
DYPP - A VLSI DYNAMIC-GRAPH ENSEMBLE MACHINE

Marks V. A. Hdncu
Bell-Northern Research Ltd.

P.O. Box 3511, Station C, Ottawa, Ontario KlY 4H7, Canada

Kenneth C. Smith
Department of Elecnical Engineering

University of Toronto
Toronto, Ontario M5S lA4

In a previous paper, we proposed a special environment and tech-
niques for the implementation of highly parallel processing. A new VLSI
supercomputer architecture, DYPP (DYnamically Programmable multi-
Processor), was introduced, with the unique property of being able lo
embed, and execute directly. program graphs both statically and dynami-
cally. Either asynchronous (dataflow) or synchronous implementations of
program graphs can be realized in DYPP. In the present paper, we provide
further insight in its operation.

In the proposed ensemble architecture, we separate processing and
communication into two distinct, though overlapping and interacting
layers. Separate, simpler (and thus more reliable), processors are assigned
to the connectivity layer, which becomes active and self-adaptive, thus
being able to detect and compensate for malfunctions in the underlying
layer of main processing elements.

There is no global control at either level. Rather in a lirst, static,
version, the program graph (icorporating both connectivity information
and operators, that is instructions), is “injected” in a preliminary, separate.
phase via the connectivity-layer processors. In this phase, the connectivity
graph is embedded between live (operational) main processing elements.
In the second phase, processing takes place.

A more advanced option makes the connectivity layer fully dynamic.
In this case. the program graph is continuously injected (embedded) in a
flow fashion to interact with the flow of data and intermediate results,
which flow is said to become levitating. This can greatly reduce the need
for local program memory and Iarge numbers of PEs, and correspondingly
the required VLSI area As well, it can dispel the need for (large) resident,
localized, static programs characte&ically present in von Neumann archi-
tectures. Based on data levitation. the generalization of systolic arrays
becomes feasibb.

1. Introduction

There is presently an ongoing search for full implementations in
VLSI of highly parallel supercomputers with regular, array-like structures
([43], [46]). However, this search implies the solving of numerous prob-
lems. Some of the most critical of these problems are that:

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

@ 1988 ACM 0-89791-272-l/88/0007/0090 $1.50

Supercomputer structures, implemented with conventional logic
families, or present-day microprocessors 1211, [44] must be com-
pletely reworked for total integration.

Present densities (and areas) fall far short of the real need.. Hedlund
and Snyder [241 mention the possibility of implementing only about
300 processing elements (PEs) on a wafer, even using wafer-scale
integration 1331, but do not reveal the complexity of the PE. type con-
sidered.
Communication difficulties necessitate neighbour-to-neighbour s~lu-
tions [29], [331.
New reliability approaches must be discovered in Order to Provide a
truly fault-tolerant design.
In Hbcu and Smith [22], we have introduced a new WI super-

computer architecture, the DYPP (DYnamically Programmable multi-
Processor), intended to contribute to the solution of the difficulties out-
lined. In the present paper. we derail its description. DYPP embodies:

a new two-level fault-tolerant structure, corresponding to a
reconfigurable. highly parallel supercomputer in which, in contrast
to the supercomputer proposed in Snyder [22], the connectivity @W
contains simple processing elements and requires no global control
of configuration;

a new concept. called “connectivity injection”, whereby the program
graph is located in the computational ensemble via a “program
wave” radiated into, and propagating (in a parallel or serial fashion)
through. the connectivity layer serving as an adaptive support S&W-
ture;
a new concept. called “data kvitation”. concerned with the way data
and program flow information should interact in a highly parallel
computational structure in order to ensure minimization of VLSI
area, minimization of local fixed memory (i.e. ROM), as well as
generality of application, which can be seen as a generalization of
the systolic array concept.

The idea of massive parallelism in supercomputers has been advo-
cated for a long time (see for example [5]). In 1281. is given an interesting
overview of “pre-VLSI” implementations.

Snyder 1451. [46] was one of the lirst to outline the merits and
difficulties of a full VLSI implementation of supercomputers and to pro-
pose an architecture, the CHiP (Configurable Highly Parallel Processor),
which has become a term of reference. CHiP has three main architectural
layers:
4 a regular bidimensional array of PEs;

b) a switch lattice (with passive switches);

d a controller.

In CHiP, the controller is intended to be the element which broud-
ca.ws the switch-programming pattern. The switch lattice provides the only
medium for interprocessor communication. Various architectures can be
realized by modifying the switch lattice.

90

One problem with the CHiP architecture is the global controller and
the means by which it obtains access to all of the switching elements in the
connectivity lattice. In VLSI implementations, any global connection in
addition to power, ground and clock (the latter, obviously, in synchronous
systems) is not nom~ally recommended. This is one of the reasons why
sysrolic arrays [29]. based on systematic neighbour-to-neighbour connec-
tions, have created such interest

2. DYPP - A Fault-Tolerant Architecture with Self-
Adaptive Connectivity

In contrast to the CHiP architecture, the proposed architecture for
DYPP (Fig. 1) consists of only two conceptual levels or layers:

4 a regular array of main processing elements (MPEs);

b) a connectivity network (lattice) consisting of wires and switches
controlled by an array of connecfitity processing elements (CPES).

Crc5s section

Fig, 1 DYPP architecture.

The main processing elements (IvlPEs) are each able to perform a
defined set of instructions. They could be all identical to each other, or
could represent a mosaic-like spatial distribution of distinct processors,
able to cover in combination all the data-processing operations required by
the applications environment (see for example the distinction between
MPEl and MF’E2 in Fig. 1). The seu of insauctions pertaining to each
processor could be customized via individual writable control stores
(WCSS).

In contrast to schemes previously presented, the proposed connec-
tivity lattice is not simply static, but is adaptable, under distributed control,
to the needs of the current program.

Traditionally, VLSI interconnection networks have been thought of
as being purely passive, being collections of switches and wires. Many
configurations have been imagined: trees, shuffles, single or multiple
buses, etc. [S].

However, in the VLSI environment, testing by direct access for
non-functional units at the component, block or even chip level (the latter
for example in the case of wafer-scale integration schemes) is quite
difficult, if not impossible (in a majority of cases). This results from:

4 circuit complexity with extreme miniaturization;

b) access difficulty (the mechanical or optical resolution of available
tools is limited);

d COSt Of provision Of additional testing pads often associated witi
drivers powerful enough to support external loads;

d) software complexity, which requires quite intricate sequences of
tests.

