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In a previous paper, we proposed a special environment and tech- 
niques for the implementation of highly parallel processing. A new VLSI 
supercomputer architecture, DYPP (DYnamically Programmable multi- 
Processor), was introduced, with the unique property of being able lo 
embed, and execute directly. program graphs both statically and dynami- 
cally. Either asynchronous (dataflow) or synchronous implementations of 
program graphs can be realized in DYPP. In the present paper, we provide 
further insight in its operation. 

In the proposed ensemble architecture, we separate processing and 
communication into two distinct, though overlapping and interacting 
layers. Separate, simpler (and thus more reliable), processors are assigned 
to the connectivity layer, which becomes active and self-adaptive, thus 
being able to detect and compensate for malfunctions in the underlying 
layer of main processing elements. 

There is no global control at either level. Rather in a lirst, static, 
version, the program graph (icorporating both connectivity information 
and operators, that is instructions), is “injected” in a preliminary, separate. 
phase via the connectivity-layer processors. In this phase, the connectivity 
graph is embedded between live (operational) main processing elements. 
In the second phase, processing takes place. 

A more advanced option makes the connectivity layer fully dynamic. 
In this case. the program graph is continuously injected (embedded) in a 
flow fashion to interact with the flow of data and intermediate results, 
which flow is said to become levitating. This can greatly reduce the need 
for local program memory and Iarge numbers of PEs, and correspondingly 
the required VLSI area As well, it can dispel the need for (large) resident, 
localized, static programs characte&ically present in von Neumann archi- 
tectures. Based on data levitation. the generalization of systolic arrays 
becomes feasibb. 

1. Introduction 

There is presently an ongoing search for full implementations in 
VLSI of highly parallel supercomputers with regular, array-like structures 
([43], [46]). However, this search implies the solving of numerous prob- 
lems. Some of the most critical of these problems are that: 
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Supercomputer structures, implemented with conventional logic 
families, or present-day microprocessors 1211, [44] must be com- 
pletely reworked for total integration. 

Present densities (and areas) fall far short of the real need.. Hedlund 
and Snyder [241 mention the possibility of implementing only about 
300 processing elements (PEs) on a wafer, even using wafer-scale 
integration 1331, but do not reveal the complexity of the PE. type con- 
sidered. 
Communication difficulties necessitate neighbour-to-neighbour s~lu- 
tions [29], [331. 
New reliability approaches must be discovered in Order to Provide a 
truly fault-tolerant design. 
In Hbcu and Smith [22], we have introduced a new WI super- 

computer architecture, the DYPP (DYnamically Programmable multi- 
Processor), intended to contribute to the solution of the difficulties out- 
lined. In the present paper. we derail its description. DYPP embodies: 

a new two-level fault-tolerant structure, corresponding to a 
reconfigurable. highly parallel supercomputer in which, in contrast 
to the supercomputer proposed in Snyder [22], the connectivity @W 
contains simple processing elements and requires no global control 
of configuration; 

a new concept. called “connectivity injection”, whereby the program 
graph is located in the computational ensemble via a “program 
wave” radiated into, and propagating (in a parallel or serial fashion) 
through. the connectivity layer serving as an adaptive support S&W- 
ture; 
a new concept. called “data kvitation”. concerned with the way data 
and program flow information should interact in a highly parallel 
computational structure in order to ensure minimization of VLSI 
area, minimization of local fixed memory (i.e. ROM), as well as 
generality of application, which can be seen as a generalization of 
the systolic array concept. 

The idea of massive parallelism in supercomputers has been advo- 
cated for a long time (see for example [5]). In 1281. is given an interesting 
overview of “pre-VLSI” implementations. 

Snyder 1451. [46] was one of the lirst to outline the merits and 
difficulties of a full VLSI implementation of supercomputers and to pro- 
pose an architecture, the CHiP (Configurable Highly Parallel Processor), 
which has become a term of reference. CHiP has three main architectural 
layers: 
4 a regular bidimensional array of PEs; 

b) a switch lattice (with passive switches); 

d a controller. 

In CHiP, the controller is intended to be the element which broud- 
ca.ws the switch-programming pattern. The switch lattice provides the only 
medium for interprocessor communication. Various architectures can be 
realized by modifying the switch lattice. 
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One problem with the CHiP architecture is the global controller and 
the means by which it obtains access to all of the switching elements in the 
connectivity lattice. In VLSI implementations, any global connection in 
addition to power, ground and clock (the latter, obviously, in synchronous 
systems) is not nom~ally recommended. This is one of the reasons why 
sysrolic arrays [29]. based on systematic neighbour-to-neighbour connec- 
tions, have created such interest 

2. DYPP - A Fault-Tolerant Architecture with Self- 
Adaptive Connectivity 

In contrast to the CHiP architecture, the proposed architecture for 
DYPP (Fig. 1) consists of only two conceptual levels or layers: 

4 a regular array of main processing elements (MPEs); 

b) a connectivity network (lattice) consisting of wires and switches 
controlled by an array of connecfitity processing elements (CPES). 

Crc5s section 

Fig, 1 DYPP architecture. 

The main processing elements (IvlPEs) are each able to perform a 
defined set of instructions. They could be all identical to each other, or 
could represent a mosaic-like spatial distribution of distinct processors, 
able to cover in combination all the data-processing operations required by 
the applications environment (see for example the distinction between 
MPEl and MF’E2 in Fig. 1). The seu of insauctions pertaining to each 
processor could be customized via individual writable control stores 
(WCSS). 

