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Abstract. In this paper, we pursue the use of probabilistic (randomized) algorithms in VLSI 
architectures, in order to reduce the amount of computation, and, correspondingly, the time 
of computation as well as chip area. 

As a case example, we propose two VLSI solutions to the well-known problem of the 
nearest pair of points in computational geometry. These implementations are based on 
Rabin's and Weide's probabilistic algorithms. The chip area and time of computation which 
result are each O(n). This is a marked improvement over both the straightforward determinis- 
tic approach (leading to an O(n z) computational time) and the deterministic algorithms 
known as being the best (leading to O(n log n) computational time). 

In suggesting a VLSI solution to the nearest-pair problem, we introduce two new systolic 
structures, a systolic grouper and a systolic minimum-distance processor. We also make use 
of a new class of systolic arrays introduced earlier, probabilistic systolic arrays. 

Keywords. Computational geometry, nearest-pair problem, probabilistic algorithms, systolic 
arrays, VLSI. 

1. Introduction 

VLSI architectures designed until now execute exclusively deterministic al- 
gorithms quite successfully in many application areas. However, at the same time, 
probabilistic concepts have been acknowledged in the design of digital computers 
for many years, without becoming predominant or even very visible. Inspired by 
an interest in these concepts, we have discovered that a special class of al- 
gorithms, namely probabilistic (randomized) algorithms, quite well-known since 
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These algorithms, to which Rabin [23] has brought a major contribution, allow 
in many cases a massive reduction in the expected (average) time of running a 
computation, while knowingly accepting no speedup in the treatment of the worst 
cases. As such, their worst-case performance is not their main merit. Rather, they 
deliver in general a much better performance on the average on the full set of 
problem instances. 

Probabilistic (randomized) algorithms are defined [23] as algorithms which 
"include a finite number of random steps, proceeding otherwise completely 
deterministically". 

Our idea [8,9] has been to explore the reduction in computational time which 
could be obtained by running these algorithms in a VLSI environment, in 
comparison with known deterministic algorithms. The present paper extends the 
work [8] and [9], presenting a comparison between the proposed VLSI implemen- 
tations of Rabin and Weide algorithms, respectively. It also provides a compari- 
son between implementations providing exact and approximate solutions to the 
nearest-pair problem. 

In doing this, we hope to attract the attention of VLSI architects to this 
valuable class of algorithms, which though introduced 10 years ago, are not yet 
popular beyond the computer science community. 

Part of this relative lack of popularity is justified by the fact that probably all 
of the probabilistic algorithms proposed in the literature were not designed with a 
VLSI implementation in mind. As such, they have intricate data dependencies, 
which neither map easily into regular VLSI structures nor allow for the 
neighbour-to-neighbour interconnections favoured in a VLSI environment. 

As being arguably the best known probabilistic algorithm, and one having 
characteristics making it amenable to implementation with regular VLSI struc- 
tures (such as systolic arrays), we have chosen for the start of our discussion the 
one proposed by Rabin [23]. 

This algorithm solves the closest-pair problem in computational geometry in a 
K-dimensional space (K  = 2, throughout our discussion, to follow Rabin's origi- 
nal paper [23]). This problem and solutions to it, are described in [5], [23], [25], 
[29] and [31]. 

As it is a relatively new field of computer science, in this context we would like 
to make some introductory remarks about computational geometry itself. Its 
foundations were organized by Michael Shamos in his Ph.D. thesis [25], after 
preliminary work by other researchers. As the object of computational geometry, 
in [15] it is mentioned that the study of "computational complexity of geometric 
problems within the framework of algorithm analysis and design", is important. 

As some of the important classes of problems in computational geometry, 
Preparata and Lee, in the above-mentioned survey paper [15], include: 

(i) convex hull problems (i.e. finding the smallest convex set containing a set 
of points); 

(ii) intersections; 
(iii) geometric-searching problems; 



62 34. V.A. Hancu, K. C. Smith / Implementing probabilistic algorithms on VLSI 

(iv) proximity and related problems: 
- closest pair (the problem treated in this paper), 
- all nearest neighbours (finding the nearest neighbour for each point in a 

given set), 
- Euclidian minimum spanning tree (finding the tree that interconnects 

all the points in a set, with a minimum edge length), 
- farthest pair; 

(v) geometric optimization problems. 
Now that we have provided this brief introduction to the object of computa- 

tional geometry, we would like to define more formally the closest-pair problem. 
In this problem, for S = { x ~ , . . . , x  n }, n points in a K-dimensional space, it is 
required to find the nearest pair(s) x i, xj for which d(x i ,  x i ) =  rain d(xp ,  Xq) 
where d is the distance defined in that space, with p, q ~ [1, n] integers. 

The closest-pair problem is not only a fundamental problem in computational 
geometry, it also has applications in image processing (the detection of poten- 
tially colliding objects on a radar screen, for example) and related fields. 

In analysing the complexity of existing solutions to this problem, we must 
highlight the comparative performance of deterministic and probabilistic al- 
gorithms designed for solving it. 

The straightforward deterministic approach to finding the nearest pair in a set 
of n points involves C, z = l n ( n  - 1) (i.e. O(n2)) distance calculations and com- 
parisons to find the required minimum. Other, more involved, recursive (but also 
deterministic) algorithms, provided in [3] and [31], require only O(n log n) 
distance computations. 

In comparison with the deterministic algorithm just mentioned, the probabilis- 
tic algorithms by Rabin [23] and Weide [29] are faster on the average. In both of 
the latter, the expected number of distance computations is only O(n). 