As a result, designers are forced to include built-in testing pro-
cedures and provisions for fault tolerance.

In our present approach to VLSI supercomputer design, the intercon-
nection lattice of DYPP includes, and is controlled by, a set of processors,
the connectivity processing elements (CPEs). They serve an essential role
both in the (re)configurability and fault tolerance of the structure.

The CPEs are the architectural blocks contiolling, and thus
configuring. the switch lattice. Their decisions are based on:

4 connectitiry information provided by the user as part of the array-
programming and customizing prccess (see section 3);

b) fwrctionafiry information provided by the MPEs as status bits (lndi-
eating fault status) and by tests performed by the CPEs themselves
on the passive switch lattice and adjacent connections.

The functionality information is obtained either during a preliminary
self-test step. or in specially allocated time intervals, interspersed with the
real processing of data (the latter approach is intended for continuous array
maintenance).

Our approach to the fault tolerance of the processing array is based
on additional perceived factors:

The necessity of delegating as much of the reliability testing and
repair process to the chip itself because of the difficulty of access
and surgery in VLSI by external means.

The higher reliability of the interconnects over the processing ele-
ments (PEs) themselves which are much more complex structurally
WI, WI. 1331.
The necessity of a more hierarchical distribution over different
layers of PEs and interconnects; this leads naturally to the idea of
CPEs as being processors which are relatively simple in comparison
with the MPG.

The necessity in wafer-scale integration for self-test and self-
reconfiguration. This is seen to be in antithesis with the exclusive
use of external techniques, like discretionary wiring [38] or laser res-
tructuring [333.

T&e two-layer approach to chip (or wafer) reliability is even more.
appealing if we take into consideration some current trends towarcts a more
3-dimensional layout [41]. In such a layout, the separation between the
processing layers could be even clearer.

Note that the granularity of the active array can be varied, thus for
example making provision for the availability of spare functional com-
ponents (MPEs, CPES and interconnections) in the immediate vicinity of
the defective ones.

Various fault-tolerant strategies can be implemented in this architec-
tural environment to cover different fault instances. Some of them will be
covered in the following sections.

3. Dataflow and Connectivity Injection

The program graph will, for the present purposes, be interpreted in a
&tallow sense [21], which leads, in the end, towards an asynchronous
implementation. However, other interpretations are possible, some of
them leading to synchronous schemes (as those presented in section 8).

The datatlow model of computation has been advocated over the last
three decades [12], [IS], [20], [21], 1261, 1401. [50], as an advantageous
means of performing highly parallel computations. The main advantages
lie in the areas of implementation (as no synchronization is required for
operand communication) and programming (reducing side effects. as only
values. and not variables, exist).

91

A feature distinguishing dataflow architectures from each other is
the degree of directness with which they can bridge the gap between the
progrum graph (used as program representation) and its implementation.

In the majority of datatlow approaches [Ill, 1151. 1211. 1481. the
nodes of the program graph represent functions (or processes in a more
general setting) which am enabled (fired) only when all the (input)
operands become available. The arcs of the graph provide communica-
tion, that is they carry data (or sometimes control) tokens labelled with
their destination, constituting the specific input of a specific instruction
(operator).

As a defining attribute of the proposed architecture (DYPP), the pm-
gram graph nodes are seen to be located at the h4PEs (main processing ele-
ments). The program graph arcs will be implemented via the physical
links created between the source MPEs and destination MPEs when apply-
ing appropriate connectivity instructions to the CPEs defining the com-
munication paths.

Certainly, DYPP is optimized for running highly parallel programs,
where a majority of its processors are busy at a certain time. This means,
too, a requirement for a certain locality of data dependencies, which should
translate IogicalIy into neighbour-to-neighbour communications.

result packet

c I
Instruction ’

Update Queue Fetch
- (Template

Address)

Fig. 2 The basic dafaflow-instxuction mechanism (Dennis [13]).

The most well-known dataflow architectures are those based on the
circular pipeline mechanism of instruction execution proposed by Dennis
[13], (Fig. 2). The program graph is stored in the Activity Store, where the
operators are represented as templates (Fig. 3) having as component fields
the opmde, the operand inputs and destination address. The addresses of
the templates which have received all their operands (corresponding to
instructions which can be fired) are read by the Fetch Unit from the
Insrruction Queue. Based on tltese addresses, the Fetch Unit reads the
activity template from the activity store, assembles it in an operation
packet and sends it to an appropriate Operation Execution Unit. The result
packet is directed via the Updare unit to its destination template. The
receipt of all necessary operands by a template (in order to hre) is also
checked by the Update unit. The complete templates (those ready to fire)
are queued in the Instruction Queue. Several operation and result packets
can coexist on the ring. reflecting the parallel (but unsynchronized) execu-
tion of several instructions forming the circular pipeline.

before : after:

Dataflow
Actor

Firing
Rule

Fig. 3 Dataflow actors and templates.

The degree of parallelism in execution can be improved by incteas-
ing the number of PEs implementing the operation units. Dennis [13] pro-
posed a datallow multiprocessor for which a VLSI implementation under
current development is described in [20].

In Dennis’ multiprocessor architecture (Fig. 4) the main element
besides the PEs is the communication network directing the result packets
to the appropriate PEs. which tire upon receiving all the necessary
operands.

I
Fig. 4 Dataflow mulfipmcessor (Dennis [131).

While these conventional circular dataflow architectures are advan-
tageous in terms of minimizing the number of PEs, our major point is that
they abandon contact with the program graph level, which does not appear
explicitly in the communication scheme. As a result, too many intexmedi-
ate conceptual levels appear in the process of programming, and as a result
direct graphical programming is quite impossible.

With the advent of VLSI and the prospect of WSI (wafer-scale
integration) near at hand, the number of PEs present on a chip or wafer is
increasing considerably. Thus another design philosophy can be pursued.
based on an abundance of PEs, in which we design a truly distributed
datapOw architecture, able to replicate the program graph naturally within
its communication scheme. Thus. programming at tbe program graph level
would be facilitated tremendously.

For the more conventional dataflow architectures, high-level
languages like VAL [2] or ID [33 have been created and corresponding
compilers or interpreters have been designed. These conventional
dataflow languages are functional or applicative languages whose dom-
inant properties are freedom of side effects, locality of effect and the
single-assignment convention [2]. They include special constructs able to
describe highly parallel activities in a compact manner.