In contrast to schemes previously presented, the proposed connec- 
tivity lattice is not simply static, but is adaptable, under distributed control, 
to the needs of the current program. 

Traditionally, VLSI interconnection networks have been thought of 
as being purely passive, being collections of switches and wires. Many 
configurations have been imagined: trees, shuffles, single or multiple 
buses, etc. [S]. 

However, in the VLSI environment, testing by direct access for 
non-functional units at the component, block or even chip level (the latter 
for example in the case of wafer-scale integration schemes) is quite 
difficult, if not impossible (in a majority of cases). This results from: 

4 circuit complexity with extreme miniaturization; 

b) access difficulty (the mechanical or optical resolution of available 
tools is limited); 

d COSt Of provision Of additional testing pads often associated witi 
drivers powerful enough to support external loads; 

d) software complexity, which requires quite intricate sequences of 
tests. 

As a result, designers are forced to include built-in testing pro- 
cedures and provisions for fault tolerance. 

In our present approach to VLSI supercomputer design, the intercon- 
nection lattice of DYPP includes, and is controlled by, a set of processors, 
the connectivity processing elements (CPEs). They serve an essential role 
both in the (re)configurability and fault tolerance of the structure. 

The CPEs are the architectural blocks contiolling, and thus 
configuring. the switch lattice. Their decisions are based on: 

4 connectitiry information provided by the user as part of the array- 
programming and customizing prccess (see section 3); 

b) fwrctionafiry information provided by the MPEs as status bits (lndi- 
eating fault status) and by tests performed by the CPEs themselves 
on the passive switch lattice and adjacent connections. 

The functionality information is obtained either during a preliminary 
self-test step. or in specially allocated time intervals, interspersed with the 
real processing of data (the latter approach is intended for continuous array 
maintenance). 

Our approach to the fault tolerance of the processing array is based 
on additional perceived factors: 

The necessity of delegating as much of the reliability testing and 
repair process to the chip itself because of the difficulty of access 
and surgery in VLSI by external means. 

The higher reliability of the interconnects over the processing ele- 
ments (PEs) themselves which are much more complex structurally 
WI, WI. 1331. 
The necessity of a more hierarchical distribution over different 
layers of PEs and interconnects; this leads naturally to the idea of 
CPEs as being processors which are relatively simple in comparison 
with the MPG. 

The necessity in wafer-scale integration for self-test and self- 
reconfiguration. This is seen to be in antithesis with the exclusive 
use of external techniques, like discretionary wiring [38] or laser res- 
tructuring [333. 

T&e two-layer approach to chip (or wafer) reliability is even more. 
appealing if we take into consideration some current trends towarcts a more 
3-dimensional layout [41]. In such a layout, the separation between the 
processing layers could be even clearer. 

Note that the granularity of the active array can be varied, thus for 
example making provision for the availability of spare functional com- 
ponents (MPEs, CPES and interconnections) in the immediate vicinity of 
the defective ones. 

Various fault-tolerant strategies can be implemented in this architec- 
tural environment to cover different fault instances. Some of them will be 
covered in the following sections. 

3. Dataflow and Connectivity Injection 

The program graph will, for the present purposes, be interpreted in a 
&tallow sense [21], which leads, in the end, towards an asynchronous 
implementation. However, other interpretations are possible, some of 
them leading to synchronous schemes (as those presented in section 8). 

The datatlow model of computation has been advocated over the last 
three decades [12], [IS], [20], [21], 1261, 1401. [50], as an advantageous 
means of performing highly parallel computations. The main advantages 
lie in the areas of implementation (as no synchronization is required for 
operand communication) and programming (reducing side effects. as only 
values. and not variables, exist). 
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A feature distinguishing dataflow architectures from each other is 
the degree of directness with which they can bridge the gap between the 
progrum graph (used as program representation) and its implementation. 

In the majority of datatlow approaches [Ill, 1151. 1211. 1481. the 
nodes of the program graph represent functions (or processes in a more 
general setting) which am enabled (fired) only when all the (input) 
operands become available. The arcs of the graph provide communica- 
tion, that is they carry data (or sometimes control) tokens labelled with 
their destination, constituting the specific input of a specific instruction 
(operator). 

As a defining attribute of the proposed architecture (DYPP), the pm- 
gram graph nodes are seen to be located at the h4PEs (main processing ele- 
ments). The program graph arcs will be implemented via the physical 
links created between the source MPEs and destination MPEs when apply- 
ing appropriate connectivity instructions to the CPEs defining the com- 
munication paths. 

Certainly, DYPP is optimized for running highly parallel programs, 
where a majority of its processors are busy at a certain time. This means, 
too, a requirement for a certain locality of data dependencies, which should 
translate IogicalIy into neighbour-to-neighbour communications. 

result packet 

c I 
Instruction ’ 

Update Queue Fetch 
- (Template 

Address) 

Fig. 2 The basic dafaflow-instxuction mechanism (Dennis [13]). 

