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A novel active-vision system for 3-D object recognition was developed. The vision 
system combines object pre-marking and active sensing. Therein, an object is modeled 
by a few of its 2-D perspective (standard) views, each with a corresponding viewing 
axis defined by a marker placed on the object. The operation of the active-vision 
system is characterized by its off-line planning and on-line recognition phases. The 
primary objective of this article is to address two issues in regard to the former: 
optimal object pre-marking and optimal camera placement. The optimal object pre- 
marking problem is defined as the determination of the minimum number of markers, 
and their best locations on a given set of objects to yield maximum "distinctiveness" 
for the 2-D standard-views defined by these markers. The optimal camera-placement 
problem targets minimization of camera movements in detecting the markers. Follow- 
ing a brief description of the proposed on-line recognition process, the techniques 
developed for the off-line planning stage are described in this article. For experimental 
verification purposes, a prototype of the proposed active-vision system was also im- 
plemented and is described herein. 0 2995 Iohn W i l y  b Sons, Inc. 
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Previous use of markers in machine vision in- 
clude: enhancing image contrast for the inspection 
of complex as~emblies,~ relative-position determina- 
tion for mobile robots,R object identifi~ation,~ and 
location estimation.Ifl In the context of our scheme, 
object pre-marking serves three purposes: (1) to 
specify a set of 2-D views by which to represent the 
objects (i.e., standard-views); (2) to define a local 
surface normal (i.e., standard-view-axis), which can 
be determined from the shape of a marker’s image; 
and, (3) to convey local 3-D orientation and position 
information concerning a surface of a viewed object 
(such information can be subsequently used for 3-D 
location-estimation of the object). 

Active vision, on the other hand, serves only 
the purpose of facilitating the acquisition of stan- 
dard-views of the objects. In the case where the first 
standard-view image is insufficient to allow the ob- 
ject to be recognized, additional (standard-view) im- 
ages would have to be acquired. In this context, 
optimal camera placement is a paramount issue. 

The optimal placement problem of camerasisen- 
sors has been studied in different contexts: deter- 
mining the optimal (visual-) sensor locations for per- 
forming recognition and localization operations, 
based on the acquired partial knowledge of the ob- 
ject”; determining the optimal placement and opti- 
cal-settings of vision sensors for satisfying particular 
image constraints12; determining optimal sensor and 
light-source positions for edge detectionI3; deter- 
mining successive viewpoints of a camera to acquire 
distinguishing features of objectsI4; and determining 
the best ”next view” in the context of obtaining a 
complete model of a scene.I5 

2.2. Proposed Vision System 

The general operation of the proposed vision sys- 
tem is divided into two principal phases: off-line 
planning and on-line recognition. To execute the 
recognition process, the following tasks must be ac- 
complished off-line: (1) determining the optimal 
number of markers together with the surfaces of the 
objects on which these markers are to be placed; (2) 
providing a library of standard-views, preferably via 
CAD data; (3) determining the optimal initial location 
of the camera and providing a search strategy so 
that a marker on a viewed object will always be 
detected; and (4) determining the optimal secondary 
locations of the camera and providing a search strat- 
egy so that additional markers can always be de- 
tected. These off-line planning issues form the basis 
of the present article, for which formulations and 

solution methods will be provided. In the next sec- 
tion, the modules comprising the on-line recogni- 
tion process are described briefly. 

2.3. On-line Recognition 

2.3.1. Marker Detection 

In the proposed vision system, the markers em- 
ployed are planar circles of known size. The projec- 
tion of a marker on the image plane of the camera is 
thus an ellipse. The five basic parameters of a mark- 
er’s elliptical image can be estimated by fitting an 
elliptical curve to a given set of N image-boundary 
points through the use of a Minimum-Squares-Error 
(MSE) ~riterion.”,’~ The elliptical parameters of the 
image of a marker combined with the given effective 
focal length of the camera can be used to determine 
the 3-D location of a marker with respect to the cam- 
era frame. 

Determining the 3-D orientation of a marker is 
equivalent to solving the following problem: Given 
a 3-D conic surface whose vertex point is the center 
of the camera lens and whose base is the projection 
of a marker on the image plane (namely, an ellipse), 
determine the orientation of a plane with respect to 
the camera frame (F‘) ,  such that the intersection of 
the plane and the conic surface is a circle. An analyt- 
ical solution to this problem was obtainedIh by ap- 
plying a series of frame transformations. 

