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ABSTRACT

This paper presents a dual architecture for the high-speed realization of basic morphological operations. Since mor-
phological filtering can be described as a combination of erosion and dilation, two basic building blocks are required for the
realization of any morphological filter. Architectures for the two basic units, namely the erosion unit and the dilation unit,
are proposed and studied in terms of cycle time, hardware complexity, and cost. These basic units are similar in structure to
the systolic array architecture used in the implementation of linear digital filters. Correspondingly, the proposed units are
highly modular and are suitable for efficient VLSI implementation. These basic units allow the processing of either binary or
gray-scale images. They are particularly suitable for applications in robotics, where speed, size and cost are of critical

importance.

1. INTRODUCTION

Image processing and analysis based on mathematical morphology has been an active research area in recent years
[1,2]. The strength of mathematical morphology lies in its natural coupling between the shape of the image under investiga-

tion and the structuring element. That is, by carefully selecting a suitable structuring element, morphological operations can
be used for image filtering such as noise removal andimage smoothing. Mathematical morphology can also be used as an

image analysis tool which results in different shape descriptors. Examples of morphological shape descriptors are the
pecstrum (pattern spectrum) [3,4], the skeleton transform [5], and the geometrical correlation function [6].

There exist a variety of machines that are capable of performing morphological or cellular-logic operations. In gen-
era!, these machines can be divided into two main classes. The first class basically consists of two-dimensional (2-D) array
processors which operate on an entire image (or subimage) in paralleL Examples of machines of this type of machines are
MITE [7], CLIP [8], and PIXIE-5000 [9]. The main drawback of 2-D array processors is their cost. For example, a 512-by-
512 array would require a quarter-of-a-million processing elements. In addition, due to the inherent serial nature of the input
image data, full utilization of the processors may not be attained.

Machines of the second class can be called local-window processors; they operate by scanning in an image and per-
forming operations on a small neighborhood window. Examples of machines of this class include the Cytocomputer [10], a
structure based on convolution and table lookup [11] and the threshold-decomposition realization [12]. In particular, the
Cytocomputer consists of a serial pipeline of neighborhood- processing stages, with a common clock, in which a single
neighborhood transformation is performed in each stage of the pipeline.

Most of the machines listed above are rather general-purpose, in the sense that they usually require the control of a
host computer. As a consequence, most of these machine may not be truly optimized for morphological image processing
and analysis. Besides, the general-purpose nature of these machines does not provide a cost-effective way of implementing
specific morphological filters and operators. Hence, as the applications of mathematical morphology become more and more
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specialized, the need for dedicated architectures is inevitable. Furthermore, the real-time processing constraints usually
imposed by machine vision applications, such as object identification and defect identification, highlight the critical impor-
tance of modular and flexible architectures and algorithms.

In this paper, architectures based on the idea of systolic arrays are proposed for high-speed morphological image pro-
cessing. These dual architecwres, which consist of two basic building units, do not depend on the image structure or size:
rather, they relate to the structure or size of the structuring element. Hence, structuring elements for various morphological
filters or operators can be configured using different combinations of the proposed basic building units. This approach is
inherently modular, so that it provides a very flexible system for the implementation of any morphological filter or operator.
It also provides a very cost-effective way of designing dedicated morphological filters for image processing as well as mor-

phological operators for image analysis. Furthermore, it is capable of handling binary as well as gray-scale operations. In the
next section, basic morphological operations, such as dilation, erosion, opening and closing, are reviewed. In Section 3, the
implementation aspects of the morphological dilation and erosion transformations are examined. Specifically, dual architec-
tures which implement the dilation and erosion units respectively, are presented and their operations are described. In addi-
tion, parameters such as cycle time, latency, hardware complexity and cost are examined. Both gray-scale and binary archi-
tectures are considered. In Section 4, some implementation examples based on the proposed dual architectures are given.
These include implementations of the morphological skeleton transform and the pecstrum. Finally, some concluding remarks
are given in Section 5.

2. BASIC MORPHOLOGICAL TRANSFORMATIONS

Mathematical morphology provides a very effective tool for extracting geometrical information from image signals. It

is basically a set-theoretical methodology for signal analysis, whose primary function is to give a quantitative description of
geometrical structures. In brief, there are two primary steps in image analysis that is based on mathematical morphology: a
geometrical transformation and then some measurement.