The most well-known dataflow architectures are those based on the 
circular pipeline mechanism of instruction execution proposed by Dennis 
[13], (Fig. 2). The program graph is stored in the Activity Store, where the 
operators are represented as templates (Fig. 3) having as component fields 
the opmde, the operand inputs and destination address. The addresses of 
the templates which have received all their operands (corresponding to 
instructions which can be fired) are read by the Fetch Unit from the 
Insrruction Queue. Based on tltese addresses, the Fetch Unit reads the 
activity template from the activity store, assembles it in an operation 
packet and sends it to an appropriate Operation Execution Unit. The result 
packet is directed via the Updare unit to its destination template. The 
receipt of all necessary operands by a template (in order to hre) is also 
checked by the Update unit. The complete templates (those ready to fire) 
are queued in the Instruction Queue. Several operation and result packets 
can coexist on the ring. reflecting the parallel (but unsynchronized) execu- 
tion of several instructions forming the circular pipeline. 

before : after: 

Dataflow 
Actor 

Firing 
Rule 

Fig. 3 Dataflow actors and templates. 

The degree of parallelism in execution can be improved by incteas- 
ing the number of PEs implementing the operation units. Dennis [13] pro- 
posed a datallow multiprocessor for which a VLSI implementation under 
current development is described in [20]. 

In Dennis’ multiprocessor architecture (Fig. 4) the main element 
besides the PEs is the communication network directing the result packets 
to the appropriate PEs. which tire upon receiving all the necessary 
operands. 

I 
Fig. 4 Dataflow mulfipmcessor (Dennis [131). 

While these conventional circular dataflow architectures are advan- 
tageous in terms of minimizing the number of PEs, our major point is that 
they abandon contact with the program graph level, which does not appear 
explicitly in the communication scheme. As a result, too many intexmedi- 
ate conceptual levels appear in the process of programming, and as a result 
direct graphical programming is quite impossible. 

With the advent of VLSI and the prospect of WSI (wafer-scale 
integration) near at hand, the number of PEs present on a chip or wafer is 
increasing considerably. Thus another design philosophy can be pursued. 
based on an abundance of PEs, in which we design a truly distributed 
datapOw architecture, able to replicate the program graph naturally within 
its communication scheme. Thus. programming at tbe program graph level 
would be facilitated tremendously. 

For the more conventional dataflow architectures, high-level 
languages like VAL [2] or ID [33 have been created and corresponding 
compilers or interpreters have been designed. These conventional 
dataflow languages are functional or applicative languages whose dom- 
inant properties are freedom of side effects, locality of effect and the 
single-assignment convention [2]. They include special constructs able to 
describe highly parallel activities in a compact manner. 

However, when using novel architectures, like CHiP and DYPP, 
both fully distributed and providing an easy view of the communication 
paths, one feels pressed to abandon language-based high-level pmgram- 
ming. Instead, a direct graphical-progrumming approach can potentially 
be used where in fact the programmer locates the functions (or processes, 
in a more complex case) at the PEs and defines the communication links 
along which the data (or control) tokens are exchanged. In 1451, is 
presented such a parallel programming environment for CHiP. The 
corresponding development for DYPP (in the static graph-embedding case) 
is similar, though not the subject of this paper. In fact, the programmer 
can operate directly at the program-graph level. Of course, time is 
required until such new programming approaches, unconventional but 
straightforward and arguably very productive, will be adopted. 

Our confidence in the potential for direct pmgramming at the pm- 
gram graph level has influenced the writing of this paper. Thus here the 
graph is the main program support to be embedded statically or dynami- 
cally in DYPP. with no intermediates. 

An extra assumption (although not essential for the DYPP 
Minition). will be made about the program graph, in or&r to limit the 
intersection of communication arcs in the embedding. In particular we will 
assume that the program graph ls composed of secrions, each of binaty- 
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tree form @I. 191. In Fig. 5a a simple program graph is given in the 
dataflow form. while in Fig. 5b the associated co~ectivity (communica- 
tion) graph is presented. In Fig.% the operators (functions) are 
represented, located at the nodes, with the same graph “perpendicularixed 
in order to fit a presumed rectangular mesh of main processing elements 
(MPEs). Phantom nodes (Figs. 5a and 5c) contain no operators [ll]; they 
are used exclusively for l/O transfers. 

The spatial location of the operators in the MPE mesh (Fig. 5c) will 
be obtained by a mapping program which has, as its inpuS the program 
graph. It is provided also with information about the available arrays of 
h4PEs and CPEs and outputs the (presumably final) positions of the opera- 
tors (provided no faults are considered for MPEs, CPEs or iI’@EOMeCtS.) 

(a) 

I Result 
I-- --;/Phantom 
;----~ node 

(b) 

lnwt rdv2rtu-n Gnteffacel nodes 

(cl 

Fig. 5. Program-graph “injection”. (a) Dataflow program for 
I (x-3)* + G I. (b) Associated connectivity (cornmunicatlon) graph. 

(c) Laming the operators in the MpEs (same graph). 

In the next step, this operand-location and connectivity information 
must be transposed onto the real array, by programming each MPE to per- 
form its corresponding instruction (elementary operator or function) and 
asking the CPEs to configure the COMeCtiVity lattice correspondingly. 

The newly concocted term of connecriviry injecfion, presented in the 
title of this section, refers to the mapping (embedding) of the program 
graph in the available array of processors provided by the DYF’P environ- 
ment. 

Program-graph injection can take place before or during program 
execution. In this respect, it is defined as being respectively srufic or 
dynamic. The next two sections treat these approaches successively. 

