parameter True Estimated 

dl 3.4 kgm 2 1.2 kgm 2 
d2 - 0 . l  kgm 2 -0 .511 kgm 2 
d3 1.2 kgm 2 0.772 kgrn 2 
bl 8.3 kgm2/s 8.3 kgme/s 
b2 1.6 kgm2/s 1.6 kgm2/s 
ba 2.3 Nm 2.3 Nm 
b4 0.46 Nrn  0.46 Nm 

A neural network with six input units, two output units, and ten units in each of  its two 
hidden layers was implemented in the form of a program written in the C programming 
language for the experiment. Due to the limitation of hardware and computational resources 
- -  the control laws were executed on a 386 microcomputer with a clock speed of 25MHz ,  
the learning process of  the neural network was implemented off-line. This means that 
during each trial, only the static mapping of the network was activated, while the weights of  
the network were fixed. Data required for network learning were recorded during the trial. 
Once a trial was completed, the weights of the network were updated using the recorded 
data. Because network learning was conducted off-line, Theorem 2 does not apply to this 
experiment. The significance of  the experiment lies in demonstrating the effectiveness of 
the proposed approach in the execution of realistic robotic tasks. 

The weights of the neural network were randomly initialized to be in the order of 10 -3  . 
The learning rate of  the neural network, initially set at 1 × 10 -3, was gradually reduced 
to 5 × 10 -5  as the learning process was iterated. The input signals to the neural network 
were q, c), and ~/. The joint acceleration ~/was obtained by filtering the the joint velocity 
signal 0 on-line using a Kalman filter (Yanovski, 1991). The feedback gains were set to be: 
K~ = diag[15, 15] and Kp -- diag[50 , 50]. The control law was executed at a sampling 
frequency of  86Hz. 

A task trajectory for the tip of  the manipulator as shown in Figure 21 was planned in 
this experiment. This trajectory was generated offAine and stored in memory, and retrieved 
during real-time task execution. 
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Figure 21. Desired Task Trajectory. 

To establish a basis for comparison, a baseline experiment was first conducted using the 
"true" parameters of the manipulator as shown in Table 2. Figure 22 shows the results of 
this experiment. This baseline experiment shows the performance of the system when there 
is presumably no uncertainty in the system parameters. 
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Figure 22. Desired Trajectory and Baseline Trajectory. 

It is noted that even when the "true" parameter values were used in generating the control 
signal, the trajectory of the tip of the manipulator still deviates from the desired trajectory 
quite significantly. Such deviation can be accounted for by considering (i) the effect of time- 
delay in executing the control law with a sampling frequency of only 86 Hz,  and (ii) the 
fact that the control gains Kv and Kp were set at low values. The reason for using such low 
gains in this experiment was to allow a larger initial tracking error (when uncertainty but no 
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compensation was introduced) so that the effect of neural network learning in improving the 
performance of the manipulator could be more clearly seen. Since the key objective in this 
experiment was to show performance improvement, the emphasis was on showing reduction 
in the "size" of the tracking error when a neural network was used as a compensator, as 
compared to the case where no compensator was used. 

Upon obtaining the baseline trajectory, uncertainty in the system parameters was intro- 
duced. The values of the three parameters, namely, dl, d~, and da, of the manipulator 
were altered, as summarized in Table 2 under the heading "Estimated". Another trial was 
executed with the uncertainty introduced in the manipulator parameters and without any 
compensating signal incorporated into the control law. Figure 23 shows the results of this 
trial (which is referred to as the initial trajectory) together with the baseline trajectory. 
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Figure 23. Baseline Trajectory and Initial Trajectory. 

A series of trials was then executed with the network weights being adjusted off-line after 
each trial. Figures 24 shows the trajectory of the manipulator tip at the 20 th trial and at 
the 30 th trial. It can be seen that the incorporation of the neural network as an uncertainty 
compensator indeed improved system performance in the sense that the actual trajectory 
of the manipulator approached the baseline trajectory as the learning process of the neural 
network was iterated. 

