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ABSTRACT-In this article, an approach to improving the performance of multi-manipulator systems using 
neural networks is presented. This approach is formulated in the constrained motion framework, within which 
a nominal feedback control augmented by a neural network is derived. It is shown that the closed-loop system 
with the neural network learning on-line is stable in the sense that all signals in the systems are bounded. It is 
further proved that the performance of the multi-manipulator system is improved in the sense that the "size" of 
a certain error measure decreases as the learning process of the neural network is iterated. Results of computer 
simulations conducted to verify the analytical conclusions are presented. The results of this work suggest that 
neural networks could be used as "add-on" control modules to improve the performance of industrial robots in 
execution of tasks involving two or more cooperative manipulators. 

Key Words: multi-manipulator control, neural networks, simultaneous position and force tracking, 
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1. INTRODUCTION 
In automated manufacturing, robots are most often employed for material transport such as pick-and-place 

operations. The capability of robots, however, far exceeds that required to execute these mundane tasks. By fully 
utilizing the capability of robots, greater economic benefits can be realized. An immediate example is the so-called 
fixtureless assembly [15], where, for instance, two robots hold two parts together while the parts are being bonded 
(possibly by using a third robot). Once it becomes a proven technology, fixtureless assembly could bring the 
automotive industry drastic reductions in fixture-replacement (i.e., retooling) costs necessitated by the annual 
upgrade of existing models or introduction of new product lines. The key element of a fixtureless assembly system is 
the coordination of two or more robots. Such coordination not only involves the positioning of the individual robots, 
but, more importantly, the dynamic interaction among the robots through the transmission of force. 

Significant research has been reported in the literature on the control of multi-manipulator systems. The two 
main approaches are the so-called master/slave formulation (e.g., [l, 12] and the hybrid force/position control 
method (e.g., [8,11]). Often implicit in these approaches is the assumption that the dynamic parameters of the 
manipulators involved are known precisely. Such an assumption, however, can not be satisfied in practice. To 
circumvent this difficulty, other control strategies, such as adaptive control [IO] and robust control [6], have been 
proposed to deal with parameter uncertainty associated with the manipulators. 

A class of computational models known as neural networks has been applied to system control in general and to 
robot control in particular. Justification for using neural networks for robot control is based on the following 
properties of neural networks [9]: (i) the ability of neural networks to "learn" (through a repetitive training process) 
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enables a controller incorporated with a neural network to improve its performance; (Learning in general refers to the 
process where a neural network, having been stimulated by an input signal, adjusts its internal parameters so as to 
produce a desired output signal.) (ii) the ability of a neural network to "generalize" what it has learned enables the 
controller also to respond to unexpected situations; and (Generalization in refers the ability of a neural network to 
produce a "meaningful" output when stimulated by an input signal that has not been used during learning.) (iii) the 
structure of neural networks allows massive parallel processing, especially when the neural networks are 
implemented in hardware using VLSI technology (e.g., [14]); such inherent collective processing capability enables a 
neural network to respond quickly in generating timely control actions. 

It is due to these properties that a neural-network-based approach to uncertainty compensation could be 
considered potentially advantageous over other approaches, such as robust control and adaptive control. The 
learning ability of neural networks is especially desirable in the control of robots that perform repetitive 
manufacturing tasks. One reason for using robots instead of human workers in manufacturing is that robots can 
perform repetitive tasks with better quality and consistency. Unavoidable in repetitive robotic operations in an 
industrial setting, however, is the sustained "wear-and-tear" (e.g., joint friction, wear of gears, etc., [2]) of the robot. 
Such wear-and-tear inevitably affects the dynamic characteristic of the robot. In other words, the wear-and-tear 
introduces uncertainty into the robotic system, and consequently degrades its performance. A neural network that 
learns (iteratively) to compensate the effect of such wear-and-tear would enable the manipulator to maintain 
satisfactory performance consistently throughout its expected lifetime. 

Recently neural networks have been employed in the area of robotic control. Application of neural networks to 
free motion control and contact task control have been reported. It has been demonstrated that such properties of 
neural networks can be utilized in developing performance-enhancing controller modules for various robotic 
applications, such as robot trajectory tracking (e.g., [17] and contact task control (e.g., [17]). In the area of multi-
manipulator control, an approach using a neural network has been proposed in [20], where the neural network is used 
in conjunction with a hybrid force/position control scheme. In that approach, both force and position (plus its higher 
order time derivatives) signals are used as input to the neural network to generate a compensating torque signal. The 
issues pertaining to closed-loop stability and performance improvement with respect to the neural network learning 
process, however, are not addressed rigorously. 

In this article, a different approach for uncertainty compensation using a neural network in multi-manipulator 
system control is proposed. This proposed approach is formulated in the framework of constrained motion. By 
formulating the multi-manipulator dynamics within the constrained motion framework (as in [15]), the resulting 
dynamic equations of motion are expressed in the most natural form in a set of generalized coordinates, thus leading 
to a simplified framework in which the control law is derived. This formulation also leads to the conclusion that it is 
not necessary to use force measurement as part of the input to the neural network for uncertainty compensation, and 
as a consequence, the dimension of the input layer of the neural network is reduced. 

In this proposed approach, uncertainty in the multi-manipulator system is quantified, and a neural network is 
used to reduce the effect of the uncertainty on the robotic system so that performance improvement can be achieved. 
Closed-loop stability of the multi-manipulator system (incorporated with a neural network) is analyzed using 
techniques from nonlinear system theory [21]. Results of the analysis show that the closed-loop system is stable in 
the sense that all signals in the system are bounded. Stability of closed-loop systems embedded with neural networks 
has been a key issue that has not been adequately addressed in the literature. The analyses presented in this paper 
offer a possible method in dealing with this issue. The performance of the multi-manipulator system with the neural 
network learning on-line is subsequently analyzed. Through this analysis, the effect of the dynamics of the neural 
network on the performance of the robotic system is revealed. It is shown that the performance of the multi-
manipulator system is improved as the learning process of the neural network is iterated. Numerical simulations are 
conducted. The results of the simulations confirm the conclusions of the theoretical analysis. 

It is emphasized that the main objective of this work has been to investigate the effectiveness of the learning 
ability of neural networks for improving the performance of multi-manipulator systems. It is based on the premise is 
that, by using a neural network as an "add-on" module, the performance of the robotic system under some "nominal" 
control (e.g., hybrid position/force control) can be enhanced. The focus of this work is on the analytical and 
empirical verification (through computer simulation) ofthis premise. 