2.3.2. Standard-View interpretation 

The location of a marker, determined as explained 
here, guides the camera for the acquisition of a cor- 
responding standard-view of the object. Once ac- 
quired, this image must be interpreted for object 
identification. In the context of the proposed active- 
vision system, the 2-D shape-recognition technique 
must be position-, rotation-, and size-inzwiant. A new 
boundary-based 2-D shape-recognition technique, 
which has this property, was developed and re- 
ported This technique characterizes a 2-D 
shape with a I-D signal derived from the shape by 
using the angle-of-sight (AOS) encoding scheme. 
Two fixed points are predetermined as follows: 
Point C is at the center of the 2-D image’s character- 
istic ellipse (CEla; and Point D is on the line that 

”As shown in Tchoukanov et for any planar shape a special 
ellipse, referred to as the characteristic ellipse (CE), can always be 
generated by fitting the shape’s boundary points into an elliptical 
curve. 
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2 3.1.1, Distinctiveness of a Set of I D  Views 

For a selected set of views, an overall distinctiveness 
measure is defined herein as the combination of (1) 
the average distance measure between all possible 
pairs of views, and (2) the distance measure for the 
specific pair with most similar views: 

/' 

D t, 
- 
C D = A  

* X  

Figure 1. Angle-of-sight encoding scheme. 

passes through C and is perpendicular to the plane 
of the 2-D image (Fig. 1). The distance between 
points C and D is equal to the length of the major 
axis of the CE. Therefore, the AOS signature of a 2- 
D shape is defined as a 1-D signal, AOS = " ( I ) ,  
where I is the arc length between the moving point 
E and a starting point Eo.  

2.3.3. 3-D Location-Estimation of a Viewed Object 

The problem of determining the 3-D location of an 
object is equivalent to determining the 3-D location 
of a pre-defined body frame of the object, Fo, with 
respect to a reference frame in the scene, F,. The 
solution method19 is based on the definition of a 
local frame for each marker, F,,l. At run-time, the 
relation between F, and an F,, can be measured. 
Once the object is identified, the relation between 
its FO and the F, can be retrieved from a precompiled 
library of transformation matrices, and the location 
of the object with respect to F, can be determined. 

3. OPTIMAL PRE-MARKING OF OBJECTS 

3.1. Problem Formulation 

The pre-marking of objects involves the simulta- 
neous determination of both the number of markers 
and their locations on all the objects. Correspond- 
ingly, one objective would be to directly minimize 
the number of markers and therefore minimize the 
size of the standard-view database. Another objec- 
tive would be to maximize the distinctiveness of the 
standard-views defined by the selection of marker 
locations. 

where S represents the set of views; Nmk is the num- 
ber of markers; a1 and a2 are user-chosen weighting 
factors; n is the number of all possible pairs of views; 
and d, is the distance measure between the pth pair 
of views, which is evaluated by an average- 
pointwise-distance measure of their AOS signa- 
tures. 

3.1.2. The Optimization Problem 

The optimization problem is formulated herein as a 
two-level hierarchy, where at the upper level the 
number of markers is minimized. At the lower level, 
the objective is to select the best set of views, which 
will maximize the distinctiveness measure defined 
in Eq. (1): 

Min Nnlk 

Max F(S, Nnlk), with S C X 
d, > Do 
IS n C,,I 2 2, j = 1, Nst; i = 1, N,,I,, 

Nntk Kni  (2) 

p = 1, n 

where X is the given set of all candidate views, Do is 
a user-chosen threshold for the minimum accept- 
able distance between a pair of views, C ,  is the 
known set of feasible views for the jth resting-posi- 
tion of object i (C!! C X ) ,  Nst( i )  is the number of rest- 
ing-positions of object i, Noh, is the total number of 
objects, and K, is a given upper bound on the num- 
ber of markers. The reason for the second con- 
straint, which requires two feasible views for each of 
the resting positions of all the objects, is to facilitate 
the multiple-viewpoint recognition strategy. 
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3.2. A Dynamic-Programming-Based 
Solution Method 

3.2.1. Eliminating Non-suitable Candidate Views 

All the flat surfaces of the given objects can be con- 
sidered as candidates for marking. However, some 
may not be suitable for marking mainly due to visibil- 
ity concerns. For this purpose, a set of heuristic 
rules were defined. These rules state that a candi- 
date surface should be: 

not self-obscured; 
sufficiently large to accommodate a marker; 
the largest amongst several parallel surfaces; 
and, 
larger than the usual acceptable surface size in 
a situation where the surface forms a concave 
geometry with its surroundings. 