8. Discussion 

8.1. Implication of Results 

We have proposed an approach to improving the performance of uncertain robotic systems 
using neural networks. It has been shown that this approach is applicable to repetitive 
continuous-path robot operation. In this approach, uncertainty in the robotic system is 

97 



214 P.C.Y. CHEN, J . K  MILLS. AND K.C. SMITH 

Y 

(m) 

-0.3 

-0.4 

-0.5 

-0.6 

-0.7 
0.2 0.6 

L I I 

I i I 

0.3 0.4 0.5 
X (m) 

Figure 24. Task Trajectory: 20 th and 30 th Trial. 

quantified and a neural network is used to "nullify" the uncertainty so that performance 
improvement can be achieved. 

Using techniques from nonlinear system theory, closed-loop stability of the robotic system 
(incorporated with a neural network) has been analyzed. Results of the analysis confirm 
that the closed-loop system is stable in the sense that all signals in the system are bounded. 
Stability of closed-loop systems embedded with neural networks is a key issue that has not 
been adequately addressed in the literature. The stability analysis presented in this article 
offers a possible solution in resolving this issue. 

A method for analyzing the performance of the robotic system (incorporated with a neural 
network) has been developed. Using this method, the effect of the dynamics of the neural 
network on the performance of the manipulator has been revealed. It has further been shown 
that the performance of the robotic system is improved as the learning process of the neural 
network is iterated. 

The results of these analyses provide theoretical justification for the use of multilayer 
feed forward neural networks with the error-backpropagation algorithm in a feedback control 
system in which the dynamics of the network is coupled with that of the controlled plant. The 
error-backpropagation algorithm has been one of the most commonly used learning rules for 
neural networks. Various schemes have been proposed in the literature on the application of 
neural networks to robot control using this algorithm, but the important question of how the 
dynamics of the neural network affects the performance of the robotic system has not been 
addressed rigorously in the literature. The performance analysis presented in this article 
provides a plausible answer. The analysis confirms that, with a sufficiently small learning 
rate, the error-backpropagation algorithm will not destabilize the closed-loop system and 
will improve the performance of the robotic system as the learning process is iterated. 
Numerical simulations have been conducted. Results of the simulation have confirmed the 
conclusions of the theoretical analysis. 
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An experiment using a laboratory manipulator has been conducted. The results of the 
experiment clearly demonstrate the effectiveness of the proposed approach in improving 
the performance of the robotic system. The experimental implementation of the proposed 
approach, together with the positive experimental results, are important not only in demon- 
strating the effectiveness of the neural network as an uncertainty compensator, but also 
in demonstrating the effectiveness of a control system incorporated with a neural network 
for realistic robotic tasks. Many studies on the application of neural networks to system 
control in general and to robot control in particular rely on numerical simulation to verify 
the conclusions therein; very few proposed schemes have been physically implemented 
to verify their effectiveness. Extensive and conclusive experimental results are needed to 
affirm neural networks as viable engineering tools. The experiment reported in this article 
represents a small step in gathering such results. 

8.2. Research Directions 

In the context of the work presented in this article, the following directions are suggested. 

Comparison with Other Approaches 
An important and necessary extension of the work presented is an in-depth analysis in 
comparing the proposed approach with various other approaches (such as adaptive control) 
so that the full potential of neural networks for robot control (as discussed in Section 1) can 
be firmly substantiated and convincingly demonstrated. 

Effect of Manipulator Link and Joint Flexibilio, 
Throughout this work, the manipulators under consideration were treated as rigid mechani- 
cal linkages. In reality, however, link and joint flexibility exist i'n industrial robots. It would 
thus be practically meaningful to extend the proposed approach to account for the effect 
of link and joint flexibility of industrial robots. Such an extension will yield results that 
further affirm the utility of neural networks in practical robotic applications. 