A logical extension of this investigation is to compare the effectiveness of this proposed approach with that of 
other approaches, such as adaptive control and robust control. To make such comparisons quantitatively, however, 
requires (as a prerequisite) an understanding of the dynamics of the neural network "add-on" module in conjunction 
with the "nominal" control. The work reported in this article represents an attempt in developing such an 
understanding. 
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The remainder of this article is organized as follows. Section 2 formulates the dynamics of the multi-
manipulator system in the framework of constrained motion. Section 3 presents the proposed control law. Section 4 
describes the neural network compensation scheme. Section 5 presents stability and performance analyses. Section 6 
describes the computer simulations. Section 7 summarizes the results and discusses their implications. 

2. DYNAMICS 
The class of robotic systems under consideration consists of N cooperative manipulators handling a common 

object. The manipulators are identified as manipulator. The interaction among these manipulators is represented by 
the generalized forces exerted on the payload by the manipulators. (In this article, the term "generalized force" 
refers to the force and torque generated by the manipulators. Sometimes the word "generalized" is omitted when the 
nature of the force is clear from the context.) The equations of motion of a manipulator i (i=l, ... , N) with n;joints 
can be expressed as 

(1) 

where q; e K\ qi e R\ and ii; e K\ are respectively the joint position, joint velocity, and joint acceleration 
vectors, M; e R";xn; is the inertia matrix, h; e R\is a vector containing the Coriolis, gravitational, centrifugal and 
frictional terms, 7:; e R"i is the input torque vector, and f; e R"; is the generalized joint reaction due to the generalized 
forces exerted by the end-effector of the manipulator on the object. 

The following assumptions are made regarding the class of systems under consideration: (i) the object is 
jointless and is rigidly held by the manipulators, (ii) the mass and inertia of the object can be lumped into the last 

links of the manipulators, and (iii) each manipulator is completely rigid. Let n= L,:1 n; , q = (q 1, qi, ... , qb ... , qN)r 

E R"x 1
, M(q) = diag(_Mi, M1, ... , M;, ... , MN) E R"x", h(q,q) =(hi, h2, ... , h;, ... , hNl E R"x 1

, 7: = (7:i. 7:2, ••• , 7:;, ... , 
7:N) e R"x 1

, and/= <Ji.Ji, ... ,/;, ... JNl e R"x 1
, then (1) can be written in a compact form as 

M(q)ij +h(q,q)=r-f (2) 

Remark: The dynamics model (2) is quite general in the sense that it does not specify how the assumption (ii) stated 
above (i.e., that the mass and inertia of the object can be lumped into the last links of the manipulators) is to be met. 
This concerns the issue of load distribution in multi-manipulator systems, an important problem which has been 
investigated extensively in the robotics literature (e.g., [18, 22]). For the purpose of studying the utility of neural 
networks in multi-manipulator system control, it suffices to recognize that a dynamics model of the system (with a 
given load distribution) is available for developing control laws augmented by the neural network to improve the 
performance of the overall system. 

Since the manipulators are in rigid contact with the object, the motion of the manipulators is constrained. The 
constraint may be expressed as: <p(q) = 0, where <p(·) e /(". It is assumed that <p(·) is continuous and twice 
differentiable. (Note that, through the constraint <p, the force/ can also be expressed in terms of the manipulator joint 

coordinates as: f = f A., where J = iXp , and A. e Rm is a vector of Lagrange multipliers associated with the constraint Bq 
cp = 0.) To reflect the fact the n joint variables of the robots are related through the m constraints, the vector q is 
partitioned into two subvectors q 1 and q 2 i.e., q =(q{.qr), where q 1 e Rm, and q 2 e R"-m. With the assumption 
that a function n exists such that the constraint can be expressed as: cp(Q( q 2), q 2) = 0, the following nonlinear 
coordinate transformation as described in [13] is introduced. Let x = [ q 1 - Q( q 2), q 2( Then q = [x1 + Q(x2), x2]T 

tl Q(x). Since q = Tx and ij = Tx + Tx, where T tl aQ(x). Equation (2) becomes, with arguments suppressed, 
= = fu 

(3) 

where M = fl'MT, and h = r(MT:X + h ). Note that this nonlinear transformation results in x1 = 0. Thus (3) can be 
expressed in "reduced" form [ 13] as 
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where E1 E <Jtx" and E2 E q{_•-m)xn are obtained by partitioning the identity matrix 1. E R"" as 1. = [ Ef ,Ef ], which 
also results in E2Tf = 0. 
Remark: As stated, the derivation of the system dynamics in reduced form (4)-(5) follows the methodology 
presented in [ 13 ]. Other similar method of obtaining reduced order dynamics models of multi-manipulator systems 
have also been reported (e.g., [11, 23]. The utilization of the particular formulation in this work is mainly due to the 
observation that, by formulating the multi-manipulator dynamics within the constrained motion framework (as in 
[15], the resulting dynamic equations of motion are expressed in the most natural form. thus leading to a simplified 
framework to facilitate the development of the uncertainty compensation scheme using a neural network. This 
formulation also leads to the conclusion that it is not necessary to use force measurement as part of the input to the 
neural network for uncertainty compensation, and as a consequence, the dimension of the input layer of the neural 
network is reduced. 

3. CONTROL 

In practical robotic applications, the parameters M and h are not known exactly. In the proposed control law 
presented below, "nominal" (or estimated) values of these parameters, denoted by M and h respectively, are used 
to construct a control law based on the dynamics model. The effect of the discrepancy between the nominal and 
actual parameter values is to be compensated by some additional signal. The proposed control law for the system (3) 
is a modified computed-torque control as in [13], plus an additional compensating signal v, and is specified as 

TT 't = iJ(.xd +Ef KvE2(xd -x)+Ef KpE2(xd +Ef K 1E1TT(i-d - f )+TT fd, (6) 

where Kv E q{_•-m)x(n-m), KP E q{_•-m)x(n-m), and K1 e <Jtxm are diagonal constant gain matrices, xd and x are respectively 
the desired and actual position trajectories,F and/are respectively the desired force and the actual force. 