As an important feature of these two probabilistic algorithms, we should like 
to point out that they provide exact answers; that is, for further emphasis, the 
minimum distance is found with certitude. The only probabilistic aspect of the 
answer lies in the computational time required. While taking O( n ) on the average, 
it could take longer, but with small probability. 

In principle, both algorithms by Rabin and Weide use an idea first enunciated 
by Yuval [31]: consider clusters of points and check for the nearest pair only 
within these clusters. A rectangular grid system is used to separate the initial set 
of points, in order to define the point clusters. 

While the grid used by Rabin [23] is a two-level one (organized with two levels 
of resolution) the grid system proposed by Weide [29] is simpler, operating only 
with one level of resolution. 

The probabilistic aspect of these algorithms is produced by the way the 
mesh-size of the separation grids is defined. This is a very important step, as the 
cluster size critically determines if finally the expected computational time will be 
O(n), or more. Both algorithms randomly sample sparser sets of points (Rabin's 
algorithm) or distances (Weide's algorithm) in order to define the mesh-size of the 
separation grids. 
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A critical step in implementing this algorithm in O(n) time is a sorting (or in 
effect, grouping) process, used in cluster formation. A software sort solves this 
problem in time O(n log n)[1]. In view of the importance of the shorting process, 
we have explored a hardware systolic group sorter, similar to the systolic ripple 
sorter described in [16] and [26], but containing some new features. In [26] it is 
shown that the systolic ripple sorter is the most efficient available hardware 
solution for sorting and the most suitable for VLSI implementaion. We believe 
these qualities are retained in our modified version, which in fact implements a 
systolic grouper. 

The cluster-definition process is followed by distance calculations (inside the 
clusters only) and comparisons. To remain O(n) in area and time, we again use 
the high degree of parallelism offered by systolic structures. A minimum-distance 
processor performing the required functions is another novel systolic structure 
proposed in this paper. 

The sampling process implied by the probabilistic algorithms used can be 
implemented in parallel with other operations in probabilistic systolic arrays [9] 
thus improving the compactness of the hardware implementation. Such arrays are 
introduced later in this paper. They have several other applications as previously 
mentioned. 

2. Rabin's algorithm for the closest-pair problem 

In presenting this algorithm, we will closely follow Rabin's original paper [23] 
on probabilistic algorithms. 

As previously mentioned, the starting idea, suggested initially by Yuval [31], is 
to consider clusters of the points and to check for the nearest pair within these 
clusters. In order to obtain the clusters, Rabin uses two sparse subsets, obtained 
by a double sampling from the initial set S: 

Given S = (xl,  • " ,xn} the initial set of n points, m 1 = n 2/3 of them, sampled 
at random, define a sparser set Sa = { x ~ , . . . , x ~ , , , } .  An even sparser subset 
S 2 = ( x j  . . . .  , xj,,~} is obtained by sampling randomly m 2 = (n2/3) 2/3 = / , /4 /9  points 
from S 1. 

These are the only random steps in the whole process. The rest of the algorithm 
proceeds purely deterministically. 

The sampled subset of points serves to define the mesh-size of the rectangular 
(in the planar case) lattice (grid), which decomposes the denser S into subsets 
(clusters of points located within a square of the grid). This takes place in two 
steps. 

In the first step, we find 6($2), where 8($2) = min d ( x i ,  x j ) ,  where xi,j ~ S 2 

(thus 8($2) is the minimum distance for the subset $2). Because the number of 
pairs of points in S 2 is 

C 2 = ½m2(m 2 -  l) < m 2 = (n4/9) 2= n 8/9 < n 
m 2 

we can afford to compute all distances in this set and still be O(n). The numbers 
of comparisons needed to establish the minimum distance in this subset is 
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Fig. 1. Decomposing lattices. 

m 2 --1, resulting in O(n) total expected time for computation of 8($2). This 
result was ensured by Rabin via a careful choice of sampling indexes m a and m 2, 
a choice which proves to be quite critical. 

This basic distance 8($2) serves now to determine the mesh-size of the lattice 
used to decompose S 1 into clusters. Four lattices Fla . . . .  , £14 are constructed, 
with the mesh size 28($2). They can be obtained from each other by horizontal or 
vertical translations of distance 8($2). 

The elementary 28 ($2 )x  28($2) squares in these lattices are represented in 
Fig. 1. It can be observed from the example of Fig. 1 that four lattices are 
necessary in Rabin's algorithm in order to deal with pairs of points located on 
both sides of one fine in the basic grid which has a mesh size of 28($2). 

Denoting similarly 8($1) = min d(xi, Xj),  Xij E S 1 (thus 8(_$1) is the minimum 
distance for the subset _$1), since 8 ($1)~  8($2)(Sa being obtained by sampling 
$2), Rabin shows that the nearest pair, for points x,, xj in Sa, falls within the 
same square of at least one of the I'1i, 1 ~ i <~ 4, which provides the important 
conclusion that we can limit our distance processing (d  computations and 
comparisons) to clusters of points from S a located each in only one cell of any of 
the four lattices. 

The four lattices Fn,  - - . / ' 14  divide S 1 via the corresponding decompositions 
(the details are given later in this section): 

SI = S~() tJ . . . t.O S~'~, 1~<i<~4 

where S~} ) is the subset of S a located in a certain cell (square) of F i, 1 ~< i ~< 4. 
Now the inter-point distances d(Xp,  Xq) for all Xp,Xq ~ S~5~ (points in the 

same cell) are computed. The nearest pair, which has been shown above to be 
located in one of the cells, can then be obtained by comparing these distances 
with each other, in order to get 8($1),  the distance corresponding to the closest 
pair in $1. 