Reduction of the Number of Learning Trials 
In analyzing the effect of neural network learning on the performance of the robotic system, 
i.e., Theorems 2, the condition needed to guarantee the reduction of the control error 
was that the difference between the weight change of two successive trials is negligible. 
The justification of this condition was based on the requirement that the learning rate 
be sufficiently small. A small learning rate, however, implies that to achieve significant 
performance improvement, a large number of learning trials may be required. 

Since the dynamics of the network weights also depends on the gradient of the "error 
surface", a technique that allows variation of the learning rate based on the "steepness" of 
the gradient would be a potential solution to reduce the number of learning trials. 

Determination of the Necessary Number of Learning Trials 
The clarification of the relationship between the reduction in the control error and the 
reduction in the trajectory tracking error represents an important theoretical issue in under- 
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standing the utility of neural networks for system control in general and for robot control 
in particular. It is important because successful theoretical clarification of this relationship 
would provide a definitive answer to the question of how many trials are required in order 
to reduce the tracking error to within certain tolerance. 

Learning Multiple Trajectories 
In manufacturing operations, a robot is often required to be capable of performing more 
than one task. This implies that the robot controller must be able to execute more than 
one trajectory. The scope of the present work has been limited to the case where the robot 
controller is to learn to improve its performance for a single trajectory. Such a controller is 
clearly inadequate in a production environment. Thus, a practical extension of the present 
work is to develop methodologies which enable the neural-network-based controller to learn 
multiple trajectories and to execute these trajectories without interference. 

Effective Global Convergence 
Currently there is no known method that guarantees global convergence of neural net- 
work learning. This means that it is possible that the set of weights found by the error- 
backpropagation algorithm is optimal only locally. It is of course worthwhile to find a 
learning algorithm that theoretically guarantees global convergence, but it is also practi- 
cally meaningful to find a way to circumvent local optimality so as to achieve effective 
global convergence. One plausible approach is to use multiple networks in such a way that 
when one network becomes "trapped" in a local optimum, another network is activated to 
continue the learning process. Conceptually, it can be argued that it is possible to reduce 
the control error to any required tolerance by using a series of networks. A method of im- 
plementing such a series of networks would significantly enhance the practicality of neural 
networks in robot control. 

Hardware Implementation of Neural Networks for Robot Control 
Currently in studies reported in the literature on neural networks for robot control, the 
neural networks are usually implemented in the form of software programs and executed 
on general-purpose digital computers. Such software implementation, however, does not 
take full advantage of the parallel processing capability of neural networks. Thus, in 
order to fully utilize the capability of neural networks for practical robotic applications, 
it is necessary to investigate hardware implementation of neural networks. One plausible 
hardware implementation of a neural network is in the form of a VLSI chip. It can be 
anticipated that successful synthesis of "neuro-chips" and commercial robot controllers 
would advance the application of industrial robots to a more sophisticated level. 

Appendix A 

Definitions 

The following definitions are based on material presented in (Vidyasagar, 1992). The 
convolution of a Laplace transformable signal f ( t )  and a transfer function matrix M(s) is 
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denoted by M f ,  i.e., M f  = (m • f ) ( t ) ,  where * denotes the convolution operator. The 
n 2 x_ 

/2-norm of a vector x E R ~, denoted by [[xll, is defined as: Ilxl] = ~ j = l  IxJl )2. The 

/z-norm of a matrix A E R nxn,  denoted by I[A[I, is defined as: HAll = [maxi Ai(ATA)]½, 
where Ai denotes the eigenvalue of  the matrix A. The L ~ - n o r m  and the extended LUg-space 
(for the truncated L ~ - n o r m )  are as defined in Section 5. A system with input x and output 
y is said to be bounded-input bounded-output stable (or BIBO stable) if for every x c L ~ ,  

y E L ~ .  The L ~ - n o r m  of a transfer matrix P is defined as: II_Pl]~ = SupxCL~-O Nzll ~ . 

Let/3 denote the norm ]]PIIoe, then IIPxl[Too <_/3lixllT~. 