3.2.2. The Search Technique 

The optimization problem formulated in Eq. (2) can 
be stated equivalently as: Given the total set of 
views X, and a number of subsets of X correspond- 
ing to each of the resting-positions of the objects 
(namely, Ck, k = 1 to N,, where N, = Ep='; iV,,(i)), 
determrize the minimum size subset of X, S, such 
that: (1) for each of the sets Ci ( k  = 1, N,), a t  least 
two of its members are in the set S (i.e., IS n CAI 2 

2), (2) the distance between any two members of S is 
greater than Do, and (3) the distinctiveness of S 
(namely, F )  is the maximum, if there exist other 
same-size subsets of X that also satisfy (1) and (2). 

Dynamic-programming techniques2] can be uti- 
lized to resolve the optimization expressed in Eq. (2) 
by treating it as a multi-stage decision-making prob- 
lem. In dynamic-programming, a decision made at 
any stage is affected by its predecessors and invari- 
ably affects its successors. Namely, employing dif- 
ferent sequences would result in different solutions. 
However, for the problem represented in Eq. (2), 
there is no given preference concerning the se- 
quence of the stage (i.e., the resting positions). 
Hence, a global-optimal solution could only be the 
one that results from considering all the possible 
sequences of stages. 

The stages in this problem can be divided into 
different groups, where in each group the stages 
belong to the same object. All the significant se- 
quences of stages are considered by generating a 
two-level permutation. The inner level permutes the 
stages within each group, and the outer level per- 
mutes the groups. 

Figure 2. Optimal locations of the markers. 

3.3. An Example 

A set of four objects having 53 flat surfaces (and 22 
resting positions) was considered. Twenty-three 
candidate views were obtained after applying the 
heuristic rules. The weighting factors in Eq. (1) were 
chosen as: a1 = a2 = 0.5. The optimization proce- 
dure yielded the minimum acceptable number of 
markers as: N& = 12, with their best placement on 
the objects, as shown in Figure 2, corresponding to 
the highest achievable distinctiveness for 12 mark- 
ers. 

4. OPTIMAL CAMERA PLACEMENT 

The detection of a marker is needed under two cir- 
cumstances: At least one marker should be detected 
at the beginning of the recognition process, for the 
acquisition of the first standard-view. An additional 
marker should be detected to allow the acquisition 
of a second standard-view, when the first standard- 
view is insufficient to permit recognition of the ob- 
ject. The former is studied in this section. The latter 
is addressed in section 6. 

4.1. Problem Formulation 

Due to the minimization of number of markers, the 
camera may have to be placed at several locations 
before the first marker is detected. The problem ad- 
dressed here is to determine the optimal initial loca- 
tions of the camera to satisfy a desired degree of 
certainty in detecting at least one marker. 
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0 -- Camera Position 

Figure 3. Camera’s location-sphere. 

4.1 .l. Camera’s Location Sphere 

The mobile camera is assumed to be located on the 
surface of a virtual sphere, referred to as the cam- 
era’s location-sphere (Fig. 3). For an object observed 
in the scene and centered with respect to the loca- 
tion sphere of the camera, its rotational orientation 
about the normal of the support-plane is completely 
random. To facilitate the calculations, this random- 
ness is treated here in the reverse way: 

The orientation of the viewed object is treated as if 
fixed, and the mobile camera is defined to be randomly 
located on a cross-sectional circle on the location-sphere 
surface . 

The center-angle of the sphere, y, which also de- 
fines an orientation circle C,, is the only variable 
that specifies the orientation of the camera. For any 
y, a number of uniformly spaced positions (Ncm) are 
defined for the camera on C,. It is assumed that 
when the camera does not detect any marker at its 
initially randomly placed position on C,, it can be 
moved to another position on C,. By placing the 
camera at a maximum of N,,, positions on C,, the 
desired degree of certainty in marker detection is 
achieved. As will be discussed later, the overall ob- 
jective is to minimize the number of camera move- 
ments by minimizing the necessary N,, . 

4.1.2. Marker Visibility 

Each marker on an object is associated with a 3-D 
semi-infinite volume, referred to as the visible-space 
of the marker. The boundaries of the visible-space of 
a marker are determined based on the location of 

the marker on the object and the object’s geometry. 
In our work, a marker is positioned at the geometric 
center of a surface to simplify the procedure of 
marking the workpieces. 

The intersections of the visible spaces of all the 
markers on an object and a specific orientation circle 
C, can be geometrically obtained. These intersec- 
tions divide C, into a finite set of sections (arcs) 
classified herein as: (1) “detectable-arcs,” from 
which one or more markers are detectable; and (2) 
“undetectable-arcs,” from which no marker is de- 
tectable. As explained in a previous work,19 the clas- 
sification procedure for a C, is a function of N,,, as 
well. 

The detectable-arcs can be further divided into 
two different classes: (1) those from which only one 
marker can be detected, and (2) those from which 
two or more markers can be detected. In the latter 
case, the ”goodness” of marker detectability is im- 
proved by either knowing directly the location of an 
additional marker should a second standard-view 
be required, or having the flexibility of selecting one 
marker from the several markers detected. 