However, when using novel architectures, like CHiP and DYPP,
both fully distributed and providing an easy view of the communication
paths, one feels pressed to abandon language-based high-level pmgram-
ming. Instead, a direct graphical-progrumming approach can potentially
be used where in fact the programmer locates the functions (or processes,
in a more complex case) at the PEs and defines the communication links
along which the data (or control) tokens are exchanged. In 1451, is
presented such a parallel programming environment for CHiP. The
corresponding development for DYPP (in the static graph-embedding case)
is similar, though not the subject of this paper. In fact, the programmer
can operate directly at the program-graph level. Of course, time is
required until such new programming approaches, unconventional but
straightforward and arguably very productive, will be adopted.

Our confidence in the potential for direct pmgramming at the pm-
gram graph level has influenced the writing of this paper. Thus here the
graph is the main program support to be embedded statically or dynami-
cally in DYPP. with no intermediates.

An extra assumption (although not essential for the DYPP
Minition). will be made about the program graph, in or&r to limit the
intersection of communication arcs in the embedding. In particular we will
assume that the program graph ls composed of secrions, each of binaty-

92

tree form @I. 191. In Fig. 5a a simple program graph is given in the
dataflow form. while in Fig. 5b the associated co~ectivity (communica-
tion) graph is presented. In Fig.% the operators (functions) are
represented, located at the nodes, with the same graph “perpendicularixed
in order to fit a presumed rectangular mesh of main processing elements
(MPEs). Phantom nodes (Figs. 5a and 5c) contain no operators [ll]; they
are used exclusively for l/O transfers.

The spatial location of the operators in the MPE mesh (Fig. 5c) will
be obtained by a mapping program which has, as its inpuS the program
graph. It is provided also with information about the available arrays of
h4PEs and CPEs and outputs the (presumably final) positions of the opera-
tors (provided no faults are considered for MPEs, CPEs or iI’@EOMeCtS.)

(a)

I Result
I-- --;/Phantom
;----~ node

(b)

lnwt rdv2rtu-n Gnteffacel nodes

(cl

Fig. 5. Program-graph “injection”. (a) Dataflow program for
I (x-3)* + G I. (b) Associated connectivity (cornmunicatlon) graph.

(c) Laming the operators in the MpEs (same graph).

In the next step, this operand-location and connectivity information
must be transposed onto the real array, by programming each MPE to per-
form its corresponding instruction (elementary operator or function) and
asking the CPEs to configure the COMeCtiVity lattice correspondingly.

The newly concocted term of connecriviry injecfion, presented in the
title of this section, refers to the mapping (embedding) of the program
graph in the available array of processors provided by the DYF’P environ-
ment.

Program-graph injection can take place before or during program
execution. In this respect, it is defined as being respectively srufic or
dynamic. The next two sections treat these approaches successively.

4. Static Program-Graph Injection

The mapping programs which must be used to obtain the physical
location of the MPEs and CPEs in DYPP, for static program-graph injec-
tion. could be similar to those derived in 161. 171 for CHiP. Thus their
implementation as such is not our main topic of study.

The techniques used in this section are said to be static because the
(whole) graph is “frozen in place” in the array (since me MPEs am pro-
grammed with the same operators, and CPEs define the connections for the
whole duration of program exzcufion).

Instead, we tried to devise simple techniques for injecting the pro-
gram graph in DYPP. taking into account the fact that no special
configuration controller exists in our design, in contrast to the situation in
the CHiP design.

Two techniques have been devised to cope with the final stage of the
graph-injection process: a parallel one and a serial one.

The programming of the array takes place in two steps, scheduled
entirely before program execution is initiated in the static program-gmph-
injection process:

1. The &lPEs are provided, in a global parallel or serial fashion (Figs. 6
and 7). with their operators and with the addresses of their two chil-
dren (assumming the graph is a binary tree)

DYPP

operaiional 8

c?mnectivity

a \
token

wavefront

- -

Fig. 6 Parallel, static, programming of DYPP (parallel injection).

token :

--a-----------
i

_ injection

HOST

Fig. 7 Saial, sratic, programming of DYPP (serial injection).

93

2 The hfPEs ask the adjacent connectivity processors (CPEs) to con-
nect them with their children.

It is probably clear by now that the intermediate mapping program
should be provided with some information about the dimensions of the
array, and about the number of levels in the program graph. The latter

should be smaller than the maximum integer coordinates in any communi-
eating direction in the processor mesh (a value which is equal to the
number of processors in that direction).

lbe programming step in the program-graph-injection process takes
Place as presented in Fig. 6 and 7.. In both approaches, the mechanism for
the advancement of the operation and connectivity to&ens (Containing the
operators and the addresses of specific connected children of the node) can
be synchronous (under the influence of a clock) or asynchronous (as in the
data-wavefront approach in [31].

The operation and connectivity tokens are provided by the host,
based on the output of the intermediate-mapping program PmiOUSlY men-

tioned.

The MPEs not participating in the computational process are
assigned a null operator, and obviously do not ask the CPEs for a connec-
tion.

The parallel program-graph injection process, shown in Fig. 6. is
initiated after power-up when the connectivity lattice is automatically
organized by the CPEs into columns, on which the operational-
connectivity tokens are pushed from the host. The register bank at the
lower side of the array provides the conversion from the field width of the
host interface to the array communication width. The necessary numbers
of pins for host VO might otherwise be prohibitive. In any event, this con-
nectivity issue is a serious problem for any VLSI supercomputer, given the
present packaging techniques. The operational-connectivity tokens are
pushed in a pipelined fashion by the clock (in the synchronous approach)
IX pulled by handshaking (in the asynchronous version) until they reach
the upper edge of the array.

The tokens should advance for a number of steps precisely equal to
the vertical integer coordinate of the processor array (corresponding to the
number of processors in the vertical direction). This is ensured by defining
an appropriate number of clock pulses in the synchronous approach or pro-
viding the upper edge of the array with a permanent NONREAD response.
in the asynchronous (handshaking) technique.

The tokens are provided by the register bank in layers, starting with
those in the upper row. The tokens propagate in waves until they fill in the
array, thereby fully programming and configuring it.

In the serial scheme, presented in Fig. 7, the tokens are injected, one
by one, at one comer (shown to be the lower-right in the figure) of the
array. They propagate along the columns contigured in the above-
mentioned manner. At the end of each column, they travel horizontally
through an extra interconnection, provided to connect all columns end to
end.

The injection (filling) process of the array ceases when all the MPEs
have received their programming tokens.

Note that the content of the tokens can be modifled to increase the
number of neighbours to which each IvlPE is connected.