Appendix B 

Proof of Theorem 1 

The method presented ia (Spong & Vidyasagar, 1987) is utilized in constructing this proof. 
Through algebraic operations, the system (10) can alternatively be expressed as 

e = fi~g+ B(ff + u) (B.1) 

where =Eq-q J [oI1, =[o 1 0 (t d , f t =  0 0 I ' ~ = r ~ ° + E u ' ~ °  = E q  a + M  - x A h ,  

u = K 6  + v, E = M - 1 J ~ / -  I ,  A h  = h - h, K = I - K p ,  - K @  and v is the neural 
network output. 

We make the following assumptions (Spong & Vidyasagar, 1987) regarding the nominal 
model of  the manipulator. (A1): For the inertia matrix M of the manipulator, there exist 
constants M1 and ~ia such that 21//1 <_ [ [M - 1  [[Toe ~ M 2  < Oo. (A2): There exists 
a nonnegative constant c~ < 1 such that I I M - 1 M  - I]IT~ < c~. (A3): There exist 

nonnegative constants 6 and p such that lib - hl]r~  <_ 6]lX[JToe + P, where x = [qT, oT]T. 
Let G(s) = (s[  - f ~ ) - l B .  Then (B.1) can be expressed as: g = Ge, with e = f / +  u, 

u = K ~  + v, and ~/ = r/0 + Eu.  Through algebraic operations, we obtain g = ( I  - 
G K ) - I G ~ I  + (I  - G K ) - I G v ,  u = K ( I  - G K ) - I G f l  + ( K ( I  - G K ) - I G  + I )v .  Let 
P1 = ( I  - G K ) - I G ,  P2 = K ( I -  G K ) - I G ,  and P3 = K ( I -  G K )  -1 + I,  then we 
can express ~ and u as: ~ = P l f / +  Ply ,  and u = P2~l + P3v. Now taking the truncated 
L ~ - n o r m  yields 

II~IIT~ --< /311$~l]Toe +/3111VlIT~, (B.2) 

l[U}ITc~ <_ /32]tC?ltroo + fl311V[[Too, (B.3) 

where /31 = H(I - OK)- GllT ,/32 = ] ]K(I  - aK)- allr , and /33 = I IK(I  - 
G K ) - I G  + I[IToe. Since ~7o = Eti d + M - a A h ,  from the modeling assumptions, we 
have Ilrlol[T~ < M26[[e[lT~ + b, where b : C~[[4dI[T~ + Mz6llxallT~ + M2p, and 
xd = [(qd)T, (4d)Y]T.  It follows that IlOllTo~ -< M2611~lIToe + c~llul[T~ + b. Since the 
output of  the neural network is bounded by construction (due to the t anh  activation function 

of  the output units), let q5 = IlvlIToe. Hence [1Ollf~ < 
liUllToe - /32 0 II~llT~o + 
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M26/31¢ + b L e t Q  = Then d e t ( I -  Q) = 1 -- ]Vf2~/31--O~32 ~ Am.  
' 0 " 

If  A ~  > 0, then 

Ilullro~ -- ~ 52 1 - M 2 ~ / 3 ~  [ ~33q5 ' (g.4) 

From (B.2) and (B.4), we obtain II~IIT~ <_ ~ b  + ~4) (/31M26 + c~f33). Therefore, if 
the condition A ~  > 0 is satisfied, then ~, u, and ~ are bounded. Now recall that/31 = 
II(I - G K ) - I G l l r ~ ,  and/3z = [IK(I - G K ) - I G I I T ~ .  It can be seen that the condition 
A ~  > 0 can be satisfied by selecting sufficiently large values for K such that/31 approaches 
zero and/32 approaches unity simultaneously. 