With the control law ( 6), the closed-loop system dynamics can be expressed as 

e =Ae + B(IW - M). (7) 

where e = [::],ex =xd - x, A B L'iv =Tl - v, K v = Ef KvEi. KP= Ef KpE2, Tl 
=(ii-1M-1).x+ii-1Ah' Ah,;,_ h-h' L'11= jJ-I KL'11<.f1 -./), Kf:y= K1 + r, and K1 = Ef Kfi1T. Note that 

KA1 is nonsingular due to the definition of T and Q. Figure 1 schematically depicts the closed-loop system. 
It remains to show that if the compensator is designed such that L'iv 0, then the asymptotic trajectory tracking 

of the manipulators can be achieved while the actual force tracks the desired force. Recall that Tl = 

(ii M - l )x + jJ-I Ah . Expressing L'iv = Tl -v = 0 in reduced form yields 

(8) 

(9) 

(11) 
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Figure 1. Multi-Manipulator System Control. 

where e2 = x1 -x2• Substituting (10-11) into (4-5) yields the closed-loop system equations in reduced form 

- T( ) (- - - - ( d \ E1ME2 e2 +Kve2 +Kpe2 =E1 M-MF2x2 +E1L1h-E1Mv+Ktif f -f> (12) 

(13) 

Equation (13) characterizes the motion of the manipulators under the constraint q> = 0, while equation (12) expresses 
the forces in terms of the dynamics of the constrained motion. The overall dynamic equation is decomposed to 
arrive at this reduced form because, put in such a form, the "motion aspect" and the "force aspect" of the 
manipulators can be readily examined. Now substituting (8-9) into (12-13), yields 

(14) 

(15) 

It can be seen that equation (15) characterizes the desired asymptotic motion of the manipulators under the constraint 
cp=O. With appropriate Kv and KP, we can obtain e2 0 (and hence q as t oo. Then from (14), it follows that 

It has now been shown that if the compensator is designed such that Av 0, then asymptotic tracking of the 
desired motion of the manipulators, and consequently the desired forces can be achieved. Hence Av is referred to as 
the control error. The objective of uncertainty compensation is to reduce this control error. 

4. UNCERTAINTY COMPENSATION 
Note that Av= 0 implies that v = TJ(X, x, x ). Although the structure of the function TJ(·) is known, the exact 

values of the parameters of this function are not known explicitly. Consequently, it is not possible to predict the 
exact output of this function. (otherwise the problem of designing N is trivial). An ideal compensator is a function 
whose output v exactly equals that of the function TJ(·) so that Av = 0. Based on such a premise, uncertainty 
compensation can be considered as a function approximation problem. 
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A multilayer feedforward neural network (with 
the error-backpropagation learning algorithm) 
represents an attractive mechanism for dealing with 
such a function approximation problem, mainly 
because of its ability to learn [9]. A multilayer 
feedforward neural network consists of a collection of 
processing elements (or units) arranged in a layer 
structure as shown in Figure 2. For a neural network 
with two hidden layers (as illustrated in Figure 2), the 
network is generated [9] according to vi = g 

where g(·) = 

ctanh(·), and c is a scaling factor. For convenience a 
generalized weight vector 0 is defined as: 0 =[WI, 
... , Win, RI, ... , RJn, SI, ... , SKn] e Rc0, where ()i 

Input 
Layer 

k =Kn j =Jn 
Hidden 
Layers 

Figure 2. Neural Network Structure . 

Output 
Layer 

represents the ith row of the matrix (· ), and c0 = In x Jn + Jn x Kn + Kn x Ln. Thus the mapping realized by the 
network can be compactly expressed as: v = g(Z,0), where Z is the input vector, i.e., Z = [zl, z2, ... , zl, ... , zLn]T. 

To approximate the function TJ(X, x, x ), the neural network takes x, x, and x as its input, and produces an 
output v. The objective of neural network learning is to adjust the weights of the neural network to minimize the 
control error Li.. The error-backpropagation algorithm [9] is an effective algorithm for neural network learning. 

Let the cost function to be minimized be: Ja. = _!_ L1vT Liv . Proper application of the error-backpropagation 
2 

algorithm yields the weight update rule: 0 = -/...nLivT oliv , where /..." is the learning rate. Since the objective of 
00 

neural network learning is to produce a network output v such that v approaches TJ, at a given instant TJ can be 

considered as an "desired" output of the network; consequently, oliv = a(n - v) = Thus the update rule can be 
00 8Li 00 

· T ov implemented as: 0 =-/...nliv -
00 

This learning rule requires the control error Liv, which can be computed from (7) as: 
Liv= ex + Kvex + Kpex + Lif. This expression for Liv implicitly contains the joint acceleration ij, which can be 
estimated based on q using appropriate filtering techniques a Kalman filter. 

The closed-loop dynamics of the system with the neural network learning on-line is described by 

{
e = Ae+B(Liv(x,x,x,0)-Li/) 
'°' , A r( ... '"')oLiv(.x,x,x,0) 
o = -r1,,nilV X,X,X,O ()E) 

(16) 

5.ANALYSIS 
In this section, the dynamical behavior of the closed-loop system (16) is analyzed. First, the closed-loop system 

with the neural network learning on-line is proved to be stable in the sense that all the signals in the system are 
bounded. It is then proved that the performance of the closed-loop system is improved in the sense that the .li-norm 
of the control error Liv decreases as the learning process is iterated (i.e., as the number of trials increases). The 
subsequent conjecture is that reduction in the control error eventually leads to reduction in the force and position 
errors. These conclusions are verified by the results of the numerical simulation presented in Section 6. 

5.1 Stability 
Since the learning process is concurrent with the execution of the robotic task, it is important to ensure that the 

robotic system be stable so that neural network learning can be conducted effectively. (The dynamical effect of 
neural network learning on the stability of the robot is discussed later in Proposition 1.) For this purpose, it suffices 
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to require that all signals in the closed-loop system are bounded, that is, the system is bounded-input bounded-output 
stable. (A system is said to be bounded-input bounded-output (BIBO) stable iffor a bounded input, the output of the 
system is also bounded. This term is rigorously defined in Appendix A.) The following theorem (Theorem 1) and 
corollaries (Corollaries 1-3) assert that in (16) such a requirement is met. 