5. Data Levitation and the Dynamic-Graph Machine

Very long parallel programs (represented by graphs with many lev-
els), might require a considerable area if we use the static embedding of
program graphs discussed in the previous section.

Assuming that we are using a dataflow type of computation, the d4t4
tokens travel, from the root(s) and other injection points, along the graph.
Only a limited number of operators are Ered (active) at a given time,
depending 04 the data already available for input to each operator.
Correspondingly, only a limited number of MPEs are used at a given time.
leading potentially to low resource utilization.

Conceptually, we could use a movable “activity window” to frame
the graph area (Fig. 8) containing the active operators (instructions) at any
time. The window would move along the graph, from the root to the pen-
dant vertices (which are connected to the exit points from which emerge

4
I-- -- ----- - -7 a aI.

a
1, __a_- a b/w’ndow -_a-----l

a - Active processors (MPEs)

Fii. 8 A program-graph activity window.

the final results).

Even if, for the graph in question, the height of this window (that is
the number of graph levels included in it) is much smaller than the total
number of levels in the graph, a static graph injection (embedding) in the
DYPP would normally lead to a correct implementation only if the whole
graph is embedded iu the processor array.

This is because the static-injection approach causes the nodes of the
graph to be stationarily located at certain MPEs in the processor array,
while the data tokens propagate, at program runtime, along ‘he arcs of the
graph. This means that all the graph nodes must be injected in the pro-
gramming phase (Figs. 6 and 7) and no modification can be made to the
operators (functions) performed by each MPE during program running.
This approach might in general require a prohibitively large VLSI area,
even with wafer-scale integration.

To cure this probIem, we propose a new concept of “levitating” data
(including partial results) via dynamic mcdiEcation of MPE and CPE pro-
gramming.

In this approach, the size of the atray would be prescribed by the
maximum activity window at any time, and not by the total number of
graph levels.

The corresponding array is no longer statically programmed.
Instead, the program graph is continuously injected through the array,
dyn4micolly changing the functions (and the connections) of all MPEs
(Fig. 9). The programming and execution phases must now take place in
parallel.

*Program graph flow

a - active

Fig. 9 Tl~e data-levitation process.

nodes

The processor array must accommodate an area at least equal to the
maximum activity window required at any time.

All tbe dota tokens resultiog from previous operations, or current
input, should Ievitute @a present dynamically) in the array. Conceptually,
this means keeping all the arcs of the graph having unresolved dam tokens

in the array (hardware), dynamically mapped onto communication links.

94

If we compare this with the static model of embedding studied in
section 4, we realire that the program graph moves itself thmugh the array
in a wave-like manner. carrying with it the operarion und connectivity
&&ens of the current activity window. Synchronous or asynchronous
schemes can be devised to support this movement, devised to maintain
dynamically the activity window inside DYPP.

This can eventually be Seen as a generalization of the systolic array
concept. In systolic arrays several flows of data and results coexist in
interaction in the array. In our proposed dynamic architecture. thefunc-
tionul definitions of rhe operutors implemented by the PBs find themselves
also in a flow movement, causing dynamic recontigurability of the array
(Pig. 10).

I I
I

-----------I
I I 1 #

I ’ Input data flow I ;

I 1 I I2
:Instruction ioPerator 8 connectivitvl flow’

Result flow

1 ---------------,----a (
L_-----_I-----_--_--

HOST

Pip. 10 A DYPP generalixation of systolic arrays.

This architecture can be identified as being both dynumic wad non-
van Neumann (the program and data memories are equally distributed to
all MPES).

The concept leads potentially to a massive reduction in the array
area and local ROM size. But, at the same time, it forces the host com-
puter to perform another function, namely the injection of insrrucrionfIow.
as well as providing input data flow and accepting result data flow.

The concept of data levitution can possibly be applied successfully
to general-purpose computation. However one reservation remains. It

concerns the implementation of program loops in a VLSI context where
global connections are to be avoided (and are, as a matter of principle, not
recommended in DYPP), and where neighbour-to-neighbour transactions
should be the rule.

As a matter of fact, considerable current research in VLSI algo-
rithms is directed toward creating algorithms matching the VLSI con-
straints c291, c37l. [451.

6. Two-Level Fault-Tolerance

The hierarchical fault-tolerant structure of DYPP is organized on
two conccptnal levels: processing and connectivity. Because an effective
implementation of parallel computation in such an ensemble of PEs
requires a significant number of them. the techniques destined to provide
fault tolerance described in [34] for large arrays of processing elements,
and those recommended in 1241, based on wafer-scale integration, should
be appropriate.

While both synchronous and asynchronous (datatlow) architectures
can be implemented in DYPP. we feel that a darufiw architecture is more
appropriate as it makes full use of the direct graph-cmbcdding feature of
DYPP. At the same time, a dataflow architecture is more recommended in
terms of VLSI implementation for large DYPP structures. where the
effects of clock distribution can generate considerable difficulty.

‘Ihe research on fault-tolerant dataflow and corresponding architec-
tures is at an early and evolving state. The most significant contributions
now known are [20], [471, 1481. In view of the current interest and novelty
of this area, we will concentrate mostly on the problem of implementing
such fault-tolerant dutujlow urchirectures in DYPP.

The two-level architecture of DYPP is entirely appropriate for the
application of the “loading arm method” of test and recontlguration pro-
posed by Manning [34]. The “loading arm” is conceived to be a set of con-
tiguous cells. grown gradually in the atray. It is able both to advance and
to relmx. The cell located at the top of the arm IIrst tests and then pro-

gtams its neighbours. The intermediate c&Is. located between the con-
troller and the top celI are used collectively as a communication link
through which the test or reconfiguration information is passed lbii
method cnn be used for the static embedding of the program gmph in a
DYPP structure containing faulty processing elements. These faults are
expected to be located mainly at the MPE level, as the main processing
elements are by design more complex and occupy more area than the
CPEs, thus being on the average more prone to defects. But faults in the
CPEs can be detected and acted upon, as well.

In Manning’s concept, an external or internal central controlIer pro-
jects into the array of PBs a loading (rrm which can advance or retract in
all directions (a square array was the original case), avoiding faulty PEs
(Pig.11). Manning was the first to propose the use. of such an arm in
flawed arrays [343. The PEs at the front of advancement are tested by the
controller via the loading arm or else it merely reads the results of indivi-
dual PE self-tests and sends them back to the controller.

fault -

ARRAY OF PEs

loading arm

Fig. 11 M-S loading-arm method for test and configuration
of an array with faults.

