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Abstract

TSC (totally self-checking) 2-of-3 valued systems

were first proposed in the authors’ previous papers

{1], [2], [3]. In this paper, some new results on reli-

able 2-of-3 valued systems are presented. These

include the design of a TSC checker for 2-of-3 valued

systems, two-rail, 2-of-3 valued systems, and the

design of a fail-safe checker for two-rail 2-of-3

valued systems.

I. Introduction

A TSC 2-of-3 valued system consists of special ter-

nary logic circuits working in binary mode. The

redundant third logic value, which is usually the

middle value, can provide the system with TSC pro-

perties. In [1} and [2], TSC 2-of-3 valued combina-

tional systems were proposed, whereas TSC e-of-3

valued synchronous sequential systems were

addressed in [3]. More work must be done in this

field before these systems can be used practically.

In this paper some new results for reliable 2-of-3

valued systems are presented. These include the

design of a TSC checker for e-of-3 valued systems

presented in Section II, two-rail 2-of-3 valued sys-

tems as presented in Section IH], and the design of a

fail-safe checker for two-rail 2-of-3 valued systems

as presented in Section IV. Section V concludes the

paper.

Il. TSC Checker Design for

2-of-3 Valued Systems

In [4] and [5], a model of a TSC network was given as

shown in Figure 1. It is also directly applicable toa

TSC 2-of-3 valued network. The TSC network con-

sists of a TSC functional circuit and a TSC checker

Figure 1.
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To specify the input and output domains of the TSC

functional circuit and TSC checker, let us denote

the logic value set provided by the 2-of-3 valued cir-

cuit as Q, where Q = {0, 1/2, 13. Q is further divided

into two disjoint subsets N and E, where N = {0, 13,

and E = {1/2}. Assume that the functional circuit F

has m input lines and n output lines. Then the total

input space of F (denoted as Fy )is NTM, and the

normal output space of F (denoted as S; ) is N”.

Accordingly the abnormal output space of F is

(Qe Se).

In other words, for a fault-free functional circuit,

the outputs will always be in N”. If the outputs of F

are in (Q" —N”), there must be a fault in F. A TSC

checker C monitors the outputs of F. So the normal

input space of C (denoted as RA, ) is equal to S,,

which is again equal to N”. Similarly, the abnormal

input space of C is (Q@" —N”). But both the normal

output space (denoted as S, ) and the abnormal out-

put space of C cannot be specified here, since they

depend on the coding or value assignment scheme

used for the checker outputs.

A TSC checker must meet two essential conditions:

The first is that it be space disjoint". The second is

that it be totally self-checking. The concept here

labelled "space disjoint" is extended from the

Anderson’s definition of code disjoint" [5] as fol-

lows:

Definition 1

A circuit (or a logic function) is space dis-

joint for a normal input space S’ and a nor-

mal output space S, if for any input X,

Z(X.p)eS <> Xe S', where Z(X, ¢) denotes

the output of the fault-free circuit (func-

tion) with input X (i.e. Z(X,f) for f = ¢).

A fault-free space-disjoint circuit will map the nor-

mal input space into the normal output space, and

the abnormal input space into the abnormal output

space. This condition is necessary for a checker to

Signal an error properly.

The second condition a TSC checker must meet is

that it should be totally self-checking. This condi-

tion ensures that a fault in the checker itself will

produce an error signal.

Now let us discuss the design of a TSC checker for a

2-of-3 valued system. The output value assignment

of the checker can be made as follows:



The normal output space is N, while the abnormal

output space is E. Under this assignment, it is easy

to prove that a 2-of-3 valued exclusive-OR circuit is

space disjoint and that it can be used as a checker.

Its logic expression is Z = X@Y = XY + XY. Its truth
table is shown in Table 1. It is observed in Table 1

that whenever one or both inputs are 1/2, the out-

put will be 1/2. According to Definition 1, the

Exclusive-OR is space disjoint.