4.1.3. Probability of Detection 

Let VS denote the set of detectable-arcs and IVS 
denote the set of undetectable-arcs, then: 

c, = vs u IVS. (3) 

Each member of VS (namely, a specific segment of 
C,) is associated with information that states which 
of the markers (specified by its identity number) can 
be observed at which of the camera positions (speci- 
fied by the sequence number of the camera posi- 
tion). 

For each resting-position of an object, the prob- 
ability of detecting at least one marker is defined as: 

where the integrand ai is defined as: 

1, I3 E vs 
6 = [  0, e E zvs 

(4) 

(5) 

The variables (y ,  N,,,) define VS and IVS. It should 
be remembered that herein object orientational ran- 
domness is treated in terms of random placement of 
the camera on C,. 

Given the occurrence-probability of each rest- 
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ing-position of an object, p, , ,  and the occurrence- 
frequency of each object, p f f ( i ) ,  the probability of de- 
tecting at least one marker with respect to all the 
given objects is then defined as: 

r 1 

Eq. (6) can be modified for considering the visi- 
bility of multiple markers only: 

r 1 

where 

The integrand 6, is defined as follows: 

1, 8 E zwn 

0, 8 E ZISS 

where usm is the subset of VS from which multiple 
markers are detectable and uss is the subset of VS 
from which only one marker is detectable. The inte- 
grand I is equal to the number of camera-marker 
pairs. Each pair represents the detection of one 
marker from one camera position. 

As an overall criterion, the detectability of mark- 
ers is defined as the combination of the two mea- 
sures described in Eqs. (6) and (7): 

where /3 is a positive weighting factor. In Eq. (lo), a 
value of p = 0 will imply that no special consider- 
ation is given to the fact that multiple markers are 
viewed from certain section of C, for non-zero H .  
On the other hand, as the /3 value increases, it im- 
plies that observing multiple markers is preferable 
to seeing only one marker. 

4.1.4. The Optimization Problem 

Based on the previous two sections, one can note 
that by moving the camera to a finite number of 
locations on an orientation circle C,, the detectabil- 
ity of the "first" marker can be guaranteed. How- 
ever, the objective of a typical active-vision system 

would be to minimize the recognition effort. In this 
context, the optimization problem formulated below 
targets primarily the minimization of N,,,. The de- 
tectability of markers is also addressed by maximiz- 
ing ] d t  for any given N,,, . The two criteria are treated 
hierarchically in a two-level optimization where the 
number of camera positions is minimized first: 

Min N, n, 

Max I d y ,  N,,,,), for the specific N,,, 
Y E r, where r = {y,lG(y,, N,,,,) 2 p'l 

Subject to N,,,, < K ,  1 0" 5 y 5 180" (11) 

where r denotes the feasible range of y ,  and K ,  is a 
user-defined upper limit on N,,,. When the user- 
chosen threshold p' is 1.0, the optimization must 
yield a set of camera locations specified by ( y ,  N,,,,) 
that will guarantee the detection of at least one 
marker, namely, G(y, N,,,) = 1. 

4.2. The Solution Algorithm 

The optimization expressed in Eq. (11) is solved by a 
two-level search process. For each N,,, , the feasible 
region r of the variable y is determined to satisfy the 
constraint imposed on the user-given minimum ac- 
ceptable probability of detecting at least one marker. 

The multi-mode global-extremum optimization 
algorithm22 can be used to determine the optimal 
angle y* which yields the maximum 12, (with respect 
to the N&). The angle y* defines the desired optimal 
camera orientation, and the corresponding N:,, is 
the desired minimum number of initial camera posi- 
tions on C,. 

4.3. An Example 

The optimal placement of the initial locations of the 
camera was carried out for the set of four pre- 
marked objects shown in Figure 2. For p' = 1.0 
(namely, when the probability of detecting at least 
one marker is loo%), and for p = 1 in Eq. (lo), the 
minimum number of camera positions was obtained 
as: N& = 3. The best y angle, which yields the maxi- 
mum detectability ]dr(y, 3), was y* = 96". 

5. OPTlMAL CAMERA-MARKER ARRANGEMENT 

The optimal placement of the initial location(s) of 
the camera was addressed above with respect to a 
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set of objects that were pre-marked. However, one 
can note that different numbers of markers or differ- 
ent marker-locations on the objects would result in 
different optimal initial locations of the camera. 
Therefore, simultaneous solution of the camera 
placement and object pre-marking problems would 
be most beneficial for minimizing recognition ef- 
forts. 