The loading arm grows progressively from functional PEs tested at
the previous step. In DYPP. the processing and loading layers as con-
ceived by Manning arc implemented respectively in the processing layer
(containing MPEs) and in the communication layer (containing CPEs).

In the case of DYPP, the controller could be the exrernul host or a
group of internal PEs working as a diagnostic and reconfiguration proccs-
sor (Pig. 12a & b). located preferably at the DYPP periphery, for con-
venient Vo with the host

HOST

DYPP

DYPP

(b)

--i--r-- -------

HOST

Fig. 12 Extonal (a) and internal (b) implementation of the controller
for the Manning’s method of test and reconIiguration of DYPP.

95

llte loading arm also acts to program the array of PEs. performing in
fact in the case of DYPP the above-mentioned stafic embedding Of the pro-
gram graph. The use of the loading arm for dynamic embedding of the
program graph is not appropriate, as the presence of the arm prohibits
movement of the graph through the array.

The loading arm is composed of two parts:

. the arm i&f, implemented in the CPE layer, has to communicate
the test and programming instructions from the controller to the
current cell under test and configuration;

. the head of fhe urm, implemented in the MPE layer, is able to test all
adjacent neighbours and relocate in any of them to advance or retract
the arm.
The MPEs and CPEs can be designed with full or partial self-test

facilities so that after power-up the positions of the faults are implicitly
known. obese fault positions are discovered in the first pass (used for test)
of the process of arm advancement. Thus the controller is quickly pro-
vided with a fault distribution. Taking into consideration the graph to be
embedded and the available functional processors, a mapping procedure is
carried out. At a second pass (used for configuration or graph embedding),
the arm programs the MPEs and CPEs to their required functions, based
upon the results of the mapping procedure. The second pass thus substi-
tutes the programming steps described in Figs. 6 and 7.

Two passes of the arm are necessary in our opinion, because the
mapping algorithms normally require global information on the location of
faults in the array and such information can be available only at the end of
the tirst pass. This. in fact, is one of the reasons why fully distributed
fault-tolerant systems (using distributed test and reconfiguration) are not
very popular in the literature.

The approach used by Manning is one in which no explicit reference
is made to the specilic nature of the computation to be performed by the
array. However, the ideas on fault-tolerance by Srini [471, [48] are
directly related to fault-tolerance in &tajIow computers and are thus more
immediately relevant to DYPP. as already mentioned in this section.

Srini’s approach to fault-tolerance is also centralized, as he uses a
diagnostic processor to which all the nodes in the datatlow graph report
their states (determined via self-test) previously to and during node finding.
When applying these concepts to DYPP. upon detection of a fault during
Mde tiring, the node and its operands (located in its input buffers) will be
reassigned to a neighbour MPE. based on tables of replacement. This
reconfiguration is managed by the diagnostic processor.

In the process of reassigning the processor t0 a functional node,
Srini suggests that one should neglect the output buffer and as a result start
the computation from the Iirst instance assigned to that processor because
the memory effect of the output buffer dissappears.

A difficulty arises when the input buffer is itself defective. In this
case, Srini suggests that the system memory provide a backup copy of the
token stored in the buffer. As DYPP is a distributed computer system, the
closest we could cOme to his original solution (because the absence of a
unique memory) is to ask the source processor for a backup copy. Such
copies might also be stored by the communication processor (CPE)
supervising the corresponding link.

Several ideas concerning the fault tolerance of a distributed data-
flow computer using multiple chips have been proposed by Gaudiot et al.

1201. Some of them could be used in the DYPP environment as well. Gau-
diet et al. distinguish two aspects of static fault tolerance:

. immediate recovery from faults;

. long-term recovery from faults.

For the immediate recovery from faults (after only a few seconds),
an error memory will be provided in all MPEs and CPEs. Upon failure, a
processing element informs all neighbours (or the whole array. by broad-
cast, superceding normal operation, in the case where long program-graph
arcs have to be embedded) of his address, which is stored in the
corresponding error memories. A certain amount of redundancy being
designed in DYPP, we can use some of the unused processors for replace-
ment based on tables stored in each of them. Usually, a close neighbour
will be the substitute. The replacement can be executed in both the static

and dynamic program-graph embedding (injection). Of course, a solution
is not always available, as is the case when several faults are crowded in
the same area and replacements do not exist for all of them.

For long-term recovery, the host could execute test and maintenance
programs on the DYPP array before program embeddings (static or
dynamic) and use the resulting distribution of faults in the mapping pm-
cess.

Another useful method outlined in [2O] concems dynamic fault toler-
ance, implemented in our case by running identical code sections in paral-
lel through different DYPP PEs and voting on the results. The same
authors underline the advantages of a datailow architecture in avoiding
associated synchronization problems.

7. A Dataflow Implementation of Data Levitation

As mentioned in previous sections, program graphs can propagate
duough the DYPP structure either synchronously or asynchronously. In
this section, we will insist on the latter approach, as it is more appropriate
for large DYPP structures, in order to avoid the problems of clock distxibu-
tion. As well, the program-graph representation is natural in the datatlow
model of computation.

The approach used for the asynchronous movement of the graph in
DYPP is based on the following steps:

. each IvlPE. after sending its result tokens to their destinations, relo-
cates itself at the next available position in the PE lattice;

. after relocating itself at the new position, it reestabishes the data
links (graph arcs) to its destination MPEs by using CPEs (relocated,
too. in the process) as path-support points (in Fig. 13, the CPEs are
not represented).

PE”
k

/i

new graph embedding
/

/ PF \ yd graph embeding

Flg.U Segmemsofaprogramgraphrelocatinginthecourseof
data Ievitation.

The first step of this procedure necessitates the introduction of
several definitions. In the active program window dynamically imple-
mented in DYPP, each operator (actor) of the program graph must fire a
tinite number of times (and should not occupy DYPP area subrtuently).
We will call this number thefiring COWU. The liring count of each graph
node can be obtained at compile time, if the organization of the dam struc-
tures to be treated is known at that time, including their sizes (but certainly.
not their composition). The organization of the data structures under dis-
cussion can be variable (like sizes of matrices or vectors). but their dynam-
ics must be entirely known at compile time in order to generate an
appropriate program graph and 1~ use the firing count as an enabling-
operator characteristic.

In other words, the instruction flow as represented in Fig. 10. must
be known entirely as a result of compilation and mapping. at the time the
dynamic injection of the graph (in the data-levitation technique) takes
place.