4. Static Program-Graph Injection 

The mapping programs which must be used to obtain the physical 
location of the MPEs and CPEs in DYPP, for static program-graph injec- 
tion. could be similar to those derived in 161. 171 for CHiP. Thus their 
implementation as such is not our main topic of study. 

The techniques used in this section are said to be static because the 
(whole) graph is “frozen in place” in the array (since me MPEs am pro- 
grammed with the same operators, and CPEs define the connections for the 
whole duration of program exzcufion). 

Instead, we tried to devise simple techniques for injecting the pro- 
gram graph in DYPP. taking into account the fact that no special 
configuration controller exists in our design, in contrast to the situation in 
the CHiP design. 

Two techniques have been devised to cope with the final stage of the 
graph-injection process: a parallel one and a serial one. 

The programming of the array takes place in two steps, scheduled 
entirely before program execution is initiated in the static program-gmph- 
injection process: 

1. The &lPEs are provided, in a global parallel or serial fashion (Figs. 6 
and 7). with their operators and with the addresses of their two chil- 
dren (assumming the graph is a binary tree) 

DYPP 

operaiional 8 

c?mnectivity 

a \ 
token 

wavefront 

- - 

Fig. 6 Parallel, static, programming of DYPP (parallel injection). 

token : 

--a----------- 
i 

_ injection 

HOST 

Fig. 7 Saial, sratic, programming of DYPP (serial injection). 
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2 The hfPEs ask the adjacent connectivity processors (CPEs) to con- 
nect them with their children. 

It is probably clear by now that the intermediate mapping program 
should be provided with some information about the dimensions of the 
array, and about the number of levels in the program graph. The latter 

should be smaller than the maximum integer coordinates in any communi- 
eating direction in the processor mesh (a value which is equal to the 
number of processors in that direction). 

lbe programming step in the program-graph-injection process takes 
Place as presented in Fig. 6 and 7.. In both approaches, the mechanism for 
the advancement of the operation and connectivity to&ens (Containing the 
operators and the addresses of specific connected children of the node) can 
be synchronous (under the influence of a clock) or asynchronous (as in the 
data-wavefront approach in [31]. 

The operation and connectivity tokens are provided by the host, 
based on the output of the intermediate-mapping program PmiOUSlY men- 

tioned. 

The MPEs not participating in the computational process are 
assigned a null operator, and obviously do not ask the CPEs for a connec- 
tion. 

The parallel program-graph injection process, shown in Fig. 6. is 
initiated after power-up when the connectivity lattice is automatically 
organized by the CPEs into columns, on which the operational- 
connectivity tokens are pushed from the host. The register bank at the 
lower side of the array provides the conversion from the field width of the 
host interface to the array communication width. The necessary numbers 
of pins for host VO might otherwise be prohibitive. In any event, this con- 
nectivity issue is a serious problem for any VLSI supercomputer, given the 
present packaging techniques. The operational-connectivity tokens are 
pushed in a pipelined fashion by the clock (in the synchronous approach) 
IX pulled by handshaking (in the asynchronous version) until they reach 
the upper edge of the array. 

The tokens should advance for a number of steps precisely equal to 
the vertical integer coordinate of the processor array (corresponding to the 
number of processors in the vertical direction). This is ensured by defining 
an appropriate number of clock pulses in the synchronous approach or pro- 
viding the upper edge of the array with a permanent NONREAD response. 
in the asynchronous (handshaking) technique. 

The tokens are provided by the register bank in layers, starting with 
those in the upper row. The tokens propagate in waves until they fill in the 
array, thereby fully programming and configuring it. 

In the serial scheme, presented in Fig. 7, the tokens are injected, one 
by one, at one comer (shown to be the lower-right in the figure) of the 
array. They propagate along the columns contigured in the above- 
mentioned manner. At the end of each column, they travel horizontally 
through an extra interconnection, provided to connect all columns end to 
end. 

The injection (filling) process of the array ceases when all the MPEs 
have received their programming tokens. 

Note that the content of the tokens can be modifled to increase the 
number of neighbours to which each IvlPE is connected. 

5. Data Levitation and the Dynamic-Graph Machine 

Very long parallel programs (represented by graphs with many lev- 
els), might require a considerable area if we use the static embedding of 
program graphs discussed in the previous section. 

Assuming that we are using a dataflow type of computation, the d4t4 
tokens travel, from the root(s) and other injection points, along the graph. 
Only a limited number of operators are Ered (active) at a given time, 
depending 04 the data already available for input to each operator. 
Correspondingly, only a limited number of MPEs are used at a given time. 
leading potentially to low resource utilization. 

Conceptually, we could use a movable “activity window” to frame 
the graph area (Fig. 8) containing the active operators (instructions) at any 
time. The window would move along the graph, from the root to the pen- 
dant vertices (which are connected to the exit points from which emerge 

4 
I-- -- ----- - -7 a aI. 

a 
1, __a_- a b/w’ndow -_a-----l 

a - Active processors (MPEs) 

Fii. 8 A program-graph activity window. 

the final results). 

Even if, for the graph in question, the height of this window (that is 
the number of graph levels included in it) is much smaller than the total 
number of levels in the graph, a static graph injection (embedding) in the 
DYPP would normally lead to a correct implementation only if the whole 
graph is embedded iu the processor array. 