5.1. Problem Formulation 

Amongst the four criteria discussed in sections 3 
and 4, the most important one is the number of 
camera positions, because the time spent on moving 
the camera from one position to another would usu- 
ally be longer than the time spent in comparing two 
views. The criterion of secondary importance is the 
number of markers, because fewer markers implies 
fewer view comparisons during the matching pro- 
cess. As for the detectability of markers and the dis- 
tinctiveness of the standard-views, they can be ei- 
ther combined into one criterion (which is the 
approach chosen herein), or optimized hierarchi- 
cally if one is preferred over the other. 

The multi-objective three-level optimization 
problem is thus defined as: 

Min N,,, 

Subject to 

where W is the objective function for the innermost 
level of the optimization combining the distinctive- 
ness of views and the detectability of markers; j d l ,  G, 
r, and K, are as defined previously in section 4 (ex- 
cept that here both G and j d t  depend not only on N,, 
and y, but also on S and Nmk); F, DO, Cjj, and K, are 
as defined previously in section 3; and XI and A2 are 
weighting factors. 

5.2. Solution Method 

To eliminate non-suitable flat-surface candidates, 
the set of heuristic rules described in section 3.2.1 

could be applied here as well. However, after the 
application of these heuristics, the number of re- 
maining candidates for S would be still quite large. 
Moreover, the dynamic-programming method de- 
veloped in section 3 is not quite suitable for the inte- 
grated problem addressed here. The reason is that 
before a complete (sub)set of views for an object is 
selected, the probability G cannot be calculated for 
the object, because G should be determined by con- 
sidering all the markers on the object. This implies 
that the constraint condition G = 1 cannot be exam- 
ined at every single stage, because a set of views for 
an object is completely selected only after all the 
stages corresponding to this object have been 
reached. 

By studying the specific constraints of this opti- 
mization problem, an algorithm that significantly re- 
duces the number of feasible combinations was de- 
veloped. The algorithm is based on the following 
two properties: 

1. Let S; consist of all the members of S that 
belong to the ith object. Then, the constraint 
IS n C, I 2 2 is satisfied if and only if 1 Si n Cij I 
2 2 ( j  = 1, Ns,(i))  is satisfied for each individ- 
ual object. 

2. The necessary condition for satisfying the 
constraint G = 1 (with respect to all the ob- 
jects) is that the probability of detecting at 
least one marker is 1 for any individual ob- 
ject. 

The major steps of the algorithm are as follows: 

Step 1. Use the solid models of the objects and the 
set of feasible views for each resting-posi- 
tion, and apply the heuristic rules on all the 
flat surfaces so that non-suitable surfaces 
are eliminated. 

Step 2. Let N,, = 1. 
Step 3. For each object, find the minimum number 

of markers and the corresponding group of 
candidates of Si by examining the con- 
straints. 

Step 4. Determine the set of feasible candidates of S 
by combining all groups resulting from Step 
3 and examining d > Do and G = 1 for all the 
possible combinations. 

Step 5. If Step 4 results in a non-empty set of S, 
proceed to Step 8; otherwise, proceed to 
Step 6. 

Step 6. Increase the current value of Nmk by 1. If a 
non-empty set of S has resulted proceed to 
Step 8. Otherwise, proceed to Step 7. 
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Figure 4. 

the marker's center on a surface (whose nominal 
value is at the geometric center of a surface, as men- 
tioned in section 4.1.1). 

The simulation r e s ~ l t s ' ~  showed that the optimi- 
zation is not very sensitive to uncertainties in these 
parameters (e.g., if the uncertainty in each of the 
parameters is under 12%, their total effect is less 
than 5%). 

Marker locations resulting from the integrated 

6. SECOND-VIEWPOINT SELECTION 

The principal reasons why the first standard-view 
image could be insufficient to identify a viewed ob- Lx 

optimization. 

ject include: 

The existence of similar standard-views in the 
database, 
Defective objects, or physical disturbances 
within the field-of-view of the camera, and 
Misalignment of the optical axis of the camera; 
a situation that causes a large distortion of the 
standard-view image. 

Step 7. If the current Nnlk is under the given upper 
limit, return to Step 6 to increase N,,,k fur- 
ther. Otherwise, increase N,,, by 1 if Ninl has 
not reached the given upper limit, and re- 
turn to Step 3. 

Step 8. Determined the best S and y and stop the 
procedure. 

5.3. An Example 

The solution method described in section 5.2 was 
performed on the same set of four objects shown in 
Figure 2. For hl = A2 = 0.5, the following optimal 
solution was obtained: N:,, = 1, N:lk = 13, and y* = 
36". The optimal locations of the 13 markers are as 
shown in Figure 4. 