In the process of relocating the program graph, connol tokens must
be used. They are sent from the MPE initiating the move to the connecting
CPEs. in or&r to disable them and the corresponding old paths. Other
control tokens are sent by the new “impersonation” of the operator (pm-
gram graph node) to its adjacent CPEs at the new location, to activate them
and install new data links.

96

In order to simplify the mapping. a bidimensional rectanguIar mesh After each node (operator) firing, the corresponding node decreases
will be used for DYPP. The source and destination processors on each its tiring count by one. when the firing count reaches zero, no data will be
data link will be separated by at least two mesh increments in order to available for processing by that graph node while it moves in the levitation
guarantee non-overlapping movement of processor embeddings. window of DYPP. As such, it is permanently disabled.

All token communications are asynchronous, on a handshake basis In a fault tolerant-approach, the control tokens used to relccate a
(confirmation tokens are thus used as well to confirm receipt of an originat- node would reach the center of a cluster of MF’Es or CPEs and then would
ing token). settle themselves in one of the functional ones, activating it.

In Fig. 14. we present the process of graph advancement in the
DYPP. A simple binary tree has been chosen for the graph. The execution
proceeds in several stages:

8. A Synchronous Implementation of Data Levitation

a) After the input data token has arrived at the root node, it is processed
and the output data tokens are released towarda their destination
nodes (Fig. 14a).

b) After 60th (in order to compensate for data link delays) ack-
nowledge (ACK) signals from the destinations have been received,
the node (MPE) disables the side (adjacent) CPEs. via control tokens
(Fig. 14b & c).

cl The graph node relocates itself by sending a con&o1 token up its own
column (we assume that nodes travel constantly in the same column
of DYPP). The control tokens contain the operation code and the
mesh coordinates of the locations (a list of such locations is obtained
for each node in the mapping process). The control token is checked
by each MPE situated along that column and upon the first coordi-
nate coincidence, the new embedding of the node is enabled (Fig.
14d & e).

4 The process of node relocation and graph advancement continues
asynchronously and independently as described at a) - c) at all graph
levels. (Fig. 14e).

As an alternative to the dataflow approach presented in the previous
section, a synchronous implementation of the data levitation (or “window-
ing”) technique is proposed in this section.

In order at the same time to introduce a solution to the problem of
executing loops via data levitation in DYPP, the program graph used as an
example contains a conditional loop. As previously mentioned, loops are
more difficult to implement via data levitation, as they contain arcs extend-
ing themselves over many levels in the program graph. At the same time,
the direction of data flow on such loops is generally opposed to the direc-
tion of propagation of data in the main-graph body in data levitation.
Thus, they cannot be implemented via single neighbour-to-neighbour con-
nections, but only by concatenations of such connections. Moreover. their
length could exceed the height of the window available in DYPP for data
levitation, if this window height is determined by the operator activity in
the main graph body alone.

As is to be expected in a synchronous implementation, but in con-
trast to the operators present in the dataflow model of computation used in
the previous section, the operators included in this program graph (Fig. 15)
are timed (synchronous). Their positional shift in DYPP, contributing to
the program graph movement, is also synchronous. -- e MPEs

x CPEs

f5-h
(a)

(b)

v--------x
; disabled CPE’ 1

l-7 r-l
w

P
I

bode moves to
pew location

L
-----A---,

i i

tl 67
Cd)

X X
/

enabled node at
new location

now these node: can
/ start movin

x ‘X
a\

X

0 0 0 6

(0)

Fig. 14 Tbe process of asynchronous graph advancement in DYPP.

In order to provide a suggestive illustration of how the above pro-
cess works. we would associate. it visually with the way a worm advances,
by successive constriction and expansion of its body segments.

r t

Fig. 15 Conditional loop.

A DYPP array of 2 x 3 MPEs and CPEs is used as the hardware win-
dow (Fig. 16). For simplicity of representation, the MPEs and CPEs sre
superimposed at the same position, localized in distinct, but communicat-
ing Iayers.

WE
a-

CPE

Fig. 16 Implementing a 2x3 data-levitation window in DYPP.
Processors and their possible interconnection links.

97

The width of the array used is related to the maximum number of
operators found in a graph crossection (layer) at any time. This is the case
with the 02,03,04 set of operators (Fig. 15). The operators 01 to 06
can be general arithmetic processors, for example. The selector operator
(S) closes the conditional loop based on the result provided by the output
of an inequality (I) operator. For control input=T (true), the loop is closed
for another iteration. For an F (false) control input, the data token pro-
vided by the output of operator 06 is passed to 07 as a loop output.

The FK (“fork”) operator simply replicates its input token on all of
its outputs. The input data arrives as a synchronized token on the input of
01.

tokens<!i--~ _ -T. DYPP programming

HOST

Fig. 17 Interconnections during phase @2 (parallel injection for
data levitation).

In the proposed synchronous implementation, the interconnections
between MPEs are activated on clock phase @I for processing purposes.
On clock phase 02 (only) the column interconnections are turned on, pro-
viding the paths along which the programming tokens are injected by the
host, in order to implement the new graph segment in the data-levitation
window. (Fig. 18).

Fig. 18 ‘Dig of processing and programming phases in the
synchronous implementation of data levitation.

As mentioned in section 5, in the data-levitation approach, the pro-
gram graph is gradually executed by a DYPP array implementing a win-
dow swept over the full graph. In our example, hvo levels of the graph
will be executed at any time. The clock period will be conservatively
adjusted to cover the longest operation ever arising in the graph execution
and the associated communication &lays.

The programming tokens injected by the host in phase Q2 have the
role of defining the operations performed by the MPEs and their intercon-
nections (via the corresponding CPEs).

In Fig. 19 data tokens are represented by black dots, while control
tokens (used for the control of the selector operator used in the example
graph) by empty circles. Input data tokens are represented in the upper
part of the processor cells, while result data tokens are represented in the
lower part of the processor cells.

Because of the synchronous nahue of the computatiae, we know at
all times where the different operators will be located in the levitation win-
dow. This is in marked contrast to the asynchronous implementation
where only areas in which operators exist can be eventually specilied,
based on the estimated maximum duration of processing and communica-
tion.

While shifting upwards in phase @2, the programming tokens are
also used us carriers, able to carry input or output data tokeins to their new
locations.

In Fig. 19. we present a representation of the step-by-step execution
of the example program loop, following the timing in Fig.18..

In order to condition the progr amming tokens to enable the MPEs,
and connect them (via CPEs and links) with their neighbours only at the
required positions in the levitation window, special enabling lists are used.
They are stored by the host in the programming tokens and contain the row
coordinates of the enabling positions. While advancing; through the
columns, during the upward movement of the graph in the levitation
window, the contents of the enabling list are compared with the coordi-
nates of the current DYPP node, and upon coincidence, the operators are
enabled and the correct connections established. In Fig. lg., we underline
enabled operators.