This is because the static-injection approach causes the nodes of the 
graph to be stationarily located at certain MPEs in the processor array, 
while the data tokens propagate, at program runtime, along ‘he arcs of the 
graph. This means that all the graph nodes must be injected in the pro- 
gramming phase (Figs. 6 and 7) and no modification can be made to the 
operators (functions) performed by each MPE during program running. 
This approach might in general require a prohibitively large VLSI area, 
even with wafer-scale integration. 

To cure this probIem, we propose a new concept of “levitating” data 
(including partial results) via dynamic mcdiEcation of MPE and CPE pro- 
gramming. 

In this approach, the size of the atray would be prescribed by the 
maximum activity window at any time, and not by the total number of 
graph levels. 

The corresponding array is no longer statically programmed. 
Instead, the program graph is continuously injected through the array, 
dyn4micolly changing the functions (and the connections) of all MPEs 
(Fig. 9). The programming and execution phases must now take place in 
parallel. 

*Program graph flow 

a - active 

Fig. 9 Tl~e data-levitation process. 

nodes 

The processor array must accommodate an area at least equal to the 
maximum activity window required at any time. 

All tbe dota tokens resultiog from previous operations, or current 
input, should Ievitute @a present dynamically) in the array. Conceptually, 
this means keeping all the arcs of the graph having unresolved dam tokens 

in the array (hardware), dynamically mapped onto communication links. 
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If we compare this with the static model of embedding studied in 
section 4, we realire that the program graph moves itself thmugh the array 
in a wave-like manner. carrying with it the operarion und connectivity 
&&ens of the current activity window. Synchronous or asynchronous 
schemes can be devised to support this movement, devised to maintain 
dynamically the activity window inside DYPP. 

This can eventually be Seen as a generalization of the systolic array 
concept. In systolic arrays several flows of data and results coexist in 
interaction in the array. In our proposed dynamic architecture. thefunc- 
tionul definitions of rhe operutors implemented by the PBs find themselves 
also in a flow movement, causing dynamic recontigurability of the array 
(Pig. 10). 

I I 
I 

-----------I 
I I 1 # 

I ’ Input data flow I ; 

I 1 I I2 
:Instruction ioPerator 8 connectivitvl flow’ 

Result flow 

1 ---------------,----a ( 
L_-----_I-----_--_-- 

HOST 

Pip. 10 A DYPP generalixation of systolic arrays. 

This architecture can be identified as being both dynumic wad non- 
van Neumann (the program and data memories are equally distributed to 
all MPES). 

The concept leads potentially to a massive reduction in the array 
area and local ROM size. But, at the same time, it forces the host com- 
puter to perform another function, namely the injection of insrrucrionfIow. 
as well as providing input data flow and accepting result data flow. 

The concept of data levitution can possibly be applied successfully 
to general-purpose computation. However one reservation remains. It 

concerns the implementation of program loops in a VLSI context where 
global connections are to be avoided (and are, as a matter of principle, not 
recommended in DYPP), and where neighbour-to-neighbour transactions 
should be the rule. 

As a matter of fact, considerable current research in VLSI algo- 
rithms is directed toward creating algorithms matching the VLSI con- 
straints c291, c37l. [451. 

6. Two-Level Fault-Tolerance 

The hierarchical fault-tolerant structure of DYPP is organized on 
two conccptnal levels: processing and connectivity. Because an effective 
implementation of parallel computation in such an ensemble of PEs 
requires a significant number of them. the techniques destined to provide 
fault tolerance described in [34] for large arrays of processing elements, 
and those recommended in 1241, based on wafer-scale integration, should 
be appropriate. 

While both synchronous and asynchronous (datatlow) architectures 
can be implemented in DYPP. we feel that a darufiw architecture is more 
appropriate as it makes full use of the direct graph-cmbcdding feature of 
DYPP. At the same time, a dataflow architecture is more recommended in 
terms of VLSI implementation for large DYPP structures. where the 
effects of clock distribution can generate considerable difficulty. 

‘Ihe research on fault-tolerant dataflow and corresponding architec- 
tures is at an early and evolving state. The most significant contributions 
now known are [20], [471, 1481. In view of the current interest and novelty 
of this area, we will concentrate mostly on the problem of implementing 
such fault-tolerant dutujlow urchirectures in DYPP. 

The two-level architecture of DYPP is entirely appropriate for the 
application of the “loading arm method” of test and recontlguration pro- 
posed by Manning [34]. The “loading arm” is conceived to be a set of con- 
tiguous cells. grown gradually in the atray. It is able both to advance and 
to relmx. The cell located at the top of the arm IIrst tests and then pro- 

gtams its neighbours. The intermediate c&Is. located between the con- 
troller and the top celI are used collectively as a communication link 
through which the test or reconfiguration information is passed lbii 
method cnn be used for the static embedding of the program gmph in a 
DYPP structure containing faulty processing elements. These faults are 
expected to be located mainly at the MPE level, as the main processing 
elements are by design more complex and occupy more area than the 
CPEs, thus being on the average more prone to defects. But faults in the 
CPEs can be detected and acted upon, as well. 