To realize the clustering process in subset $2, the original (true) coordinates of 
a point xi = (x~, xg) are replaced by the integral coordinates, on a 28($2) scale, 
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( ai, bi), where a i = [xi , /2a(  S2)], b i = [xi2/26( $2)]. Here [ ] means "integral part 
o f . . . " .  Then we group together the points having, in the same lattice, the same 
integral coordinates. The formulas given above for a i, b, are valid only for one of 
the lattices, say Fll. 

For the other three lattices, the equations should be modified in order to take 
into account the vertical and horizontal translations of size ~($2). 

aio-~2 ,=[(x i ,+8(S2) ) /28(S2)  ] , b i (r~)=[xi2 /28(S2)] ,  

ag(v,,) = [xi , /2a ($2)], b,(r~3) = [(x~2 + 8 ( $ 2 ) ) / 2 8  ($2)], 

a , , v~ , )=[ (x i ,+8 (S2 ) ) / 28 (S2 ) ] ,  b , ( r~ , )=[ (x ,2+8(S2) ) /28 (S2 )  ] • 

(1) 

It is to be observed that the absolute values of these integral coordinates do not 
matter. What is important, for comparison and grouping purposes, is their 
relative value. 

After obtaining 8(Sa) via the above sequence of operations, its value will serve 
to decompose the initial set into clusters, repeating the same process described for 
S 1 in order to define 6(S), the distance between the closest pair of points in S. 

An important observation can be made: if N(F,) is the total number of 
distance computations for the separate clusters defined b y / ] ,  in [23] it is proved 
that the expected value (with high probability) of N(Fi) is O(n). This being valid 
for S, is all the more valid for S 1. 

We must mention that the value of 6(S)  in the original versions of Rabin's and 
Weide's algorithms is exact, not an approximation or an estimate. (This is 
because the random sampling controls only the clustering process and because 
the four lattices ensure covering of all pairs.) Note that this feature, while valid in 
the cases noted, is not necessarily valid for all algorithms referred to as prob- 
abilistic. 

In some of our proposed VLSI architectures, perfection in the determination of 
the closest pair is fully conserved. In others, it is traded for more compact 
implementations destined for applications where a high enough confidence level 
(but not 100%) is considered sufficient in finding the minimum distance. 

3. A VLSI architecture for the implementation of Rabin's algorithm 

In order to obtain the subsets of true (real) point coordinates S 1 and $2 from 
the original set S, a pseudo-random sequence generator (PRG) could be used in 
the selection process. A possible block diagram for this preprocessing section 
would be the one described in Fig. 2. 

In terms of implementation, the 3 memories might be RAMs or recirculating 
shift-registers. The latter solution would be more compatible with the systolic 
character of the main processing blocks. 



66 M.V.A. H~ncu, K.C. Smith /Implementingprobabilistic algorithms on VLSI  

I 

 emor,s MemOrYS  emory2 I ,  

I PRG [ 
Selector  

I Gated PRG 
Fig. 2. Block diagram of the input processor for the implementation of Rabin's algorithm. 

Linear-feedback shift registers [27] are deemed to be a good solution for a 
VLSI implementation of the PRG (Pseudo-Random Generator). They contain 
only shift-register cells and gates. 

The sets of coordinates $2, $1, and S are provided to the computational parts 
of the processor in this sequence. The previous description of the algorithm 
should be sufficient to understand the block diagrams (in Fig. 3) leading 
sequentially to the nearest-pair distance computation. 

The Integral-Coordinates Processor generates, based on the true (full) coordi- 
nates xi,, xi2 of the points, the integral coordinates ai, bi, following the 
expressions indicated in equations (1). It is an arithmetic processor limited to 
some specific operations. As its implementation should not be a problem and it is 
not systolic, we will not detail it any further. 
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Fig. 3. Block diagram of the computational hardware. 
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An important comment to be made at this point is the fact that the integral 
coordinates (necessary for the task of point clustering) will have to travel 
throughout the final two systolic processing stages, in parallel with the corre- 
sponding true coordinates. In this way, after the minimum distance is finally 
detected, the coordinates of the corresponding points can be displayed, as well, 
for identification purposes. 

In the following two sections of this paper, we will present the structure of the 
systolic group sorter and systolic minimum-distance processor, each of which 
contain several original contributions, and are used in implementing both Rabin's 
and Weide's algorithms. 

4. The systolic group sorter 

The clustering (grouping) of points located within the same square (cell) in a 
lattice will be done on the basis of their integral coordinates, rather than using 
their true (real) coordinates• Further it is assumed that the origin has been 
positioned appropriately to provide only positive coordinates. This is generally 
possible, since for our purposes only the relative coordinates matter• A bi-dimen- 
sional example is presented in Fig. 4. 

Grouping is performed using a simultaneous-coincidence check on both a i and 
b i (the integral coordinates of a point)• The operation is easily extended to an 
n-dimensional space. 

The lattice cells have no preassigned order (or priority). Only belonging to a 
certain cell is important. Obviously, groups of points in different cells can have 
different numbers of members. 

The reasons for choosing a hardware sorter have been exposed in the introduc- 
tion. 