Appendix C 

Proof of Corollary 1 

From (1) and (5), wehave M ~ + h  = )(4(i~d +u)+h ,  where u = [(v(q d -O)+Kp(q  d --q)+v. 
SO ~ = E(i~ d + u) + q.d + U + M - l A b ,  where E and Ah  are as defined in (B.1). From 
the modeling assumptions A.1-A.3, we have 

II IiT  -< IIEI[T iI  d + ullT  + d + ullT  + I]M-1llT~]IAhIIT~o 

( i  -]- a ) ( [ [ t ]d [ ITc~ -[- [iUIITc,~) -[- M 2 ~ l I e l l T c ~  -[- i~/f2~i[ZdiiTc~ -[- M2p, 

where x d =- [(qd)T, (dtd)T]T. Since u and [ have been proved to be bounded (Theorem 1), 
it can be concluded that (/is bounded. 

Appendix D 

Proof of Corollary 2 

From (9), we have Av = ~d _ ~ + K~, where K is as specified in (B.1). Therefore, 
II/k'VllTc'o ~ I]qd]lTcx~ + ]leJllTc~o -~-]]IfcIITc~. Since ~/and g have been proven to be bounded, 
it can be concluded that Av is also bounded. 

Appendix E 

Proof of Corollary 3 

As described in Section 4 (with reference to Figure 4), we have 

i=1 

= Ei~ ' l  (Avigt ( 'v i )WijRjk)  , where g'(-) - o() " 

Since l ~ j  depends on ~n, Avi, 9 r, and ~j, which are all bounded, it can be concluded 
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that l/dij and consequently I/Vii are bounded during a given trial. Similarly, it can be 

concluded that Ttjk, Rjk, S~t and S~t are also bounded during a given trial. 

Appendix F 

Proof of Proposition 1 

From Section 4, the dynamics of the neural network can be expressed as: 
l]gij = An/kVigt(vi)~j, ~jk  =- Ang'(Vj) ~iI~l  (/kvigt(vi)Wij),  and S k l =  Ang'(Ok)EjJ~I 

(g'(Vj) 2i±~1 (Avig'(vi)Wij Rjk)) .  During the subsequent development, the symbols A,,, 

At, and As are used (instead of the general notation An) to indicate that these learning rates are 
specifically associated with Wij, Rjk, and Skt respectively. Since during a given trial p, the 
signals driving the weights are bounded, i.e., IlAv~(p, ~)IPTo~ _< % < oc, live(p, ~)IIT~ _< 
~, II~j(p,~)HT~ < ~, II~k(p,~)llro~ _< ~, and IIg'(')lJToo <- c, where ~ is the largest 
scaling factor, hence Ill~j(p, C)frT~ = IJA~Av~(p, ~)g'(v~(p, ~))Vy(p, ~)IIT~ -< A ~ % ,  

w w,j(p, o) fo and ]] ij(P,~)llTc~ + j(P, <-- = A~c 7 p ( +  7p - Cp • Sim- 

ilarly, IIRjk(p,~)l[Tec < -2 w r ," Arc In"/p¢p, IIRjk(p,~)llZoc < Ar52In"/p¢~ + 7p =- Cp, 
and II)kl(P, 5)llT~ < x Oar r , o/,~o~,~ _ , , s  rt~rt lP~p t/~p. From the definitions presented in Section 5, 

we have Awij(p,  ~) = f :  Wij(p, ~r)do', Arjk(p, ~) = f~o Rjk(P, ~r)&r, and Askz(p, () = 

fo 
Now for two successive trials p and (p + 1), ]]Awij(p + 1,~) - Awij(P,~)IIT~ <_ 

fo~ fV~j(p+ 1,~)do- T~ + f°~l/V~J(P'~)d~ Too < A~2(%+1 + 7p)- Therefore, to 

satisfy IlAw~y(p + 1,~) - Aw/j(p,~)[Izoc < <  1, Aw can be chosen such that A~, < <  
and ~(7~+~+7~)~. Similarly, Ar and As can be chosen as: Ar < <  ~i~(~+1~+~+%%~) 

1 A, < <  a~J~(~+l¢~+~+~+~'v;;;)"  It can be seen that by choosing A~ to be A,~ = 

min[A~, At, A~], the general condition, IIAO,~(p + 1, ~) - AOm(p, ~)IIT~ < <  ~, can be 
met. 
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