In Manning’s concept, an external or internal central controlIer pro- 
jects into the array of PBs a loading (rrm which can advance or retract in 
all directions (a square array was the original case), avoiding faulty PEs 
(Pig.11). Manning was the first to propose the use. of such an arm in 
flawed arrays [343. The PEs at the front of advancement are tested by the 
controller via the loading arm or else it merely reads the results of indivi- 
dual PE self-tests and sends them back to the controller. 

fault - 

ARRAY OF PEs 

loading arm 

Fig. 11 M-S loading-arm method for test and configuration 
of an array with faults. 

The loading arm grows progressively from functional PEs tested at 
the previous step. In DYPP. the processing and loading layers as con- 
ceived by Manning arc implemented respectively in the processing layer 
(containing MPEs) and in the communication layer (containing CPEs). 

In the case of DYPP, the controller could be the exrernul host or a 
group of internal PEs working as a diagnostic and reconfiguration proccs- 
sor (Pig. 12a & b). located preferably at the DYPP periphery, for con- 
venient Vo with the host 

HOST 

DYPP 

DYPP 

(b) 

--i--r-- ------- 

HOST 

Fig. 12 Extonal (a) and internal (b) implementation of the controller 
for the Manning’s method of test and reconIiguration of DYPP. 
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llte loading arm also acts to program the array of PEs. performing in 
fact in the case of DYPP the above-mentioned stafic embedding Of the pro- 
gram graph. The use of the loading arm for dynamic embedding of the 
program graph is not appropriate, as the presence of the arm prohibits 
movement of the graph through the array. 

The loading arm is composed of two parts: 

. the arm i&f, implemented in the CPE layer, has to communicate 
the test and programming instructions from the controller to the 
current cell under test and configuration; 

. the head of fhe urm, implemented in the MPE layer, is able to test all 
adjacent neighbours and relocate in any of them to advance or retract 
the arm. 
The MPEs and CPEs can be designed with full or partial self-test 

facilities so that after power-up the positions of the faults are implicitly 
known. obese fault positions are discovered in the first pass (used for test) 
of the process of arm advancement. Thus the controller is quickly pro- 
vided with a fault distribution. Taking into consideration the graph to be 
embedded and the available functional processors, a mapping procedure is 
carried out. At a second pass (used for configuration or graph embedding), 
the arm programs the MPEs and CPEs to their required functions, based 
upon the results of the mapping procedure. The second pass thus substi- 
tutes the programming steps described in Figs. 6 and 7. 

Two passes of the arm are necessary in our opinion, because the 
mapping algorithms normally require global information on the location of 
faults in the array and such information can be available only at the end of 
the tirst pass. This. in fact, is one of the reasons why fully distributed 
fault-tolerant systems (using distributed test and reconfiguration) are not 
very popular in the literature. 

The approach used by Manning is one in which no explicit reference 
is made to the specilic nature of the computation to be performed by the 
array. However, the ideas on fault-tolerance by Srini [471, [48] are 
directly related to fault-tolerance in &tajIow computers and are thus more 
immediately relevant to DYPP. as already mentioned in this section. 

Srini’s approach to fault-tolerance is also centralized, as he uses a 
diagnostic processor to which all the nodes in the datatlow graph report 
their states (determined via self-test) previously to and during node finding. 
When applying these concepts to DYPP. upon detection of a fault during 
Mde tiring, the node and its operands (located in its input buffers) will be 
reassigned to a neighbour MPE. based on tables of replacement. This 
reconfiguration is managed by the diagnostic processor. 

In the process of reassigning the processor t0 a functional node, 
Srini suggests that one should neglect the output buffer and as a result start 
the computation from the Iirst instance assigned to that processor because 
the memory effect of the output buffer dissappears. 

A difficulty arises when the input buffer is itself defective. In this 
case, Srini suggests that the system memory provide a backup copy of the 
token stored in the buffer. As DYPP is a distributed computer system, the 
closest we could cOme to his original solution (because the absence of a 
unique memory) is to ask the source processor for a backup copy. Such 
copies might also be stored by the communication processor (CPE) 
supervising the corresponding link. 

Several ideas concerning the fault tolerance of a distributed data- 
flow computer using multiple chips have been proposed by Gaudiot et al. 

1201. Some of them could be used in the DYPP environment as well. Gau- 
diet et al. distinguish two aspects of static fault tolerance: 

. immediate recovery from faults; 

. long-term recovery from faults. 

For the immediate recovery from faults (after only a few seconds), 
an error memory will be provided in all MPEs and CPEs. Upon failure, a 
processing element informs all neighbours (or the whole array. by broad- 
cast, superceding normal operation, in the case where long program-graph 
arcs have to be embedded) of his address, which is stored in the 
corresponding error memories. A certain amount of redundancy being 
designed in DYPP, we can use some of the unused processors for replace- 
ment based on tables stored in each of them. Usually, a close neighbour 
will be the substitute. The replacement can be executed in both the static 

and dynamic program-graph embedding (injection). Of course, a solution 
is not always available, as is the case when several faults are crowded in 
the same area and replacements do not exist for all of them. 

For long-term recovery, the host could execute test and maintenance 
programs on the DYPP array before program embeddings (static or 
dynamic) and use the resulting distribution of faults in the mapping pm- 
cess. 

Another useful method outlined in [2O] concems dynamic fault toler- 
ance, implemented in our case by running identical code sections in paral- 
lel through different DYPP PEs and voting on the results. The same 
authors underline the advantages of a datailow architecture in avoiding 
associated synchronization problems. 