Theorem 1 Given a continuous and twice-differentiable reference position trajectory :x!(t) and a continuous 
reference force trajectory f1 (t), the system (16) is BIBO stable for sufficiently large gains K,,, KP' and Kf 

Corollary 1 The acceleration signal x (t) is bounded. 
Corollary 2 The control error L1v is bounded. 
Corollary 3 The weights of the neural network remain bounded during a given trial. 
Proofs of Theorem l and Corollaries 1-3 are presented in Appendix A through Appendix D. With Theorem 1 

and Corollaries 1-3, it is rigorously established that the closed-loop system with the neural network learning on-line 
is stable in the sense that all signals are bounded. However, these results do not specify the evolution of the behavior 
of the system during the neural network learning process (e.g., the difference in the system behavior between two 
trials). The effect of the network learning process on the performance of the multi-manipulator system is examined 
next. 

5.2 Performance Improvement 
In this section, it is proved that the performance of the closed-loop system is improved in the sense that the .l.r 

norm of the control error Av decreases as the learning process is iterated (i.e., as the number of trials increases). 

Preliminaries 
Let t represent the continuous time variable, i.e., 0 t < oo. Let learning start at time t = 0, and let each trial last 

T seconds. Then the p'h trial spans the time period from t = (p -1 )T to t = p T; the second trial spans the time period 
from t = T to t = 2T; and so the p1

h trial spans the time period from t=(p-1 )T to t=pT. Note that p is thus implicitly 
defined as a positive integer. Let I; be the time variable associated with one trial, i.e., 0 I; T. (The notation x 
from here on means either dx or dx as it should be clear from the context.) Let x(p, I;) denote the value of the 

dt dC, 
variable x at the l;'h second of the p'h trial. Then x(p,O) represents the value of the variable x at the beginning of the p'h 
trial, and x(p,1) represents the value of the variable x at the end of the p'h trial. In other words, x(p,O) and x(p,1) 
represent respectively the initial value and the final value of the variable x for the trial p. Note that x(p,O) = x(p-1,1). 

Let E>* denote a set of optimal weights, i.e., = 0. Let E>m be an element of the weight vector e, and let ae e• 
A9m(p,l;) denote the change ofE>m during the first I; seconds of the p1

h trial, i.e., Aam(p,I;) = f 3E>m(p,cr }icr. 
The .f! - norm of a Lebesque integrable function ft..t) : R+ Rn, denoted by U/floo, is defined as: IJ/11"' = 

ess supte [O, oo) IJl(t)ll < oo. The extended .f! - space, (for the truncated .f! - norm), denoted by .f!e, is defined as: 

.f!e = {f: R+ R" l/rE .f!, VT< oo}, where/r(t) = ft..t) for tE [0,1], and/r(t) = 0 for tE [0,1]. For convenience, 
the notation IJ/11.,,,, is used to denote lifnloo· 

Let qo,1] denote the family of Lebesgue integrable function/,{!;) for all I; E [0,1]. The .£.2 -norm ofa vector 

function fl.I;) = (f,, Ji, ... , /;, ... , f,,), f; E q0,1], over the time interval [0,1] is defined [21] as IJ/lhr = 
1 

(i;)J(i;)dt,)i. The subscript Tin the notation ll·lh indicates that the norm is defined in the extended LP space, 

since we are only interested in the size of the various signals of the robotic system over the closed time interval [0,1]. 
For convenience, the notation 11·11 instead of ll·ll2r is used to denote this norm in the sequel. 

Proposition 1 For the closed-loop system (16), there exists some small A.. > 0 such that II A9m(p+l, I;) -
A9m(p,l;) llToo « 1,for all I; E [0,1]. 

A proof of this proposition is presented in Appendix E. 
Remark: Since A9m(p+ 1,1;) represents the amount of weight change during the first I; seconds of the (p+ 1 )'h 

trial, and A9m(p,l;) represents the amount of weight change during the first I; seconds of the pth trial, this proposition 
(illustrated in Figure 3) means that, for A.. <<1, although the difference between the initial and final values ofE>m, i.e. 
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0m(p+ 1,0) - 0m(p,O), of any trial could be significant, the difference between the change in E>m of any two successive 
trials can be considered to be negligible, i.e., 't e [0,1]. 

A qualitative interpretation for this proposition can be constructed based on the observation on the time-scale 
difference between the dynamics of the manipulator and the dynamics of the neural network with the neural network 
learning on-line. With a small learning rate A.., the overall system can be considered as a two time-scale system with 
the manipulators exhibiting a "fast" dynamics while the network exhibiting a "slow'' dynamics. As the learning rate 
A.. approaches zero, the change of the state of the network (i.e., the change in the values of the connection weights) 
becomes infinitesimally small. One consequence is that, with A.. << 1, the change in the weights per trial can be 
expected to be small. Such small change in the weights will not have significant effect on the state of the robots. 
Therefore, between any two successive trials, the change in the state of the robots, and consequently can be 
considered negligible. Since the rate of weight change depends on the state of the robot, it is reasonable to consider 
that the difference between the two amounts of weight change, can be considered negligible. This proposition is 
further verified by computer simulation presented in Section 6. 

Gm(p+ 1,0) ----------- -
I 

Gm(p,O) ------ --
: : 1 LlBm(P, 
I I I 
I 

(p- l)T pT (p+ l)T 
t 

Figure 3. Weight and Weight Change. 

Main Results 
Let µP denote the .!rnorm of the control error of the p 1

h trial, i.e., µP = II For a series of trials, a 
sequence (µp) = {µi, µ2, ... } is formed. Suppose that the learning process converges after k trials, then a finite 
sequence (µp) = {µi. µ2, ••• , µk} is obtained, with µk = minpe [l,kJ (µp). If the learning algorithm converges globally, 
then µk can be made arbitrarily small by using a sufficient number of hidden units [5]. In the limiting case, µk 0 as 
K + J oo, where K and J are the number of units in the first and second hidden layers respectively. (Note that in 
practice Kand J are finite. Hence, however small µk may be, it will not reach [3].) If convergence is achieved only 
locally, then µk > 0. In any case, it is established that convergence of the learning process guarantees the existence of 
a minimum value of the .!rnorm of the control error. 

Theorem 2 For the closed-loop system (16) with a learning rate satisfYing Proposition 1 and a set of initial 
weights 0 * 0*, the sequence (µp) is finite, strictly monotonically decreasing, and converges to some µk <": 0. 