A linear, bent, systolic array-processing structure (Fig. 5) has been chosen for 
its modularity, simplicity and locality of data transfers• The starting point has 
been the systolic ripple sorter described by Leiserson [16] in its original form, that 

- 
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Fig. 5. The systolic group sorter. 

of a priority queue, and to which Shin et al. [26] have brought contributions. 
However, in our case the design has been substantially modified. In [26] an order 
relationship (greater than) is the basis for the pure sorting process, while in our 
design new members (points) gradually join a cluster based on the value of 
associated 'keys' (or ' labels ')--the integral coordinates. 

A cluster collects its members (points and subclusters), starting from a nucleus 
(which could be represented initially by just a single point) which grows by 
accumulating members travelling through the array. This process can be likened 
to the growth of a snowball. Accordingly, snowball-array might be an appropriate 
name for this clustering (grouping) structure. 

A marker (flag) bit for the 'last' point in the subcluster (as present in the 
systolic sorter) is generated, in our design, by a specialized comparator. A 
multiphase clock should be used to order the succession of basic operations in the 
array: 
- shift (all groups); 
- compare integral coordinates for grouping purposes; 
- enable context exchange between PEs (processing elements) based on compari- 

son results; 
- reposition the 'last' flag. 

Basically, the PEs contain shift-register cells, comparators and swap (exchange) 
circuits. At the array's right extremity, a separate comparator (Fig. 5) assigns the 
'last-in-a-group' flag (represented by a dot), setting the corresponding bit carried 
by the current last member of a subcluster (corresponding to those points having 
the same integral coordinates). 

In Fig. 5 we show a schematic representation of this array. In each PE, we have 
represented only the integral coordinates, because only these are significant to the 
grouping process. However, when a content exchange takes place, the true 
coordinates move together with the integral coordinates. All the connection links 
should be dimensioned accordingly. 

The data (x~, xi2, i.e. point coordinates) are input every other clock pulse. The 
reason for 'spaces' will be outlined later. The data move systolically to the right 
on the upper segment of the array, and to the left on the lower segment of the 
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Fig. 6. Clustering of points in the systolic group sorter. 

array. As described in [26], the processing is ' I / O  overlapped', i.e. "upon  
completion of the input operation, the first sorted item is ready for output"  [26]. 

The array is bent, to make possible coordinate-coincidence comparisons and 
point exchanges required to group together all members of a cluster. The idea is 
to add new members at the tail end of the group while it is travelling on the lower 
part of the array. The (integral) coordinates of a last member of a group are 
continously compared for coincidence (Fig. 6) with those of the point whose 
coordinates are located, at the time, in the PE just above the one containing the 
current last member. Upon coincidence, the coordinates of a nonmember  (which 
immediately follows the current group) are exchanged with those of a future 
member, located just above the current last element and having, of course, the 
same integral coordinates. Now, the reasons for interspersing the data with spaces 
should be clear [12]: that is to avoid the lack of interaction between data in the 
two rows of the array which 'fly by' each other. 

In Fig. 6, two (the rest are not enabled via the 'last' bit) such typical 
membership-test comparisons and exchanges are shown to be performed. Here a 
thin arrow indicates a coincidence test with the current last member  of a 
subgroup, while a thick arrow indicates content exchange, and a dotted arrow 
that an exchange is enabled. It is seen that stopping the data shift periodically for 
some clock phases (while the comparisons, content exchanges and flag reposition- 
ing are done), will be sufficient to perform this sequence of operations and that 
only local communication links need be provided, a basic requirement for a 
systolic design. The comer cell should be provided with the same types of 
connections. 

Schematically, this can be represented as in Fig. 7. It should be clear by now 
that the 'last' flag enables all membership (coincidence) tests and the associated 
exchanges. As such, the 'last member'  comparator should indeed be located at the 
right end of the upper row. 

The number of cells in each row should be at least n (n being the total number 
of points in the initial set S), or otherwise the members travelling on the lower 
row will not meet all their 'relatives' travelling on the upper row and will fail to 
enrol them at the tail of the group. 

Because of the inherent parallelism of this structure, all points are allocated to 
the appropriate cluster after 2n clocks, when the last point leaves the array. As 
such, the process in O(n) both in area and time. 
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Fig. 7. Connections in the systolic group sorter. 

A point that has not yet been mentioned is that in the process of movement to 
the left in the lower row of the array, a (sub)cluster loses some of its leading 
(front) members, as a result of exchanges occuring at the tail of the previous 
group. This, however, happens less and less frequently as it travels to the left and 
these losses are compensated for later in the process, when the lost members are 
all recollected at the tail of a fully assembled cluster. 

5. The systolic minimum-distance processor 

This processor is organized as a separate systolic array, accepting as input the 
true coordinates (and the 'last' flag) of the points clustered by the group sorter 
(Fig. 3). Its operation is based on the idea that not all distances between points 
belonging to the same cluster (lattice cell) are needed externally. Thus in running 
distance computations and comparisons in a systolic fashion, only relative 
minima need be kept, along with the associated point coordinates. 

The distances from each point to all other points within the same cluster are 
computed, but in a parallel systolic fashion, so that even if in all clusters 

E 1g/cluster~(ncluster,- 1) 
all 

clusters 

distance computations are needed for each decomposition, in a given lattice, 
finally only O(n) time is necessary. 

The linear, bent, shift register is again the basic component  (Fig. 8). It supports 
the movement of the coordinates and of the 'last' bit. Other types of PEs are 
included as well: D computes the distance between two points (x,,, x~2) and 
(x j,, x j2), while Dmin (essentially a comparator) transfers to its output  the smallest 
distance from the two presented at its inputs. In this systolic array, all distances 
(minimal or not) are transferred together with the coordinates of the correspond- 
ing pair of points, for later reference. This is not explicitly presented in Fig. 8 for 
reasons of simplicity. 