Table 1
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The Exclusive-OR function can be implemented by

2-of-3 valued Inverters and NAND gates as shown in

Figure 2. Theorem 1 of [2] states that for any mid-

seeking or quasi-mid-seeking fault, any irredundant

combinational logic network which consists of 2-of-

3 valued inverters and NAND gates is totally self-

checking. Thus the circuit of Figure 2 is totally

self-checking for any single mid-seeking or quasi-

mid-seeking fault. But since this circuit is used as

a checker, its whole input space (normal and abnor-

mal) will be @? instead of N? as it would be for a

functional circuit. Thus this circuit is totally self-

checking for mid-seeking faults only. The quasi-

mid-seeking faults and mid-rejecting faults in this

circuit must be detected by off-line test.

Note that this checker can monitor two lines only.

To monitor additional lines, an Exclusive-OR tree

can be formed as shown in Figure 3. To show that

this tree is space disjoint, we will first prove a

broader statement expressed as Theorem 1.

Theorem 1

If U = u(X)and Z = z(Y) are both space dis-

joint functions, where Y = (U,V) then the

composite function Z = z (U,V) = z [u(X), V]

is still a space disjoint function

Proof:

For the composite function Z, the input

vector is (X, V). If (X, V) is in the normal

input space, then both X and V are normal.

Since U = u (x) is a space disjoint function,

U is normal. Thus (U, V) is normal. Since Z

=z (Y) =z (U, V) is a space disjoint func-

tion, Z is in the normal output space.

On the other hand, if (X, V) is in the abnor-

mal input space, there will be three

possible cases: In Case 1, only X is abnor-

mal; In Case 2 only V is abnormal; In Case 3,

both X and V are abnormal. For Cases 2 and

3, (U, V) is abnormal. For case 1, since U =

u (X) is a space disjoint function, U is

abnormal. Thus (U, V) is also abnormal.

Since Z = z (Y) = z (U, V) is a space disjoint

function, Z is in the abnormal output space.

Thus the composite function meets Defini-

tion 1. The Theorem is proved.

Q.ED.

Theorem 2

The Exclusive-OR tree shown in Figure 3 is

a TSC checker for a 2-of-3 valued system.

Proof.

From Definition 1, the Exclusive-OR gate is

a space-disjoint circuit. From Theorem 1,

the Exclusive-OR tree is also a space-

disjoint circuit.

Furthermore, since the Exclusive-OR tree

is an irredundant combinational network,

consisting of 2-of-3 valued Inverters and

NAND gates, it is totally self-checking for

any mid-seeking fault. Thus it can serve as

a TSC checker for a 2-of-3 valued system.

Q.E.D.



A second, more economical, implementation of the

Exclusive-OR circuit will be discussed in detail in

Section IV.

Ill. Two-Rail 2-of-3 Valued Systems

A two-rail logic system uses two lines to represent

each variable. For example, a logic variable A is

represented as (a,a,). The relationship between A

and (a,aq) is displayed in Table 2. Any fault result-

ing in (a ,a9) = (00) or (11) is apparent. It is known

further that in a two-rail system any single fault

will be detected [6], since such a fault cannot affect

both the "true" and "complement" outputs simul-

taneously.

Table 2

If 2-of-3 valued circuits are used, a two-rail system

becomes a two-rail 2-of-3 valued system. The basic

gates of this system are shown in Figure 4. For a

two-rail 2-of-3 valued system, several theorems

result:

Figure 4

In a two-rail 2-of-3 valued combinational

system, an error caused by any mid-

seeking or quasi-mid-seeking fault is a

correctable error.

Proof:

Since a single fault in a two-rail system

cannot change the "true and “comple-

ment” outputs simultaneously, errors

caused by a mid-seeking or quasi-mid-

seeking fault will take only the forms

shown in Table 3. It is obvious that these

errors are correctable using information

conveyed by the unchanged (normal) out-

put.