As can be noted, the use of the integrated solu- 
tion technique reduced the optimal number of cam- 
era positions from 3 to 1 (see section 4.3). This was 
achieved at a minimal trade-off of increasing the 
number of markers from 12 to 13 (see section 3.3). 

5.4. Discussion 

In solving the aforementioned optimization prob- 
lem, several assumptions were made with respect to 
certain parameters. A sensitivity analysis was hence 
conducted to study the effect of inaccuracies in such 
parameters on the objective function W defined by 
Eq. (12) in section 5.1. The parameters examined 
were: the occurrence-probability of each resting-po- 
sition, position of the center of the camera's loca- 
tion-sphere in a pre-defined reference frame, posi- 
tion of the object in the reference frame, the radius 
of the camera's location-sphere, and the position of 

In regard to the first reason, one can easily 
know whether there are similar standard-views in 
the database once the objects are pre-marked. As for 
the other two reasons, they involve unpredictable 
events. Thus, the problem to be solved is how to 
select the next viewing location of the camera so that 
a new marker can be detected and hence used for 
the acquisition of the second standard-view. The 
camera may have to move to several new locations 
during the search for the second marker, because 
the whereabouts of a new marker on the viewed 
object is virtually unknown a priori. Those succes- 
sive locations are referred to as the camera's second- 
ary locations. A primary objective in the process of 
determining these locations is to minimize their 
number. 

It should be noted however, that the objects are 
assumed to be marked already and the initial cam- 
era locations to be determined already. Two meth- 
ods were developed to address this p r ~ b l e m . ' ~  They 
are briefly summarized in the next subsection. 

6.1. The Probabilistic Solution Method 

Based on the marker-arrangements, one can deter- 
mine the probability of detecting two markers for a 
given set of pre-marked objects. By determining the 
corresponding locations of the mobile camera that 
guarantee the detection of at least two markers, one 
is assured of detecting a new marker that is different 
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from the one used for the acquisition of the first 
(standard-view) image. 

Concepts introduced in section 4, such as the 
visible-space of the marker, the location-sphere of 
the camera, the representation of the location of the 
camera, and the detectability of the markers, apply 
here as well. The difference is that the camera loca- 
tions to be determined here are those that will guar- 
antee the detection of a second marker rather than 
only an initial marker. These locations of the camera 
are denoted as y2 and N2. 

6.2. The Deterministic Solution Method 

In this method, the set of candidate objects consists 
of those few objects that have similar standard- 
views. For this situation, the result of comparing the 
first acquired image with the standard-view data- 
base would indicate that there are several standard- 
views similar to the acquired view. By choosing one 
of these standard-views, the identity of the viewed 
object is hypothesized. Then, the known relative 
locations of the markers on the hypothetically iden- 
tified object can be used to select a new visible 
marker and obtain its location. 

6.3. A Global Strategy for Determining the 
Camera's Secondary Location 

Based on a priori knowledge and run-time informa- 
tion obtained from the first acquired image, one 
may conclude that the cause for requiring a second 
image is the existence of similar standard-views in 
the database. In this case, one can either use the 
probabilistic method (where the best N2 and y2 are 
determined with respect to only the few objects that 
have similar standard-views), or the deterministic 
method. For other cases, namely where one cannot 
be sure what the cause is, one should use the proba- 
bilistic method (where the best N2 and y2 are deter- 
mined with respect to all the objects at hand). 

7. IMPLEMENTATION 

To verify the proposed (on-line) 3-D recognition 
method, as well as to test the results of the off-line 
planning procedures developed in this work, an ex- 
perimental setup of the active-vision system was de- 
veloped in the CIMLab. 

7.1. The Experimental Setup 

7.1.1. Hardware Description 

The hardware for the on-line recognition process 
included: 

1. The host platform: An IBM-compatible PC-486. 
2. The imaging subsystem: A Hitachi CCD cam- 

era, a red-signal filter, a plug-in PIP Matrox 
digitizer board (640 x 480 resolution), and 
proper scene illumination. 

3. The robot subsystem: A GMF S-100 robot and a 
GMF Karel robot controller. 

7.1.2. Software Description 

The modules of the on-line recognition process were 
implemented in the C language on the host as a 
single sequential program, referred to as the 3 - 0  
object recognizer. The functions of the 3-D object rec- 
ognizer consisted of: 

detecting the presence of a marker in the 
scene; 
estimating the 3-D location of a marker, 
namely estimating a standard-view-axis; 
sending commands to the robot controller 
concerning the designated camera locations, 
to request corresponding robot movements; 
analyzing the acquired standard-view image 
by determining the contour of the image, de- 
termining the characteristic ellipse (CE) of the 
image, and encoding the image with the AOS 
signature; 
matching an acquired image with the refer- 
ence standard-views in the database based on 
the comparison of their AOS signatures; 
searching for an additional marker in the 
scene when necessary; and, 
estimating the 3-D location of the identified 
object. 