Data are input with alternating spaces, for the same reasons which apply in the 
systolic array described in the previous section. The D~i~-PEs are clocked too; 
they contain distance comparators and registers. All PEs work synchronously, on 
different clock phases. Note that particular care must be taken with the timing of 
feedback connections. 
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Fig. 8. Block diagram of the systolic minimum-distance processor. 

This bent configuration ensures that each member of a cluster, moving on the 
lower section of the shift register, faces, step by step, all the other members of 
that particular cluster, travelling on the upper rail, interacting with them and thus 
generating the associated distances. 

The dm~l which are generated, as a result of the type of processing implied, are 
local (relative) minima and move in step with the associated coordinates in the 
lower part of the array. 

A point (xjl, xj~) carries with it the minimal distance to all the points in its 
cluster with which it has already interacted. The distance between (x~,, xi= ) and 
(x j,, xj~), computed by the D-processor, in Fig. 8, serves to update the minimal 
distance from (xj~, xj~) to the rest of the points in the clusters. If the new distance 
is smaller than the old value propagated through the dmin connections, the old is 
replaced. 

Very importantly, the 'last' labels move together with point coordinates (Fig. 
9) in order to prohibit interaction (distance computations) between points located 
in different lattice cells, by a selective enabling of D-processors which is de- 
scribed below. The observations made concerning the number  of cells in each row 
apply for this array as well. 

It can be seen that only points located close to the right end of the array 
interact, in a D -shaped area. The size of this area of interaction (defining the 
current cluster for which distances are being computed), varies with the current 
/'/cluster (number of points which are members of a cluster). 

At the extreme left of the lower row, a final comparator (not shown), having 
some memory registers, sequentially compares all dj rain serially coming to it as 
the smallest distances in each of the clusters, retrieving & i.e. ( d ~ ) ~ n  for the set 
of points in question (S 1 or S z, in our case). 



72 M.V.A. Hancu, K.C. Smith / Implementing probabilistic algorithms on VLSI 

t: l  t; I  ;I I ; I  
s : 

3 ~ 

a) i n i t i a l l y  

] I '  1 1 1 1  1 

s I 
I I 31 I ~1 I 11 I. 
I 1 3 1  1 3 1  I 31 I- 

b) a f te r  
one shif t  

1 3 1  I 
1 3 1  I 

I;I I;I 
I 

i L 
S t ' 

~1 I l l  I I 1_  
31 I 31 1 3 r  

0 c) after  
two sh i f ts  

Fig. 9. Defining the active zone of interaction. 

The 'last'-flag-detection process is the one defining which D-cells are active at 
a particular clock beat. Three cases are possible, depending upon the relative 
position of the 'last' point in the current group (the one temporarily located 
around the right end of array) and in the previous group (for which all distance 
computations have been already finished). The 'last' bits in the two groups are 
denoted by R (current group) and S (previous one). In Fig. 9, only the 
shift-register skeleton of the array is represented. Dotted lines indicate pairs of 
points in interaction (i.e. for which the D-PEs are enabled). 

To label (in the example of Fig. 9) the components of a group, as they are 
input from the group-sorter systolic array, we have been using the integer 
coordinates, even if these coordinates are not carried or used in the actual 
distance (D) processor. The order of components of the group is not modified in 
the D-processor. 

It should be mentioned that pairs of points fully located in either the upper or 
lower part of the shift-register part of the array do not interact. 

As R and S travel (as 'last' bits) through the array, together with the true 
coordinates (which have not been explicitly represented), they are latched at the 
inputs of the D-type PEs, causing them to be enabled or disabled through a 
simple control function (S = 1, travelling on the lower row enables or sets the 
D-processors, while R = 1 moving on the upper row resets or disables them). In 
order for D,~z,~-comparators to operate properly when the corresponding D- 
processor is disabled, the output  will be forced to provide an 'out-of-range' value. 

This structure too is O(n) in area and time. 
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6. Weide's algorithm for the closest-pair problem and the VLSI architecture 
implementing it 

While being less known, Weide's algorithm [29] is considerably simpler than 
Rabin's. As a result, the derived architecture proposed in this section is faster and 
allows for a simpler implementation than known solutions based on either 
Rabin's algorithm or purely deterministic algorithms. 

Weide's algorithm also makes use of Yuval's [31] idea of considering clusters of 
points, and checking for the nearest pair only within these clusters. 

A basic rectangular lattice F 1 with mesh size 38 (and two replicas F 2, F 3 
obtained by translation by 8, Fig. 10) is used to decompose S into subsets 
(clusters) of points. The random part of Weide's algorithm refers only to the 
process of defining 8, and thereby, implicitly, the mesh-size. As mentioned in the 
introduction to this paper, in contrast to Rabin's algorithm, which uses a 
hierarchical, two-level lattice to define the 'bins' in which the clusters are located. 
Weide's algorithm uses a single mesh-size for its lattices. 

We would first of all like to mention that the definition of mesh-size is 
different in Weide's algorithm than in Rabin's. The unit length 6 (which de- 
termines the mesh-size 36) is obtained as a minimum of n distances chosen at 
random between points in S (in fact, from a subset Snd ). The block diagram of 
the input processor (Fig. 11) is thus different from the one suggested for Rabin's 
algorithm (Fig. 2). 

After the transfer from the host computer of point coordinates (Fig. 11) into 
Memory 0 (containing S), the subset Sna is obtained by a sampling process 
controlled by a pseudo-random generator (PRG) and stored in Memory 1. To 
obtain n different distances, as anticoincidence circuit is used to avoid repetition 
of point pairs, under the control of a counter. 