The proof of this theorem is presented in Appendix F. This theorem asserts that, given the system dynamics as 
specified in (16), the .!i-norm of the control error converges monotonically to some minimum in finite number of 
trials. The subsequent conjecture is that reduction in the control error eventually leads to reduction in the force 
and position errors. This is verified by the results of the simulation described in Section 6. 

Remark: An important issue concerning neural network learning is whether the weights will remain bounded. 
This issue can be resolved (in the context of the above analysis) by observing the facts that (i) the weights are 
bounded during a given trial (i.e., Corollary 3), and (ii) from an implementation standpoint, the learning process can 
be terminated once the .lrnorm of the control error no longer decreases from trial to trial. Thus, if the condition 
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specified by Proposition 1 is satisfied, then it is assured that the weight values are finite at the point when the 
learning process is terminated. 

6. SIMULATION 
One of the purposes of conducting computer simulations was to confirm, through a numerical example of multi-

manipulator coordination, that (i) for a sufficiently small learning rate A.., the weight change between two successive 
trials can be considered negligible (Proposition 1 ), (ii) upon confirmation of (i), the 1rnorm of the control error llv 
decreases as the number of learning trial p increases (Theorem 2), and (iii) reduction in the control error llv results in 
reduction in both the force tracking error and the position tracking error. 

The multi-manipulator system used in the 
simulations consists of two planar robots as depicted 
schematically in Figure 4. One of the manipulators 
(on the left) has three joints while the other has two. 
All links (except the last links) of the manipulators 
are of the length of 1 m; the last link of each robot has 
the length of 0.5 m. The distance between the robot Q22 
bases is 1 m. The tip of the robots are assumed to be 
in rigid contact. Thus the last links of the robots form 
one "common" rigid link. The entire system can be 
alternatively considered as consisting of two robots 
handling a common object represented by the 
"common link". 

The constraints on the manipulators are: cp1 = 
1 

cosq11 + cos(q11 + q12) + -cos(q11 + q12+ q 13) -1-cos 
2 

qi1 - .!._ cos(q21+ qzz), cpz =sin q11 + sin(q11 + q12) + 
2 

.!._ sin(q11+q12+q13) - sin qi1 - .!._ sin(qi1 + qii ), and 
2 2 

cp3=q11 + q1i + q13 - qi1 - qii +it. The dynamics of 
this two-manipulator system can be expressed as 

Figure 4. Two Cooperative Planar Manipulators. 

Mij +h=t-JTA. . (17) 

where q =(qi. q2)T, q1 = (q11. q12. qn)T, qi= (qi1, q22?. M = diag(_M1, Mi). h = (C1 q h C2 q 2)T, t =(ti. t2)T, J = acp, aq 
and cp = (cpi, cp2, cp3?. The elements of the matrices Mi. M2, Ci. and C2 are given in Appendix G. The partition of q is 
as follows: 7j 1 = (qu, q 12, q 13)\ and 7j 2 = (qii. q2i)T. The nonlinear transformation (described in Section 2.4) 
needed for generating the control signals were determined using the Maple software. The source code is included in 
the Appendix. 

In simulating the dynamics of this two-manipulator system, the parameter values as listed in Table I under the 
heading "True" were used. To introduce uncertainty into the system, the estimated values of the parameters, also 
listed in Table I, were used in the control law. 

A neural network with six input units, twenty units in each of its two hidden layers, and five output units was 
used in the simulations. It is noted that currently there exists no analytical methodology for determining the 
"optimal" size of a network for a given problem. Empirical evidence has suggested that the "optimality'' of network 
architecture and size depends on various factors (such as the dynamics and the system complexity) associated with 
the specific application. In the absence of analytical tools, the "optimality'' of a neural network can be estimated via 
empirical means. However, since the purpose of this simulation is to verify the analyses presented in Section 5 (as 
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opposed to the actual development of the neural network as a prototype device), it suffices to use a suitable network 
size, with consideration of available computational resources and complexity of implemetation. 

Table I. True and Estimated Parameter Values. 

Parameter Three-Link Robot Two-Link Robot 
True Estimated True Estimated 

Ct 0.313 0.25 -- --
C2 0.625 0.40 -- --
C3 0.625 .05 -- --
C4 4.168 1.95 0.313 0.10 
C5 5.00 8.30 0.625 0.40 
c6 9.168 11.00 4.168 5.50 

The input to the neural network were q 2i, q 22, q 2i. q 22, ij 2i. and ij 22. The acceleration signals ij 21 and ij 22 

were obtained by filtering the velocity signals q 21 and q 22 using a Kalman filter [24). The learning rate of the 
neural network was set at a small value of 5 x 10-5, so as to be consistent with the argument for Proposition 1 
discussed in Section 5. The initial weights of the network were set randomly in the order of 10-5

, The scaling factor 
c of the activation function was set at unity for the hidden units and at 30, 25, 5, 30 and 25 for the five output units. 
(The values of the scaling factors for the output units were selected to be of the same order of magnitude as the 
uncertainty Tl when no compensator was used.) The control gains were as follows: KP = diag(50,50), K,, = 
diag(l0,20), and K1= diag(l0,10,10). The desired trajectories for q 2i, q 22, and A.1 were generated using a third order 

2 
exponential function of the form: y(t) = y0 + o - o(l+at + t2)e.,,1, where a was set to be 5.0, and o =Yr y0, with 

2 
y0 and YJ being respectively the initial and final value of y. The other two forces, A.2 and A.3, were to be regulated to 
zero. The initial configuration of the multi-manipulator system was set as: q 11 = 90°, q 12 = -30°, q 13 = -120°, q21 = 
90°, q 22 = 30°, A.1 = 0 N, A.2 = 0 N, and A.3 = 0 Nm. The final state of the system was specified to be: q21 = 700, q22 = 
60°, A.1 = 5 N, A.2 = 0 N, and A.3 = 0 Nm. 

The desired task trajectory of the tips of the manipulators is as shown in Figure 5. The desired trajectory for the 
force A.1 is as shown in Figures 6. 

To solve the set of differential-algebraic equations in (17), the second-order back-difference formula [4] was 
used in the numerical integration algorithm, with the step size fixed at 0.005s. A series of trials was conducted with 
the neural network learning on-line. For all the learning iterations, the constraints q>i. q>2 and q>3 were checked and 
confirmed to be satisfied up to five significant digits. 