7. A Dataflow Implementation of Data Levitation 

As mentioned in previous sections, program graphs can propagate 
duough the DYPP structure either synchronously or asynchronously. In 
this section, we will insist on the latter approach, as it is more appropriate 
for large DYPP structures, in order to avoid the problems of clock distxibu- 
tion. As well, the program-graph representation is natural in the datatlow 
model of computation. 

The approach used for the asynchronous movement of the graph in 
DYPP is based on the following steps: 

. each IvlPE. after sending its result tokens to their destinations, relo- 
cates itself at the next available position in the PE lattice; 

. after relocating itself at the new position, it reestabishes the data 
links (graph arcs) to its destination MPEs by using CPEs (relocated, 
too. in the process) as path-support points (in Fig. 13, the CPEs are 
not represented). 

PE” 
k 

/i 

new graph embedding 
/ 

/ PF \ yd graph embeding 

Flg.U Segmemsofaprogramgraphrelocatinginthecourseof 
data Ievitation. 

The first step of this procedure necessitates the introduction of 
several definitions. In the active program window dynamically imple- 
mented in DYPP, each operator (actor) of the program graph must fire a 
tinite number of times (and should not occupy DYPP area subrtuently). 
We will call this number thefiring COWU. The liring count of each graph 
node can be obtained at compile time, if the organization of the dam struc- 
tures to be treated is known at that time, including their sizes (but certainly. 
not their composition). The organization of the data structures under dis- 
cussion can be variable (like sizes of matrices or vectors). but their dynam- 
ics must be entirely known at compile time in order to generate an 
appropriate program graph and 1~ use the firing count as an enabling- 
operator characteristic. 

In other words, the instruction flow as represented in Fig. 10. must 
be known entirely as a result of compilation and mapping. at the time the 
dynamic injection of the graph (in the data-levitation technique) takes 
place. 

In the process of relocating the program graph, connol tokens must 
be used. They are sent from the MPE initiating the move to the connecting 
CPEs. in or&r to disable them and the corresponding old paths. Other 
control tokens are sent by the new “impersonation” of the operator (pm- 
gram graph node) to its adjacent CPEs at the new location, to activate them 
and install new data links. 
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In order to simplify the mapping. a bidimensional rectanguIar mesh After each node (operator) firing, the corresponding node decreases 
will be used for DYPP. The source and destination processors on each its tiring count by one. when the firing count reaches zero, no data will be 
data link will be separated by at least two mesh increments in order to available for processing by that graph node while it moves in the levitation 
guarantee non-overlapping movement of processor embeddings. window of DYPP. As such, it is permanently disabled. 

All token communications are asynchronous, on a handshake basis In a fault tolerant-approach, the control tokens used to relccate a 
(confirmation tokens are thus used as well to confirm receipt of an originat- node would reach the center of a cluster of MF’Es or CPEs and then would 
ing token). settle themselves in one of the functional ones, activating it. 

In Fig. 14. we present the process of graph advancement in the 
DYPP. A simple binary tree has been chosen for the graph. The execution 
proceeds in several stages: 

8. A Synchronous Implementation of Data Levitation 

a) After the input data token has arrived at the root node, it is processed 
and the output data tokens are released towarda their destination 
nodes (Fig. 14a). 

b) After 60th (in order to compensate for data link delays) ack- 
nowledge (ACK) signals from the destinations have been received, 
the node (MPE) disables the side (adjacent) CPEs. via control tokens 
(Fig. 14b & c). 

cl The graph node relocates itself by sending a con&o1 token up its own 
column (we assume that nodes travel constantly in the same column 
of DYPP). The control tokens contain the operation code and the 
mesh coordinates of the locations (a list of such locations is obtained 
for each node in the mapping process). The control token is checked 
by each MPE situated along that column and upon the first coordi- 
nate coincidence, the new embedding of the node is enabled (Fig. 
14d & e). 

4 The process of node relocation and graph advancement continues 
asynchronously and independently as described at a) - c) at all graph 
levels. (Fig. 14e). 

As an alternative to the dataflow approach presented in the previous 
section, a synchronous implementation of the data levitation (or “window- 
ing”) technique is proposed in this section. 

In order at the same time to introduce a solution to the problem of 
executing loops via data levitation in DYPP, the program graph used as an 
example contains a conditional loop. As previously mentioned, loops are 
more difficult to implement via data levitation, as they contain arcs extend- 
ing themselves over many levels in the program graph. At the same time, 
the direction of data flow on such loops is generally opposed to the direc- 
tion of propagation of data in the main-graph body in data levitation. 
Thus, they cannot be implemented via single neighbour-to-neighbour con- 
nections, but only by concatenations of such connections. Moreover. their 
length could exceed the height of the window available in DYPP for data 
levitation, if this window height is determined by the operator activity in 
the main graph body alone. 

As is to be expected in a synchronous implementation, but in con- 
trast to the operators present in the dataflow model of computation used in 
the previous section, the operators included in this program graph (Fig. 15) 
are timed (synchronous). Their positional shift in DYPP, contributing to 
the program graph movement, is also synchronous. -- e MPEs 

x CPEs 

f5-h 
(a) 

(b) 

v--------x 
; disabled CPE’ 1 

l-7 r-l 
w 
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Cd) 

X X 
/ 
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a\ 

X 

0 0 0 6 

(0) 

Fig. 14 Tbe process of asynchronous graph advancement in DYPP. 