7.2. CAD-based Planning 

Research on CAD-based vision has concentrated in 
the past primarily on the use of a CAD system to 
generate (1) the representations of objects and (2) 
recognition strategies.2s25 In this work, a commer- 
cial CAD package-1-DEASb-was employed to cre- 

bI-DEAS was developed by the Structural Dynamics Research 
Corporation (SDRC), Milford, Ohio. 
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Figure 5. A set of pre-marked objects. 

ate 3-D models of the objects under consideration. 
Synthetic images of candidate views were then gen- 
erated as shaded-images by using the display function 
of the Solid-Modeling module of I-DEAS. An inter- 
face program was developed to seize a shaded-im- 
age from the display screen, convert it into a binary 
image, and store the image file for later processing. 
Based on the boundary of the binary image, the 
AOS signature of the view was generated. It should 
be noted that standard-views generated on a CAD 
system correspond to "nominal" object representa- 
tions. Thus, the corresponding AOS signatures 
form the best noise-free database for future match- 
ing purposes. An interface program was also devel- 
oped to access the object models created by I-DEAS, 
and to generate the visible-spaces of the markers. 

7.3, Experimental Verification 

The recognition process was tested with the set of 
five objects shown in Figure 5. It can be noted that, 
within the selected set, two objects have similar 
standard-views. The CAD-based planning stage, 
which utilized the optimal camera-marker arrange- 
ment technique presented in section 5, yielded 
N:, = 1, y* = 36", and N:,k = 17, with the locations 
of the markers as shown in Figure 5. 

7.3.1, Identifying an Object 

Experiments were initiated by locating the camera at 
its optimal initial location (namely, Ncm = 1, y = 
36"). For example, with Object-b in the scene, two 

markers were detected initially (Fig. 6) .  A standard- 
view was then acquired by selecting one of the 
markers (Fig. 7). The comparison of the acquired 
image and the reference standard-views identified 
Object-b correctly with the standard-view-7 as the 
best match, with the lowest dissimilarity measure of 
dis7 = 0.36. 

The AOS signatures of all the standard-views of 
all the objects were cross-checked. The results are 
listed in Table I, where sv, stands for the ith stan- 
dard-view in the database, and mk, stands for the 
standard-view image acquired based on the ith 
marker. The sign "-" indicates that the comparison 
of the acquired image and a reference view was ter- 

Figure 6. Object-b in the scene. 
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Figure 7. An acquired standard-view image. 

minated because the difference between their eccen- 
tricities was larger than a given threshold, and 
hence the reference view was considered to be an 
automatic "no-match'' to the acquired image. 

7.3.2. Acquiring Secondary Standard-views 

The diagonal elements on Table I show that the 
identification of the viewed objects was very suc- 
cessful, except for the acquired images correspond- 
ing to mk9 and mkl4. This outcome is in agreement 
with the objective of the (off-line) optimization, 
which aims at maximizing the distinctiveness of the 
standard-views. As expected, for the cases of mk9 
and mk14, both su9 and ~ ' ~ 1 4  (namely, the two similar 
standard-views) were very similar to each of the ac- 
quired images, which implies the need for a second- 
view. 

Numerical results for the secondary camera- 
location optimization are shown in Table 11. 

The overall strategy for determining secondary 
camera locations was thoroughly checked in a pre- 
vious work.I9 In this article, only an exemplary case 
is discussed. 

When Object-c was considered, mk9 was de- 
tected initially (Fig. 8). After the camera was aligned 
with the standard-view-axis specified by this 
marker, the first image was acquired. The compari- 
son of this image with the reference views indicated 
that two of the views were very close to the acquired 
image (dis9 = 0.060 and disll = 0.060). The camera 
was retained on C3e (because y1 = 36" E [12', 42'1) 
and moved to a different secondary position. A new 

marker (mk8) was then detected (Fig. 9). The second 
standard-view image was acquired correspondingly 
(Fig. 10). This image was then identified as stan- 
dard-view #8 (diss = 0.165), and the object was cor- 
rectly identified as Object-c. 

When Object-e was considered, mk14 was de- 
tected initially. A procedure similar to that de- 
scribed for Object-c yielded the successful recogni- 
tion of this object as well. 