QED.
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Theorem 4

In a two-rail 2-of-3 valued combinational

system, an error caused by any mid-

rejecting fault is a detectable error.

Proof.

QED.

“Outputs

Correct

Values

Theorem 5

In a two-rail 2-of-3 valued combinational

system, masked faults will not cause an

error. Furthermore, any error caused by

any mid-seeking, quasi- mid-seeking, or

mid-rejecting fault, while a masked fault is

present, is at least a detectable error.

Proof.

According to Definition 6 of [2], for a gate

having a masked fault, the output remains

correct. Thus the first part of the Theorem

is obvious. For the second part of the

Theorem, when a masked fault exists, an

error through any fault other than a

masked fault will result in one of the

paired output lines turning to 1/2 or to the

incorrect (opposite) value. These errors

are at least detectable in a two-rail 2-of-3

valued system.

Q.ED.



IV. Fail-Safe Checker Design for

Two-Rail 2-of-3 Valued Systems

Since Two-Rail 2-of-3 Valued Systems can produce

both correctable errors as well as detectable but

uncorrectable errors, their checkers should distin-

guish three states. As we will see, the simplest

available checker is not itself a two-rail circuit. For

this checker, the coding or the value assignment

schemes for the input space and the output space of

the checkers are different. Moreover, with three

output states, a fail-safe checker is easier to define

than a TSC checker. Accordingly in this section,

only fail-safe checker design is discussed.

Let us first consider the situation of monitoring

only one pair of outputs. An Exclusive-Or gate can

be used as a checker in this case with the following

output value assignment: 0 indicates an uncorrect-

able error, 1/2 indicates a correctable error, while

1 indicates that the outputs of the checked circuit

are correct. This situation is summarized in Table

5.

Table 5
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For n pairs of checked outputs, an Exclusive-OR-

NAND network can be used as a checker as shown in

Figure 5. By virtue of the inversion in the NAND

gate, Z = 0 now indicates the checked circuit to be

fault-free. Z = 1/2 indicates a correctable error of

the checked circuit, while Z= 1 signals an

uncorrectable error. Furthermore, if the output of

one Exclusive-OR gate is 1/2 indicating a correct-

able error, while another Exclusive-OR gate is 0

indicating an uncorrectable error, then the output

of the checker will be 1 indicating an uncorrectable

error. This is clearly preferable to a scheme which

propogates the 1/2 output. Thus it can be seen that

some outputs of the checker may be more safe than

others. As a measure of this variation, a "safety

factor" can be defined for the output of a circuit

Figure 5

Definition 2

A safety factor is a factor assigned to each

logic value of a circuit indicating the

degree of safety present. Larger factors

represent safer output values. A change in

the safety factor of an output from a

smaller to a larger value is safe, while a

change in the opposite direction is

dangerous.

For example, in the checker shown in Figure 5, an

output of 1 signals an uncorrectable error; output

1/2 indicates a correctable error; output 0 means

the circuit is fault-free. Now if the checker fails,

output 0 may change to 1/2 or 1, indicating a nonex-

isting error in a fault-free circuit, a result which is

not dangerous. However if output 1 or 1/2 of a

failed checker changes to 0, the checker will fail to

signal an error in the circuit. This situation is

dangerous. Thus in general we find that changes in

output from 1 to 1/2 or O or from 1/2 to 0, are safe

but changes in the reverse direction are dangerous.

Thus safety factors for the output Z have the follow-

ing relationship:

S(0)<S(1/2)<S (1),

where S (X) denotes the safety factor for output X.

For the same reason, in Table 5

S(0)>S (17 2)>S (1).

Now let us consider the Exclusive-OR gate imple-

mentation. Since both the "true" and "complement"

outputs are available in a two-rail system, it is easy

to implement an Exclusive-OR gate more directly

than by use of the circuit of Figure 2. Such a CMOS

Exclusive-OR gate for a two-rail system is shown in

Figure 6.