The enabling lists are established in the program graph-mapping
process, prior of course to graph injection.

In clock period l7 of the sequence represented in Fig. 19, the value
of the control tokens directs the interconnections. In this respect all the
operation and connecting tokens provided by the host have two com-
ponents (fields):

. an operation field (explicitly indicated as 01.02. etc):

. a connectivity field (implicitly indicated in the pattern of intercon-
nections enabled for the h4PE where the token is currently located).

T4

TS

TS

FK n

Fig. 19a Synchronous execution of a program loop by data kv&aticm.
Detaikd instuction-toka flow.

98

TO

6-Q
b

data mput Ioke:
u

Tf

Q1a q
q

T3

@la a? 03 04 . . .

YF q 9 cl 9
@lb q

q
02

6lC q
q

; Qrc cl& QIC ql&

Fig. 19-c Fig. 19b Synchronous exccutia~ of a program loop by data levitation.

T5 &a n
q

Llm

06
. 84 s A

T6

Qia q
14

bra

III

‘t’lb

cl

q

q
@lb q &lb q

q q
QlC cl

0

QQ cl

Fig. 19d

afbd continue
U in Tl (02)

99

9. Conchsions

A new ensemble-array architecture has been proposed for a dynami-
cally programmable (DYPP) VLSI supercomputer, having as salient
features:

. A hierarchical (two-level} fault-tolerant structure separated on two
conceptual levels (processing and connectivity), suitable for wafer-
scale integration;

. Provision of static and dynamic programmabilify in the form of
graph injection;

. Support for full dynamic reconfigurability (via the application of a
new concept, called data levitation applied to program graphs,
preferably in datatlow form).

The new fully distributed supercomputer architecture is considered
to be very appropriate for running highly parallel programs. It provides
the outstanding feature of directly embedding and execudng program
graphs in both static and dynamic versions.

An important generalization of the systolic concept is implemented
within the data-levitation structure. where instructions am also provided in
a continuous flow to interact with the data flow in the environment pro-
vided by DYPP. In principle. this was made possible by using CPEs (Con-
nectivity Processing Elements) instead of passive switches in the distri-
buted mesh-architecture.

References

VI

PI

I31

141

(51

@I

(71

VI

191

HoI

IllI

WI

(131

[141

WI

WI

1171

W.B. Ackerman. “A Structure Processing Facility for Data Flow Computers-, Proc.
InI.‘/ Conf. on Parallel Processing,pp.l66-172, 1978.
W.B. Ackerman. “Data Flow Languages.” Proc. 1979 Nor. Computer Conf. AFIPS
Press. Arliigton. Va.. pp.1087-1095. 1979.

At-vind. K.P. Gostelow. Fttd W. Plouffe. “The (Prelimbaty) Id Report.” Tech. Rep
Ulf> Dept. of Infortnatmn and Computer Sctence. Unrv. Cald Itvine, Cabs.. Ma!

Arvind and R.E. Thomas, “I-Structures, An Efficient Data Type for Fttnaiona
Languages,” Laboratoty for Ccmputer Science. MIT, TM-I 78.1980.

K.E. Botcher, “Design of a Massively Parallel Processor.” IEEE Tram. Compu~.. vol.
C-29, no. 9.pp.836.840. 1980.
F. Berman. “Edge Grammars and Parallel Ccmputaticm.” 1983 Allerfon Conference on
Circvifs, Comrnunicntionr % Computers. Urbana, Ill. pp.214”223. 1983.
F. Bennan. M. Goodrich, Ch. Koelbel, W.J. Robison III and K. Showell. “Prep-P: A
Mapping Processor for CHiP Computers.” Proc. hl’l Confi on Parallel Processing.
pp.731-733. 1985.
S.N. Bhatt and C.E. Leiscrscq “How to Assemble Tree Machines,” MIT, Laboratory
for Computer Science. Technical Memo TM-255.1984.

S. Browning “The Tree Machine: A Highly Concurrent Computing Environment.”
Ph.D. Thesis. Dept. of Computer Science. California Institute for Technology. 1980.
J.L. Caluwaerts. J. Debacker and J.A. Pepentmete. “Implementing Streams on a Data
Flow Cmnputer System with Paged Memory.” Proc. Int’l Symp. on Computer Archi-
tec~ws, pp.76-83.1983.
A.L. Davis and R.N. Keller. -Data Flow Program Graphs,” IEEE Compwer, ~01.15.
“0.2. ~~26-41. Feb. 1982.
J.B. Dennis. “First Version of P Date Flow F’rocedurc Language,” in Programming
Symp.: Proc. Collogue sur la Programmarion (Park, Fro.wc, April 1974). Lrclure
Notes in Comptier Science, Vol. 19. New York: Springer-Vedag. pp.362”376. 1974.
J.B. Dermis. “‘Ihe Varieties of Data Flow Computers.” Proc. lst Iu’l Conf. Disci-
bnkd Computing Sysfemp. pp.430-439. Oct. 1979.
J.B. Dennis and K.K.-S. Wmg, “An Abstract Implementation for Concurrent Compu-
tation with Streams.” Proc. Inr’l Conf. on Parallel Processing, pp.3545 1979.
J.B. Dennis “Data Flow Supercomputers.” IEEE Computer. vol. 13. no. 11. pp.48-56.
November 1980.
AN Dcspain and D.A. Paterson, ‘X-Tree. A Tree structured Multi
puter Architectute.“Proc. Symp. on Corqu~cr Archileclwe. pp.144-1 s

rocessor Com-
1.1978.

D.D. Gajski. D.A. Padua. D-J. Kttck and R.H. Kuhn. “A Second Opinion on Data
Flow Machines and Languages.” IEEE Comptacr. vol. 15. no. 2, ~~58-69, Feb. 1982.