A Systolic Minimum-Distance Processor (such as the one described in Section 
5) is used (Fig. 12) to obtain the unit length 8 from the coordinates of the points 
in the sampled set S~a. 

m 

A 

~p 
3 

" " b a s i c  cell of 
- -one  lat t ice 

Fig. 10. Decomposing lattices in Weide's algorithm. 
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Fig. 11. Block diagram of the input processor for Weide's algorithm implementation. 

The points in each cluster are distinguished (labelled) by their integral coordi- 
nates (Fig. 4), which are obtained using the Integral-Coordinates Processor (Fig. 
12). 

As mentioned in the description of Rabin's algorithm, this processor is an 
arithmetic processor limited to only a few operations. However, the formulas 
(equations (2)) used by this processor in order to derive, from the original (true) 
coordinates of a point xi,, xi2), the integral coordinates in a 33 scale, (ai, b,), are 
different from those given for Rabin's algorithm (in equations (1)): 

ai(r,) = [xi , /38],  bi(r,) = [xi~/381, 

a i ( r2 )=[(x i ,+8) /38] ,  b i (F2)=[(xia+8)/381,  

= [ (x ,  + b,<,,  = [ (x ,  + 

(2) 

In equations (2), the expressions for the integral coordinates of a point in 
lattices F 2 and /'3 are obtained taking into account the horizontal and vertical 
translations of size 8, respectively 28, by which these lattices are obtained from 
the original lattice /'a. As was mentioned in Section 2, multiple lattices are 
necessary in order to deal with pairs of points located on both sides of one line in 
the basic grid, which has a mesh-size of 38 in Weide's algorithm (as opposed to 
28 in Rabin's algorithm, but where the 8 definitions differ in the two cases). 

J Systolic I Xl,X2 Minimum ~ 8 
SNd -I PD: ~ t$$sCt r [ 

Xil,Xi 2 

S - - L  Integral [ ~ Systolic ^11''12'= Systolic Minimum 8(5) Coordinates Group 
~ Processor Cli,bi Sorter "Ic1st"= Distance Processor 

Fig. 12. Computational hardware-block diagram (for Weide's algorithm implementation). 
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The clustering process corresponding to the block diagram shown in Fig. 12 is 
implemented within a Systolic Group Sorter identical to the one proposed in 
Section 4. 

After clustering, a Systolic Minimum-Distance Processor (similar to the one 
described in Section 5) compares all possible distance within all clusters. The 
process is repeated three times to cover all three partially overlapping grids. As 
mentioned previously, overlap is necessary in order to cover pairs of points which 
might fall only partially in one basic square ('bin') of a certain grid even if the 
points are very close to each other. The closest pair of points is thus detected. 

The solution proposed for implementing Weide's algorithm is decidedly more 
compact than the one required by Rabin's algorithm. A quick comparison 
between the block diagrams described in Figs. 12 and 3 will make this quite clear. 

7. Exact and approximate solutions to the closest-pair problem 

As was already stated previously, the algorithms by Rabin and Weide indeed 
both provide the smallest distance in the set of points involved. 

However, as a result of practical difficulties and limitations arising in the VLSI 
implementation of these algorithms, the exact value of the smallest distance might 
not be obtained with complete certitude, but only with a controllably high 
probability. 

First of all, one has to consider that in the theoretical proofs of probabilistic 
algorithms, the existence of an ideal random generator is normally implied. 
However, in terms or practical implementation, one normally resorts to using 
pseudo-random generators with finite periods. As a result of this, an important 
design criterion will be to appropriately define the period length of the pseudo- 
random generator employed, in order to attain the exact result with a high 
confidence level (a given high probability). 

Another design factor able to influence the probability (or eventual certitude) 
of indeed finding the closest pair of points (as opposed to just one of the smaller 
distances) is the size of the two systolic arrays proposed for inclusion in our 
design. 

If, first of all, we must compromise on the size of the systolic group sorter by 
reducing it, (for reasons of area and cost overheads), then the process of 
clustering will still take place, but will be incomplete. If, for example, the size of 
the systolic array described in Fig. 6 is reduced from 2n cells to fewer, some 
members of a cluster travelling on the upper rail will never have the occasion to 
join their own cluster, travelling on the lower rail, for the simple reason that by 
the time a potential member is placed on the upper rail, the (sub)cluster has been 
removed from the lower end of the array. Thus, some larger clusters will be 
inevitably be fragmented, and we might end up either with a number of 
computations larger than O(n), or a reduction in the probability of finding the 
smallest distance from 1 (certitude) to less than 1. This latter effect will be 
generated by the fact that subclusters still in the same square of the grid (having 
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the same integral coordinates) will not be united. As a result of tLis, distances 
between some points still having the same integral coordinates, but placed in 
different subclusters as a result of reducing the size of the grouper, will not be 
considered in the minimum distance computation. Thus, the probability of 
missing the smallest distance increases as the size of the systolic group sorter is 
reduced. 

Extending the length of the systolic grouper to its ideal value (2n) should not 
be a problem, because the cells used are not very complicated (they perform only 
shift, comparison and exchange operations). 

However, the size of the systolic minimum-distance processor is a more 
delicate problem. This processor contains (Fig. 8) at most n D(distance)-processing 
elements, each of which can be quite complicated, depending the definition of 
distance in use. They are basically arithmetic processors, and, by nature poten- 
tially more complicated than the shift-register cells and the simple comparator 
cells which are a small part of the systolic minimum-distance processor but 
dominate the systolic grouper. 