To examine the dynamical behavior of the weights between two successive trials, Figure 7 shows the dynamics 
of a connection weight Rc5,5> (the weight between the 5th unit of the first hidden layer and the 5th unit of the second 
hidden layer) during the 5th trial and the 6th trial, Figure 7 shows and the difference between the change of Rc5,si in 
these two trials. 1 

Figure 8 shows the dynamics and the difference between the change of the same weight during the I oth trial and 
the 11 th trial. 

It can be seen that the difference between the weight change of two successive trials (i.e., 5th and 6th, 10th and 
11th) is indeed negligible. 

Figures 9 and 10 show the dynamics and the difference between the change of another weight W{2,s) (the weight 
between the 5th unit in the second hidden layer and the 2•d unit of the output layer) during the same pair of trials (i.e., 
5th and 6'\ 10th and 11th). 

Comparing Figures 7 - I 0 with Figure 3 (which illustrates the proposition that the difference between the weight 
change of any two successive trials is negligible), it is evident that, when the learning rate is small, the neural 
network does indeed possess the dynamical behavior as predicted. 

1 It is shown here, as an example, how the difference between change in Rc5,5l of the two trials, 5th and 61h, is calculated. Using the notations 
defined in Section 5, the difference between the weight change of trial 5 and trial 6 can be written as: !1r(5,5i(!;) = "1Rc5,5J(6, !;) - l'!.Rc5,5i(5, !;), 
where l'!.R(5,5i(6, !;) = R(5,5J(6, !;) - Rc5,5J(6,0), Mc5,5J(5, !;) = R(5,5J(5, !;) - R(5,5J(5,0), and!; is the time variable, i.e.,!; [O, 2]. 
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Recall that the analytical conclusion (following the proposition about the weight dynamics between successive 
trials) is that the .£2-norm of the control error decreases as the number of trials p increases. Figure 11 shows the 
.lrnonn of the control error versus the trial number p for the simulations. 

y 
(m) 

1.44 ,-----,-----.-----,-----.--------, 

1.42 

1.40 

1.38 

1.36 

1.34 
1.32 

0. 7 0. 77 0.84 0.91 0.98 1.05 
X(m) 

Figure 5. Desired Task Trajectory. 
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Figure 6. Desired Trajectory o0..1. 
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Figure 7. Dynamics and Difference between Change of Weight R(s,s1: 5th and 5th Trial. 
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Figure 8. Dynamics and Difference between Change of Weight R(s,s1: 1 Olh and 11th Trial. 
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Figure 9. Dynamics and Difference between Change of Weight l/Vi2.5): 5th and &th Trial. 

-6.6e-02 5.0e-05 

-6.8e-02 -3.0e-05 

10th -l.le-04 
w(2,5) -7.0e-02 .6.w(2,5) 

-l.9e-04 
-7.2e-02 th 

-2.7e-04 

-7.4e-02 -3.5e-04 
0 0.4 0.8 1.2 1.6 2 0 0.4 0.8 1.2 1.6 2 

Time (Second) Time (Second) 

Figure 10. Dynamics and Difference between Change of Weight W(2.si: 10th and 11 t11 Trial. D
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Figure 11. Control Error. 

1.44 

1.42 

1.40 
y 

1.38 (m) 
1.36 

1.34 

1.32 
0.7 

25oth trial -
initial -

desired o 

0.77 0.84 0.91 0.98 1.05 
X (m) 

Figure 12. Position Trajectory in Task Coordinates. 

2.0 

1.5 

.A2 1.0 initial -
(N) 25oth trial -

0.5 

0.0 

-0.5 
0 0.4 0.8 1.2 1.6 2 

Time (Second) 

Figure 14. Trajectory of 12. 

It can be seen that the control error indeed 
decreases as the number of trials p increases. This 
confirms the theoretical conclusion presented in 
Section 5. 

The subsequent conjecture is that reduction in the 
control error eventually results in reduction in the 
position error and the force error in the multi-
manipulator system. Figure 12 shows the task 
trajectory of the tips of the manipulators during the 
initial trial (i.e., without compensation) and during 
the 2501h trial. Figures 13, 14 and 15 show, 
respectively, the trajectories A.i, A.2, and A.3 during the 
initial trial and the 250'h trial. Note that A.2 and A.3 
were to be regulated to zero. 

It can be seen that both the force error and the 
position error are reduced as the learning of the 
network progresses. 

6 
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4 

>-1 3 
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Figure 13. Trajectory of 11. 
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Figure 15. Trajectory of /..3. 

From the results of the simulations, it can be seen that both the proposition (that with a small learning rate, the 
weight change between two successive trials can be considered negligible) and the conclusion (that the .li-norm of 
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the control error decreases as the number of trials p increases) are valid. It can also be seen that reduction in the 
control error indeed results in reduction in both the position error and the force error. 

7. SUMMARY AND IMPLICATIONS OF RESULTS 
An approach to uncertainty compensation using a neural network in the control of multi-manipulator systems has 

been presented. This proposed approach is formulated in the framework of constrained motion. It has been shown 
that, by such a formulation, the resulting dynamic equations of motion can be expressed in the most natural form in a 
set of generalized coordinates, thus leading to a simplified framework in which the control law is derived. It also 
leads to the conclusion that it is not necessary to use the force information as part of the input to the neural network 
for uncertainty compensation. It has also been shown that, in this proposed approach, uncertainty in the multi-
manipulator system can be quantified and a neural network can be used to compensate for the effect of the 
uncertainty so that performance improvement can be achieved. 

Analysis on the closed-loop stability of the multi-manipulator system (incorporated with a neural network) using 
techniques from nonlinear system theory [21] has been presented. Results of the analysis assert that the closed-loop 
system is stable in the sense that all signals in the system are bounded. Stability of closed-loop systems embedded 
with neural networks has been a key issue that has not been adequately addressed in the literature. The analyses 
presented in this paper offer a possible method in dealing with this issue. In addition, analytical results concerning 
the performance of the multi-manipulator system with the neural network learning on-line have been obtained. This 
analysis reveals the effect of the dynamics of the neural network on the performance of the robotic system. It has 
further been shown that the performance of the multi-manipulator system is improved as the learning process of the 
neural network is iterated. Numerical simulations have been described and results have been presented. The results 
of the simulations have confirmed the conclusions of the analyses. 