Figure 6
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*F denotes that the output is floating. The real output yalue depends on the last value

attained before this situation applies.

With the same fault model used in [1], that is, the

single component open-short model, the fault table

of the Exclusive-OR gate is shown in Table 6. In this

table, the subscript "S' is used to denote a com-

ponent short-circuit condition, while ‘0 is used to

denote a component open-circuit condition. Circles

and squares serve to highlight the conditions which

lead to faulty outputs.

To facilitate the analysis, some new definitions for

fault classification will be given:

Assume that the number of the inputs of a circuit G

is m. With an input vector X, and a fault f, the out-

put of the circuit G is denoted as G (X, f).

Correspondingly the output of fault-free circuit Gis

denoted as G (X, ¢).

Definition 3

A fault is called a safe fault, if ~x<QTM

S[G (X, f)]=S[G (X, g)].

Definition 4

A fault f is called a dangerous fault, if

FXeQn S[G(X.f )]<s[G(X.9)].

Definition 5

A circuit is fail-safe for a set F of faults, if

all faults in F are safe faults.

From Definition 3, in Table 6, faults 75,, Tes, T7,

Tagan te leo. Lise Lao uignare Sale Taults,

Other faults are dangerous faults. The number of

safe faults for the Exclusive-OR is 50% of the total

number of faults.

For the NAND gate of Figure 5, the fault table is

listed in Tabie 4 of [1]. Faults Tion, T2on, Tsogy »
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safe faults. The number of safe faults is 60% of the

total number of faults.

For safe faults, the following theorem is valid:

Theorem 6

For any single safe fault in its component

gates, the checker shown in Figure 5 is a

fail-safe checker.

Proof:

In Figure 5, the safe factors of Z are related

as follows:

S(0)<S (17 2)<S (1).

The safe factors of the outputs of the

Exclusive-OR gates are related as follows:

S(0)>S (17 2)>S (1)

If a safe fault occurs in the NAND gate, this

theorem is satisfied as a direct result of

Definitions 3 and 5.

If a safe fault lies in one of the Exclusive-

OR gates then the change of output of this

gate caused by the safe fault can only be

that 1 may change to 1/2 or 0, and that 1/2

may change to 0. That is, the change is

monotonically decreasing. This change is

fed to the NAND gate and causes the output

of the NAND gate to produce a monotonic

increasing change. That is, Z, the output of

the checker, may only change from 0 to 1/2



or 1, and from 1/2 to]. Thus the checker

shown in Figure 5 is a fail-safe checker for

any single safe fault in the component

gates.

Q.ED.

It is interesting to note that if only the error

detecting properties (and not the error correcting

ones) are required, then the set of safe faults will

become much larger. This results from the fact

that for this situation the 0 and 1/2 outputs have

the same interpretation. In particular the relation-

ship between the safe factors is

Su Ol=siy 2) ss: Cle

Thus, in Table 6, 7,,, Tes, Tg; and 7,4, are safe

faults instead of dangerous faults as in the former

case. This results in an increase of safe faults from

90% to 70% for the circuit of Figure 5.

V. Summary

In this paper, some new results for reliable 2-of-3

valued systems have been presented.

First the "space disjoint" concept is defined. With

this concept, a TSC checker design for 2-of-3 valued

systems is given.

Secondly, a two-rail 2-of-3 valued system is dis-

cussed for which all errors are detected and for

which some errors can be corrected.

Finally, fail-safe checker design for two-rail 2-of-3

valued systems is pursued. For this purpose, a new

"safety factor’ concept is defined; a new circuit for

a 2-of-3 valued Exclusive-OR gate is given; and fault

analysis for this circuit is presented.
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VII. Glossary [2]

a) Mid-seeking fault: output ico either correct or

1/2. b) Quasi-mid-seeking fault: output is correct

or incorrect or 1/2. c) Mid-rejecting fault: output

is correct or incorrect but never 1/2. d) Masked

fault: output is always correct
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