First of all, the reader might have recognized that if the systolic minimum-dis- 
tance processor has at least n D-processing elements, (which could be prohibitive 
in terms of area), we would obtain the spectacular result of finding the minimum 
distance without the use of any of the other proposed blocks and without using 
any probabilistic algorithms at all, and in O(n) time too. And as a bonus, the 
result would be obtained as well with 100% confidence. The O(n) time is justified 
simply by the existence of O(n) D-processing elements computing in fact in 
parallel, while a total of O(n 2) total distances must be calculated. 

In other words, the proposed systolic minimum-distance processor maximized 
in effect in size to n D-processing elements, is a perfectly complete deterministic 
solution to the nearest-pair problem. It would still provide O(n) response time for 
O(n) area, and provide the exact smallest distance. 

But in many applications, the designer is willing to exchange certitude for a 
given (high) confidence level in finding the smallest distance, if the implementa- 
tion costs become considerably lower. In our case, a major contribution to the 
size of the VLSI chip computing the nearest-pair distance is brought by the 
systolic minimum-distance processor, for the reasons mentioned above. Thus we 
can radically reduce the overall size ot this processor, as shown in the following, 
from O(n) to O(v%-) and still obtain the exact value with a given high probability, 
by using the full probabilistic design presented in this paper (as shown in Fig. 3 
for the Rabin-motivated design and in Fig. 12 for the Weide-motivated design), 
by including a 'shrunken' systolic minimum-distance processor. 

This approach is justified by the fact that in both algorithms, it is guaranteed 
that on the average not more than O(n) distance computations would result. This 
being valid for the whole set of points, it is all the more valid for a cluster located 
in any of the grid squares. Because all the distance computations should be 
performed within each cluster for both randomized algorithms, it is clear that the 
expected number of points present in a cluster, and leading to O(n) distance 

2 = ½(k-(~N- - 1) is O(n). computations, is O(fn-). This is because C ¢~ 
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An expected number of points in each cluster of ~ -  can be processed with a 
high probability by only O(¢~-), say fn-, D-cells in the systolic minimum-distance 
processor. When we say with high probability, we understand that some clusters 
might have more than O(v~-) elements and thus would not be accomodated (but 
only with a small, controllable probability) by a systolic minimum-distance 
processor of size vrff only. 

If this loss in the certitude of finding the smallest distance is unacceptable in a 
certain class of applications, we have two solutions, both O(n) in area and 
average time but with 100% in the confidence level of finding the correct minimal 
distance: 
- a probabilistic one, using the same algorithms (Rabin's and Weide's) but 

replacing the systolic form of the minimum-distance processor by a sequential 
form, described in the following; 

- a  deterministic solution, using exclusively the systolic minimum-distance 
processor of maximum size (containing n D-type processors) without any input 
pre-processor, as discussed earlier in this section. 
The sequential minimum-distance processor would simply substitute the sys- 

tolic minimum-distance processor in the block diagrams of Fig. 3 (for Rabin's 
algorithm) and Fig. 12 (for Weide's algorithm). It is a simple arithmetic unipro- 
cessor, able also to scan sequentially all the clusters obtained at the output of the 
systolic group sorter. These clusters are initially stored in adjacent locations of a 
random-access memory (Fig. 13) in the same order as they are output by the 
systolic group sorter. The 'last' point in a cluster in this serial-storage scheme is 
again flagged. This helps the minimum-distance processor in detecting the end of 
a cluster. Using a simple program, the sequential minimum-distance processor 
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Fig. 13. Scanning the cluster memory using the sequential minimum-distance processor. 



78 M. V.A. H~ncu, K. C Smith / Implementing probabilistic algorithms on VLSI 

scans gradually all the point in a cluster, computing their distances to all 
subsequent points in the same cluster until the presence of a 'last' flag is detected. 
Using comparisons, only the current minimum-distance from all clusters already 
scanned is kept. 

As previously mentioned, the grid definition in Rabin's and Weide's algorithms 
ensures that the expected total number of distances for all the clusters thus 
defined is O(n). At the same time, the sequential minimum-distance processor can 
be made to occupy considerably less area than its systolic counterpart of 
maximum size (n) as it contains one D-(distance)-processing element, while both 
have an O(n) response time. However, it is far less regular and modular in 
structure. 

8. Using probabilistic systolic arrays in implementing the minimum-distance 
processor 

Probabilistic systolic arrays have been introduced by us in an earlier paper [9]. 
While reviewing their principles, we will do so only to the extent that this is 
necessary to understand their use in the present paper. 

While studying how to implement probabilistic algorithms in VLSI structures 
characterized by high regularity, modularity, and concurrency, such as systolic 
arrays, it occurred to us that it would be natural to try to implement direct 
randomization of systolic processing. 

Systolic arrays [12] have seen increasingly widespread use as highly parallel 
computing organizations suitable for VLSI implementation of specialized 
processors for various applications. 

In a majority of available designs, control of the movement of data is 
synchronous [17]. Characteristically, a multiphase clock is used to direct the 
alternation of incremental data transfer and processing steps. Thus, the clock line 
is the only acceptable global signal connection, all data transfers being of a local 
neighbour-to-neighbour kind. 

Under these assumptions, data flow within a systolic array is in highly 
organized and predictable (deterministic) streams, where data interactions occur 
in the PEs (processing elements), 'while data items travel' through the array. For 
each data item, the inherent assumption is made that it can be localized at any 
moment in time and space. This means that we can specify the propitious 
moment at which to inject data into the array (from the interface with the host 
computer) and, as well, the exact operand to be processed by each PE at a 
particular time. Correspondingly, we are able to predict the full composition and 
timing of the stream of output results. 