The analytical and empirical results reported in this article suggest that neural networks could be used as "add-
on" control modules to improve the performance of industrial robots in execution of tasks involving two or more 
cooperative manipulators. 
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APPENDIX 

A. Proof of Theorem I 
The following definitions are based on material presented in [21]. The convolution of a Laplace transformable 

signal.f{t) and a transfer function matrix M(s) is denoted by Mf, i.e., Mf = (m * ./)(t), where * denotes the convolution 

operator. The 1 rnorm of a vector x E R"' denoted by llxll, is defined as: llxll = ( L j 1
2 r 2 

• The 12 norm of a 

matrix A e R"x", denoted by llAll, is defined as: llAll =[max; A; (Ar A)f\ where A.{·) denotes the eigenvalue of the 
llPxlfi . . 

matrix (· ). The L" 00 -norm of a transfer matrix Pis defined as: llPll00 = sup ...,i:,-o llxlfi . Thus llJ>IF is the Loo-gam 
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of P. Let f3 denote the norm llP!fi, then llPxllrco '.5: 1311.xllrco . A system with input x and output y is said to be bounded-

input bounded-output stable (or BIBO stable) if for every x E £,,,ye £,,. 
The method presented in [19] is utilized in constructing this proof Through algebraic operations, the closed-

loop dynamics of the multi-manipulator system (7) can alternatively be expressed as 

(18) 

where Ti= TJo +Eu, E .. d M-IAh M-IK A'I TJo = x + L.l + ).,L.111., 

u =Ke+ u, E = M-1 M -1, Lih = h- h, K = l-KP -Ku J, .:if.= "Ad -A., and vis the neural network output. The 

following assumptions [19] are made regarding the nominal model of the multi-manipulator system: Al: For the 
inertia matrix M of the multi-manipulator system, there exist constants M1 and M2 such that 
M 1 S 11M-1 II S M 2 < oo . A2: There exists a nonnegative constant a < 1 such that 11M-1 M - Ill S a . A3: There exist 

nonnegative constants o and p such that where y=[xr,.xrf. A4: There exists nonnegative 

constant f3,,_ such that 11.:iillrco S 13)., llellrco · 
Let G(s) =(sf -A)-1 B. Then (18) can be expressed as: e =Ge, e =Ti+ u, u =Ke+ u, and Ti= TJo +Eu. 

Through algebraic operations, e and u can be expressed in terms of Ti and v as e =(I - GK)-1 GTj +(I - GK)- 1 Gu 

and u = K(I -GK)-1 GTj + (K(I -GK)-1 G + /)u. Let P 1 =(I - GKf1 G, P2 = K(I - GKf1 G, and p3 = K(I - GKf1 

+ I, then e = Pi Tj + Pi u , and u = P2 Ti+ u . Now taking the truncated £,,-norm yields 

(19) 

llullrco Sl32llTillr00 +l33llullr00 • (20) 

where l31=ll(J-GK)-!Gllrco' l32=ll(K-GK)-1G"Tco' and ss. Since 1Jo=Eid+M-1M+M-1K).,Li"f. so 

S M28 * llel!rco + b, where b = a![xdllrco + M 28[[Ydllrco +M2p, 8* = 8 +13).,llK).,llrco, and 

y 2 = {(xdl, (xdlf. It follows that llTillroo S M 2o *l!ellrco +ajjuilrco +b. Since the output of the neural network is 

bounded by construction (due to the tanh activation function of the output units), let cl>= llul!rco. Hence 

Then det(J 

/j, 

Q) = 1 - M28* /31 - af32 = Lim. If Lim > 0, then 

(21) 

Consequently, from (19) and (21), liellrco S l3ib + l3icl> (J3 1M 28*+al33)+13 1<1>. Therefore, ifthe condition Lim> 0 
Lim Lim 

is satisfied, then Ti , u, and e are bounded during each trial. It is thus clear that a sufficient condition for BIBO 
stability of the closed-loop system is Lim> 0. 
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Recall that 13 1 = 11(1 - GK)-1 Gii Too , and 13 2 = llK(I - GK)- 1 Gii Too • It can be seen that the condition Am> 0 can be 

satisfied by selecting sufficiently large values for K such that /3 1 approaches zero and /32 approaches unity 
simultaneously. 

Here we see that the selection of K has nothing to do with the network output v. Thus the closed-loop system 
can first be made BIBO stable by selecting appropriate values for K, and then its performance can be improved by 
properly training the neural network to generate the correct compensating signal. 

B. Proof of Corollary I 
From Section 3, the closed-loop dynamics of a multi-manipulator system can be written as: 

Mi+h = M(xd +u) + h+ KA.A'£, where u = Ku(:xd -x)+ K p(xd -x)+u. So, where E, Ah, Ki-, and Af. are as 

defined in (18). Therefore, from the modeling assumptions specified in Appendix A, llxllToo (1 + llEllToo) 
llxd +ullToo +11M-111r

00 
+13dKi-llTJellTJ (l+a) (llxdllToo +llullToo) 

+ M 2 ( (o * +13). llK). llTJellToo + 8 * llyd II Too + p). where yd = [ (xd r ,(xd r r . Since u and e have been proved to 

be bounded (Theorem I), it can be concluded that x is bounded. 

C. Proof of Corollary 2 
From Section 3, the control error Av in the multi-manipulator system can be written as: Av= id -x +Ke+ Af, 

where K is as specified in the definition of (18). 

llxllToo + llKellToo + M 213). llJO.llToo llellToo . Since x and e have been proved to be bounded, it can be concluded that v 

Av is also bounded. 