8. DISCUSSION AND CONCLUSIONS 

Optimal solutions to object pre-marking signifi- 
cantly facilitate the marker-detection and the stan- 
dard-view matching processes, by providing the 
minimum number of markers and their optimal lo- 
cations on the objects. An arbitrarily determined ar- 
rangement of markers, on the other hand, would 

Figure 9. Secondary viewing location for object-c. 
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sv1 sv2 sv3 Sv4 sv5 Sv6 Sv7  svg so9 Sv10 sv11 32112 Svl3 sv14 

mkl 0.01 10.4 6.9 - - 18.1 - 10.3 18.9 - 9.6 - 22.2 19.3 

mk2 9.97 0.06 17.9 11.1 18.3 13.3 13.6 - 19.4 - 17.8 13.2 21.1 18.9 

mk3 7.16 18.8 0.10 7.02 16.7 8.86 14.7 - 20.2 - 10.4 7.6 18.3 20.2 

mk4 4.22 11.6 6.79 0.03 - - 16.6 9.82 17.7 - 8.88 - 24.3 19.9 

mk5 - 19.6 15.6 - 0.21 26.0 11.4 - - 24.9 34.9 19.8 15.7 - 

mk6 - 12.8 9.25 - 27.6 0.09 23.9 - 20.1 - 16.6 5.06 20.7 21.6 

mk7 - 13.3 13.6 - 8.71 24.6 0.36 - 11.2 32.3 23.1 25.2 32.4 9.01 

- 7.25 - - - - 0.24 - - mks 10.5 - - 9.59 - 

mky 16.8 21.0 20.5 18.6 - 20.8 9.50 - 0.07 - 35.0 28.1 29.0 0.08 

mklo - - - ~ 25.8 4.47 - - 0.02 - 2.81 - - - 

mkll 9.05 20.1 9.67 10.5 - 18.9 21.9 - 32.3 - 0.21 20.8 36.7 36.9 

mklz - 14.4 7.13 - 24.0 3.32 28.1 - 30.2 - 16.7 0.73 14.6 28.8 

mkl3 21.6 20.2 14.9 18.6 23.4 18.4 34.4 - 28.8 - 37.3 11.0 0.11 30.9 

mk14 19.5 19.0 20.1 19.7 - 21.7 8.81 7.11 0.12 - 37.1 29.0 31.3 0.11 

mk15 - 12.0 - ~ 26.9 5.61 30.9 - - 3.22 - 3.69 - - 

Table 1. Experimental results of standard-view matching. 

sv15 

- 

11.5 

- 

- 

27.0 

5.82 

30.8 

- 

- 

3.56 

- 

3.49 

- 

- 

0.16 

fable II. Optimization Results. 

optimal N optimal y feasible 7 2  region 

w.r.t. all five objects N i  = 3 y; = 34" I [14",34"1 I 
w.r.t. objects c and e N," = 3 yi = 42" I [12",42"1 I 

initial placement I N l = l  1 y 1 ' = 3 6 " 1  - 
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Figure 10. Second standard-view image for object-c. 

suffer from serious drawbacks such as: (1) ambigu- 
ous standard-views resulting from unguided 
choices of improper marker locations; (2) a greater 
than necessary number of markers; and, (3) the ne- 
cessity of choosing one solution (most likely a non- 
optimal solution) from a very large number of possi- 
ble marking arrangements (for example, for the four 
objects discussed in section 3, there would be 3.5 x 
1Olo possible choices, just by satisfying the con- 
straint of having two markers per resting-position). 
Furthermore, the impact of proper marker arrange- 
ment on camera placement is significant. As shown 
by an example, the number of camera positions was 
reduced from 3 to 1 by properly selecting the num- 
ber and locations of the markers. 

The optimal solution for the camera-placement 
problem on its own provides a cluster of viewing 
locations for the camera that will guarantee the de- 
tection of special features (namely markers) on any 
viewed object. Without an optimization, one would 
not know whether the detection of a marker on a 
randomly oriented object in the scene would be suc- 
cessful within a reasonable number of camera/robot 
moves. Furthermore, to choose a proper orientation 
angle for the camera would also be a serious task. 

The nature of the marker-arrangement problem 
addressed herein is very similar to the classical fea- 
ture-selection problem in pattern recognition,26 
where a solution is dependent on the existence of: 
(a) a capability for evaluating the effectiveness of 
any subset of a given set of features, and (b) an 
effective strategy for searching for a best subset 
amongst all the subsets of features. Thus, the pro- 
posed solution methods are potentially applicable as 
well to the general "feature-selection" problem. The 
techniques developed for solving the optimal cam- 

era-placement problem, on the other hand, also 
have general applications in active vision, because 
guaranteeing the detection of a marker, in fact, im- 
plies an  assurance for the detection of a special fea- 
ture on the object. 
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