While this deterministic data-propagation and processing approach is quite 
appropriate in many applications, there exist applications where there is a need 
for a probabilistic (randomized) treatment of data. 

Thus, when implementing a probabilistic algorithm, some random process, 
such as random sampling of points or distances, as in the algorithms used in this 
paper, must be added to an otherwise deterministic computation. 
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Therefore if large amounts of data are to be processed, (occuring in sets with a 
large number of points, such as in the context of the nearest-pair problem 
discussed in this paper) a systolic array will remain the VLSI solution of choice. 
This is especially true for reasons of intercompatibility, in the event that the rest 
of the VLSI chip under design is conceived as a systolic structure. 

In [10], a proposal was made for systolic structures able to perform such 
random operations. There it was suggested that one could 'randomly modulate': 

- the data streams, 
- the functions performed by the PEs. 

The first alternative only is used in the context of this paper. In the modified 
systolic array, the systolic rhythmicity of the data flow, and the functions of each 
PE, are conserved, but the operands are sampled from the initial data streams on 
a random basis. This process is equivalent to the modulation of the data stream 
with a binary random sequence. 

The intended purpose of probabilistic systolic arrays in the context of this 
paper is to eliminate, especially for the Weide's algorithm implementation (the 
more compact one), the input processor (represented in Fig. 1), and to incorpo- 
rate the sampling performed by it in the operation of the systolic minimum-dis- 
tance processor which determines 8 (Fig. 12), the basis distance defining the grid 
size of 36. We would like to remind the reader that 6 is obtained as the smallest 
distance in a set of n distances sampled at random from the total set of C ff 
distances between the pairs of points in the point set. 

Sampling (or generating) only n of the possible distances can be implemented 
within the systolic minimum-distance processor (Fig. 8) in two ways: 
- sampling of points (Fig. 14(a)), 
- sampling of distances (Fig. 14(b)). 

Sampling of points is accomplished by conditioning the input register with a 
pseudo-random binary sequence (Fig. 14(a)) which gates the coordinates of the 
input points into the input register (IR), preceding the first shift-register cell. For 
the value 0 in the pseudo-random sequence, the input register is loaded with some 
'out-of-range' coordinate, which subsequently overranges the D-processors. As a 
result of comparisons, the corresponding distance values, which result in a value 
naturally larger than any real distance value, are dismissed. 

For the value 1 in the pseudo-random sequence, the input coordinates are 
gated directly (undistorted) into IR. Subsequently, they generate 'in-range' dis- 
tances, which enter the comparison process normally. 

The pseudo-random sequence must be started in synchronism with the input of 
the coordinates of the n points. The duty factor (ratio of ls in a full binary 
sequence of n bits) is defined by the necessity of generating only n distances by 
interaction on n points. As such, n = ½ m ( m  - 1), which gives m, the number of 
ls in a period of the pseudo-random sequence. If m is increased too much, 
outside the range given by the above equation, the resulting grid might become 
too dense, leading to too many computations in Weide's algorithm. 

Sampling of distances (Fig. 14(b)) requires the propagation of a binary 
pseudo-random sequence in a shift-register enabling the D (distance)-processors. 
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Fig. 14. Probabilistic systolic minimum-distance processor: (a) using sampling of points; (b) using 
sampling of distances. 

For example, the presence of a 0 in the sequence will disable (overrange, in fact) 
the D-processors such that their current output will be too large to be considered 
in the comparisons leading to & At the same time, ls will generate 'in-range' 
distances. The number of ls  in a period of the random sequence should be 
determined by the condition that while the input coordinates are already on the 
lower rail of the array, (that is, when distance computations really take place) n 
activations of the D-processors should occur. However, further discussion of this 
point is beyond our need in the present context. 

Other envisaged applications for the probabilistic systolic arrays, beside the 
execution of randomized algorithms lie in the areas of data encryption and digital 
signal processing. However, they will not be explored further here. 

9. Conclusions 

In this paper, an attempt has been made to propose and advocate the use of 
probabilistic (i.e. randomized) algorithms in VLSI architectures. As examples of 
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the general approach, specific VLSI structures implementing randomized al- 
gorithms for computational geometry have been proposed and discussed in some 
detail. 

Probabilistic algorithms are a topic of active research for computer scientists. 
A number of such algorithms are already available for various applications, and 
we expect to see the emergence of such algorithms designed specifically for easy 
VLSI implementation. Furthermore, we expect a gradual acceptance in VLSI 
design of those probabilistic algorithms which do not provide exact answers, but 
only estimates, valid to a controllable extent. Such acceptance depends on a 
compromise (probably application-specific) between chip area, time of computa- 
tion, chip reliability and actual required accuracy. 

In order to maximize the throughput of the proposed structures, new systolic 
designs have been introduced in this paper, including a systolic group sorter and 
a systolic minimum-distance processor. 

They can have, we believe, multiple other uses in such areas as: 
- data base applications, 
- pattern clustering, 
- computational geometry. 

For direct implementation of randomization of data in systolic structures, we 
have briefly introduced probabilistic systolic arrays, in which data streams or 
operators are modulated by a random sequence. 

Besides the use of such probabilistic systolic arrays for the case example in this 
paper, namely the solution of the nearest-pair problem in computational geome- 
try using a probabilistic algorithm, we suggest the importance of further study of 
their use in data encryption and digital signal processing applications. 
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