D. Proof of Corollary 3 
With reference to Figure 2, the dynamics of the network weights during a trial p can be expressed, using the 

notations defined in Section 5, as [9] 

I 

R jk(p,s) = Ang'(v)p,d! (Av;(p,s)g'( v;(p,s))vij(p,s)), 

where g'O = t3(ctanh(·)), and c is a scaling factor. ao 

i=I 

During the subsequent development, the symbols Aw. Ar. and As are used (instead of the general notation An) to 
indicate that these learning rates are specifically associated with Wij, Rjk, and Ski respectively. Since during a given 

trial p, Av;, v;, vj,vk> and g'(-) are bounded, i.e., y P < oo, c, llv iP·St
00 

c, 
II v c, and Ilg' Oii Too c, where c is the largest scaling factor, it can be concluded that, wij ' and 

consequently Wij, are bounded, i.e., llwy(p,qToo = llAwAv;(p,s)g'(v;(p,s))vAp.qjT
00 

Awc 2 y P, 

= !!Joi; W!i(p,()dallr
00 

Awc2y pS . Similarly, Rjk and Ski can be shown to be bounded. 
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E. Proof of Proposition 1 
As defined in Section 4, the generalized weight vector 0 consists of elements of the weight matrices W, R, and 

S. Hence, Awii = jk(p,cr ):icr, and = (p,cr) d er. 

Now for two successive trialsp and (p+l), llAw!i - A :-::;: llA W;; (p+l, + llA wii = 

Wij(P + l,cr ):icrllr
00 

+ Wy(p,cr ):icrllr
00 

:-::;: Awc2 (y p+I + y p ). Therefore, to satisfy llA wii (p+ 1, wii (p, 

<< 1, Aw can be chosen such that AwC'2{r p+I + Yp) << 1, that is, Aw<< _2 ( 
1 

) . Similarly, llA rjk (p+l, 
c Yp+I +Yp 

rjk (p, :-::;: To satisfy llA r1k (p+l, rjk (p, « 1, A, can be chosen as: A,« 
I 

(
- ( 2 )]

2
. And finally, [[A SkJ (p+ 1, Skt (p, :-::;: s. To satisfy llA sMCP+ 1, SkJ (p, « 1, 

Yp+I +Yp 
I 

As can be chosen as: As<< [-9 2 . 3( 4 4 )]

4 

c Yp+I +Yp 

It can be seen that by choosing An to be the smallest of the three learning rates A..., A,, and A,, i.e., An = min [A...,, 
A,, As] the general condition llA0m (p+ 1, - A0m (pt,)llrw « l can be met. 

F. Proof of Theorem 2 

Since (from Section 4) Jll.v = .!.. Avr from the definition of the .!2-nonn, µ = llAv (p)ll2 = 2 
2 

J: Jll.v The sequence (µp) is convergent ifthere exists some k such that µk = µk-l· The sequence (µp) is 

strictly monotonically decreasing leading to convergence if for any two successive trials p and p+ 1 (where p<k-1 ), 
µp+l < µP" 

2 2 rT Now µ p+I - µ P = 2 Jo (Jll.v (p+ - Jll.v on the fact that the change in the control error Av 

between any two successive trials p and (p+ l) is a direct consequence of the change in the network weights, 
expanding Jll.v about Jll.v while ignoring the higher order terms (because the learning rate is small), 

yields Jll.v - Jll.v where Cs is the total number of weights, 

i.e., cs =I. x J. + J. x K. + K. xL.. Note that aJ _ aJ - Avr . Since 
a0m 

0m = E>m (p+l,O) + AE>m and = E>m (p,O) + and from Proposition I, IJAE>m(p+l, 
- AE>m (p, « l, hence E>m (p+ l - -=E>m (p+ 1,0) - 0 (p,O), and consequently 

_ r( ) J· ( _ ) . )J - 2 £..,, Jo Av a0 ( E>m p-1,0 -0m(p,O) . m=I m 
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:.:;o. 

Now µ ;+l - µ; = 0 if Lctl-1 rT !J.vT (p,f, { atJ.t,c,)))df, = 0. But this implies that "ctl-1 rT em df, = 0, 
m- Jo \ aem p,C, .L...im- Jo 

which states that the total change in the weight E>m for the trial p is zero. This means that the gradient search 
conducted by the error-backpropagation algorithm has reached either a global minimum or a local minimum, and so 
µp+1 = µr If this is not the case, then µ ;+l - µ; < 0, that is, µp+1 < µP, which implies that the sequence (µp) is 

strictly monotonically decreasing. Since by definition µP 0, the fact that (µp) is strictly decreasing and convergent 
implies that (µp) is finite. This completes the proof for Theorem 2. 

G. Elements of Matrices of the Two-Manipulator System 
The elements of the matrices Mi. M2, Ci. and C2 are as follows: M1 [1,1) = c1 + c4 + c6 + 2 (c2 + c5) cos q12 

+ 2c3 cos(q12 + q13), M1 [1,2) = M1 [2,1] = c1 + c4 + c5 cos q12 + 2 c2 cos q13 + C3 cos (q 12 + q13 ), M1 [1,3) = 
M1 [3,1) = c1 + c2 cos q13 + C3 cos (q12 + q13), M1 [2,2] = c1 + C4 + 2c2 cos q13, M1 [2,3) = c1 + c2 cos q13, M1 
[3,2) = c1 + c2 cos q13, M1 [3,3) = c1, M2 [1,1) = c4 + c6 + 2 cs cos q22, M2 [1,2) = c4 + c5 cos q22, M2 [2,1) = 
c4 +cs cos q22, M2 [2,2) = C4, C1 [1,2] = - c3 ( q 11 + q 12 + q n) sin (q12 + q13) - (c2 +cs) q 11 sin q12 - c5 q 12 
sinq12 -c2 q 13 sinq13, C1 [1,3) = -c3(q11 + q 12 + q n) sin(q12 +q13)-c2(q12 +q n)sin q13, C1 [2,1) = ((c2 + 
c5) sin q12 + c3 sin (q12 +qn)) q 11 - c2 q 13 sin q13, C1 [1,1] = - c3 ( q 12 + q 13), C1 [2,2] = - c2 q 13 sin q13, C1 
[2,3) = - c2 ( q 11 + q 12 + q n) sin q13, C1 [3,1) = c3 q 11 sin (q12 + q13), C1 [3,2) = c2 q 12 sin q13, C1 [3,3) = 
Cz[2,2]= O,Cz[l,1] =-cs 4.22 sinq22,Cz[l,2] = -c5 (i/.21+4.22) sinq22,C2[2,1) = c5 q21 sinq22,wherec1 

2 2 2 2 2 = m3 [c3 + h, C2 = m3[z/C3, C3 = m3l1l03, C4 = m2 lc2 + m3 l2 + 12, C5 = m2l1lc2 + m3l1l2, c6 = m1 lcl + m2 li + 

m3 tl +Ji. 
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