In order to provide a suggestive illustration of how the above pro- 
cess works. we would associate. it visually with the way a worm advances, 
by successive constriction and expansion of its body segments. 

r t 

Fig. 15 Conditional loop. 

A DYPP array of 2 x 3 MPEs and CPEs is used as the hardware win- 
dow (Fig. 16). For simplicity of representation, the MPEs and CPEs sre 
superimposed at the same position, localized in distinct, but communicat- 
ing Iayers. 

WE 
a- 

CPE 

Fig. 16 Implementing a 2x3 data-levitation window in DYPP. 
Processors and their possible interconnection links. 
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The width of the array used is related to the maximum number of 
operators found in a graph crossection (layer) at any time. This is the case 
with the 02,03,04 set of operators (Fig. 15). The operators 01 to 06 
can be general arithmetic processors, for example. The selector operator 
(S) closes the conditional loop based on the result provided by the output 
of an inequality (I) operator. For control input=T (true), the loop is closed 
for another iteration. For an F (false) control input, the data token pro- 
vided by the output of operator 06 is passed to 07 as a loop output. 

The FK (“fork”) operator simply replicates its input token on all of 
its outputs. The input data arrives as a synchronized token on the input of 
01. 

tokens<!i--~ _ -T. DYPP programming 

HOST 

Fig. 17 Interconnections during phase @2 (parallel injection for 
data levitation). 

In the proposed synchronous implementation, the interconnections 
between MPEs are activated on clock phase @I for processing purposes. 
On clock phase 02 (only) the column interconnections are turned on, pro- 
viding the paths along which the programming tokens are injected by the 
host, in order to implement the new graph segment in the data-levitation 
window. (Fig. 18). 

Fig. 18 ‘Dig of processing and programming phases in the 
synchronous implementation of data levitation. 

As mentioned in section 5, in the data-levitation approach, the pro- 
gram graph is gradually executed by a DYPP array implementing a win- 
dow swept over the full graph. In our example, hvo levels of the graph 
will be executed at any time. The clock period will be conservatively 
adjusted to cover the longest operation ever arising in the graph execution 
and the associated communication &lays. 

The programming tokens injected by the host in phase Q2 have the 
role of defining the operations performed by the MPEs and their intercon- 
nections (via the corresponding CPEs). 

In Fig. 19 data tokens are represented by black dots, while control 
tokens (used for the control of the selector operator used in the example 
graph) by empty circles. Input data tokens are represented in the upper 
part of the processor cells, while result data tokens are represented in the 
lower part of the processor cells. 

Because of the synchronous nahue of the computatiae, we know at 
all times where the different operators will be located in the levitation win- 
dow. This is in marked contrast to the asynchronous implementation 
where only areas in which operators exist can be eventually specilied, 
based on the estimated maximum duration of processing and communica- 
tion. 

While shifting upwards in phase @2, the programming tokens are 
also used us carriers, able to carry input or output data tokeins to their new 
locations. 

In Fig. 19. we present a representation of the step-by-step execution 
of the example program loop, following the timing in Fig.18.. 

In order to condition the progr amming tokens to enable the MPEs, 
and connect them (via CPEs and links) with their neighbours only at the 
required positions in the levitation window, special enabling lists are used. 
They are stored by the host in the programming tokens and contain the row 
coordinates of the enabling positions. While advancing; through the 
columns, during the upward movement of the graph in the levitation 
window, the contents of the enabling list are compared with the coordi- 
nates of the current DYPP node, and upon coincidence, the operators are 
enabled and the correct connections established. In Fig. lg., we underline 
enabled operators. 

The enabling lists are established in the program graph-mapping 
process, prior of course to graph injection. 

In clock period l7 of the sequence represented in Fig. 19, the value 
of the control tokens directs the interconnections. In this respect all the 
operation and connecting tokens provided by the host have two com- 
ponents (fields): 

. an operation field (explicitly indicated as 01.02. etc): 

. a connectivity field (implicitly indicated in the pattern of intercon- 
nections enabled for the h4PE where the token is currently located). 

T4 

TS 

TS 

FK n 

Fig. 19a Synchronous execution of a program loop by data kv&aticm. 
Detaikd instuction-toka flow. 
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9. Conchsions 

A new ensemble-array architecture has been proposed for a dynami- 
cally programmable (DYPP) VLSI supercomputer, having as salient 
features: 

. A hierarchical (two-level} fault-tolerant structure separated on two 
conceptual levels (processing and connectivity), suitable for wafer- 
scale integration; 

. Provision of static and dynamic programmabilify in the form of 
graph injection; 

. Support for full dynamic reconfigurability (via the application of a 
new concept, called data levitation applied to program graphs, 
preferably in datatlow form). 

The new fully distributed supercomputer architecture is considered 
to be very appropriate for running highly parallel programs. It provides 
the outstanding feature of directly embedding and execudng program 
graphs in both static and dynamic versions. 

An important generalization of the systolic concept is implemented 
within the data-levitation structure. where instructions am also provided in 
a continuous flow to interact with the data flow in the environment pro- 
vided by DYPP. In principle. this was made possible by using CPEs (Con- 
nectivity Processing Elements) instead of passive switches in the distri- 
buted mesh-architecture. 
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