[lhl

I

WI

WI

1221

1231

124

WI

WI

1271

WI

I291

1301

[311

[321

1331

I341

1351

WI

I 371

c3g1

[391

WI

1411

1421

I431

WI

I451

WI

I471

Wl

I491

WI

J.-L. Gaudiot and M.D. Erccgovac, “A Scheme for Handliig Amys in Data-Flow
~ystemr.” Prac. f&I Conf on DirtribUed Systems. pp.724”729.1982.
J.-L. Gaudiot, “Methods for Handling Structures in Dau-FLOW System!i.” Pra. /nl’[
Symp. on Computer Archileclwe, pp.352.358, 1985.
J.-L. Gaudiot, R.W. Vedder, G.K. Tucker, D. Fin and M.L. Cam bell, “A Distributed

B VLSI Architecture for Efficient Signal and Data Professing.” I EE Trans. Corn@..
vol. C-34.pp.1072-1077. December 1985.
J.R. GunI, C.C. Kirkham and I. Watson, “The Mancheliter PPXoXype Dataflow Can-
pter,” Comm. of the ACM. vo1.28.no.l. pp.34-52, Jan. 1985.
M.V.A. HBncu. and K.C. Smith, “DYPP - A VLSI So rmmputer Architecture Sup-
porting Two-Level Fault-Tolerance, Program Graph nJeCwxt and Data Levitation p”. .
$m~pts.” Proc. 1986 ACM Cornpurer Science Conference, pp.16120. February

KS. Hedlund. “Wafer-Scale Integration of Parallel Processors,- Ph.D. Thesis,
Comp&i. Dept., Purdue Univ., Aug. 1982.
KS. Hedlund and L Snyder. “Wafer-Scale Integration of Configurable. Highly Paral-
lel processors.” P,OC. I~I. Conf. Pnrollel process.. IEEE. pp.262~264. 1982.
K. Hwang and F. Btiggs, Comprrrer Archireclwes andParallel Processing, McGraw-
Hill. New York, 1984.
R.M. Karp and R.E. Miller. “Properties of a Model for Parallel Computations.” SIAM
J. ofAppliedMoth.. vo1.14.no.6, pp.1390-1411, Nov. 1966.
S.P. Kanashev and S.I. Kanashev. “Architectures for Supersystems of the 80’s.” Proc.
1980 AFIPS Nofiowl Computing Conference, pp.165180, 1980.

R.H. Kuhn and D.A. Padua, (Eds.). TUroriol on ParaNe[Processing, IEEE Computer
Society Press, New York. 198 1.
H.T. Kung and C.E. Leiserscm. “Systolic Arrays (for VLSI).” Sprs~ Mofrix Proceed-
ings 1978. Duff? IS. and Stewatt, G.H.. (Eds.), SIAM, pp.256-282. 1979. (An earlier
version appears tn Chapter 8 of Mead and Conway 1351).
S.-Y. Kung and R.V. Gal-Eaer. “Synchronous vs. Asynchronous Computation in
VLSI Array Processors,” Proc. SPIE Conf., Arlington. VA. May 1982.
S.-Y. Kung. K.S. Arun. R.J. Gal-Eaer and D.V. Bhaskar Rae, “Wavefront Array Pro-
cessor: Lsn8uagc, Architecture and Applications,” IEEE TWN. Conlput.vol. C-31.
no.1 1 , pp.1054-1066, Nov. 1982.
S.-Y. Ktmg. “On Supercomputing with Systolic/Wavefmnt Array Processors,” Proc.
IEEE, vo1.72.no.7,pp.867-884, July 1984.
F.T. Leighton and C.E. Leisenat, “Wafer-Scale Integration of S

7
stolic

23,dAnnuol Syw. on Foundorions of Cornpurer Science,
Arrays.” Proc.

pp.29 -311,1982.
F.B. Manning, “An Approach to Highly Integrated, Computer-Maintained Cellular
Arrays,” IEEE Tronr. Compurers. vol. C-26, no.6. pp.536-552. June 1977.

CA. Mead and LA. COIIW~~, I~lroduc~i~n to VLSI Systen~. Reading, MA, Addison.
Wesley, 1980.

D. Misenas, “A Computer Architecture for Data-Flow Canputation.” Lpbomtory for
Computer Science, MIT, TM-100. March 1978.

D.I. Moldovan, “On the Design of Algotilhms for VLSI Systolic Arrays,:.” PIOC. IEEE,
vol.‘ll.no. 1. pp.l13-120. Jan. 1983.

R.L Pett’h “Cu~nt Status of Lnrge Scale Te~bn~logy,” IEEE /. Solid-State Ci,.
et& SC-2. pp.130-147. Dec. 1967.

F.P. Pmparats and J. Vuillemin. ‘“lke Cube-Connected Cycles: A Versatile Network
for hdM Ca”putatht,” Corn.. ofrhe ACM. ~01.24. no.5. p~.300-309, May 1981.
J.E. Rdrisuc& “A Graph Model for Parallel Computation.” Ph.D. ‘Ihesis (Also
R=po” UC-l’R-54, PmJea MAC), MIT. Cambridge, MA, Sept. 1969.
A.L. Rosenberg. “Three-Dimensional VLSI: A Case Study.” /ACM. “01. 30. no.3,
p~.397-416.1983.
C.L. Seitz. “Ensemble Arehiteetuns for VLSI - A Survey and Tax~no,,,y,- it, pro=.
Conf. Adwnced Res. VLSI, Massachussets ht. Technol.. Cambridge. Jan. 1982. Ded-
ham.M.4: Artech..pp.130-135. 1982.
CL. *ita ‘“Concurrent VLSI Architectures,” IEEE Tram. Comp+ vo1.C-33, no. 12.
p~.1247-1265.1984.

$j,S=iQ ‘7~. Cm& Cube,” Cmm. of the ACM, ~01.28. “0.1. pp.22-33, em.

L- Snyder. ‘Tntroductim to the Poker Parallel Programming E&~ment,- p,oc. I,,,*,
Conf. parailel Processing, p~.289-292. 1983.
&Snyder. “Supercomputers and VLSI: The Effect of Large-Scale htegmtim on

mpuer Architecture.” in Yovits. MY. (Ed.), ,-i&or~es in CO,,,.M~,S, “o1.~,
Academic Press. pp.1 -33. 1984.

V.P. Shi..“An Architecture for Extended Abstract Data Flow,” pro,:. Syw. Corn.
pu1e,Arch~tecr~e,pp.3m-325, 1981.

V.P. Srini. “A Fault-Tolerant Dataflow System.” IEEE Comp&,, vol. 18, t,o.3,
~~54-68. March 1985.

P.J. Vamm. “W.&r-%ale Integration of Linear Processor Arrays.” Ph.D. Thesis,
University of Texas at Austin. 1983.

J.W. Young and H.K. Kent, “Abstract Formulation of Data Processing proble,ns *’
hxemal Repot& Product Specification Dep., The National Cash Register Capan;,
Hawthorne. CA. 1958.

100