Let X denotes the image signal under study. According to the above procedure, any morphological operation consists
of first a transformation A (by a pre-selected structuring element B) from one domain to another, followed by a measure t.
This procedure is depicted in Figure 1. Examples of transformations A are opening, boundary extraction and skeletonization.
The measurement jx[A(X)] could be a quantity representing weight, area or volume etc. Hence, quantitative information

about size, shape, spatial distribution, connectivity, convexity, and orientation can be obtained by geometrically transforming
the object representation using different structuring elements and subsequently making an appropriate measurement. Since
morphological operations are global operations, this implies that a transformation can be carried out globally without a need

to define the operations at local points.

The four basic morphological transformations are dilation, erosion, opening and closing. In the following, the
definitions and some properties of these basic transformations are given. However, the emphasis will be on the dilation and
erosion operations, since any morphological transformation can be realized by different combinations of these two most-

basic operations.

2.1 Dilation and Erosion

Binary morphological transformations apply to sets of any dimensions, whether they constitute a Eucidean n-space,
E&, or its discrete or digitized equivalent, an integer n-space, Z". For simplicities sake, E will be used here to refer to
either of the two spaces. Hence, if X and B are sets in E", then their elements are x =(x1, .. . , xe), and b = (b1, .. ., ba),
respectively. Also note that the definitions of dilation and erosion used here are based on those in [2], which are slightly dif-
ferent from Serra's [1] definitions.
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Let's begin with the definition of binary dilation. Binary dilation is the morphological transformation which combines
two sets using vector addition of set elements.

Definition 1: Let X and B be subsets ofE". The translation ofX by b is denoted by (X)b,and is defined by

(X)b (Z E EM I z =x+b for somexEX} . (1)

Definition 2: Let X and B be subsets ofE". The binary dilation ofX by B is denoted by X B, and is defined by

XGB=fZEE"Iz=x+bforsomexEXandbEB) (2)

According to the above definitions, we also may write

XGB=u(X)b (3)
bEB

Next, the definition of gray-scale dilation is given. Let's begin with the concepts of surface of a set and the umbra of a
surface in Euclidean n space. For a setX, the top surface ofX is a function defined on the projection ofX onto its first (n—i)
coordinates. For each (n—i)-tuple x, the top surface ofX at x is the highest value y, such that the n-tuple (x,y)EX. For a digi-

tal space, a similar idea is used, but in this case, the supremum operation is translated into a maximum operation.

Definition 3: Let XcX" and F = [XEE1 I for some EE,(x,y)EX). The top surface of X , T[X] : F—+E, is defined

by

T[XJ(x) =max (y I (x,y)EX). (4)

Definition 4: Let FçE' and f F—*E. The umbra off, U [fIJ U [f]çFXE, is defined by

U If] = ((x,y)EFxE Iy�f (x)). (5)

This implies that the umbra of a function f, is a set consisting of the surface fand everying below the surface. Hence, a func-
tion can be considered as the top of its umbra. Having defined the operations of finding the top surface of a set and the
umbra of a surface, we can now define gray-scale dilation.

Definition 5: Let F,GçE1 and f :F—>E and g :G—*E. The gray-scale dilation of f by g is denoted by fag,
fg.F G-*E, and is defined by

fGg=T[UIf]J[gJ] (6)

Hence, the gray-scale dilation of two functions is defined as the top surface of the dilation of their umbras.

Erosion is the morphological dual to dilation. For binary images, erosion is a morphological transform which com-
bines two sets using the vector differences of set elements. Erosion is sometimes referred to as "shrinking" in the image pro-

cessing literature.

Definition 6: Let X çE and B çE". The binary erosion ofX by B is denoted by X GB and is defined by

XOB=fzEEIz+bEB). (7)

Similarly, erosion also can be defined as

XGB=r(X)b. (8)
bEB

Thedefinition for gray-scale erosion follows in a similar way to the definition of gray-scale dilation.

Definition 7: Let F,GçE' and f :F—E and g :G—E. The gray-scale erosion of f by g is denoted by fGg,
fGgF G G-*E, and is defined as

fOg =T[Uf]OU[g]]. (9)
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2.2 Opening and Closing

In many applications, erosion and dilation are usually used together. These types of iterative operations are known to

have the characteristic of preserving global geometric structures of the unsuppressed features, i.e., only specific image
details, which are smaller than the structuring element, are eliminated. Specifically, the opening of X by B, X o B, is defined
as the eroding ofX by B and then dilating the result by B, i.e.,

XoB=(XOB)B (10)

Its dual operation is closing, which is denoted X .B, and is defined as the dilating ofX by B and then eroding the result byB,
i.e.,

X.B=(XB)GB (11)

One important property of morphological opening and closing is that they are idempotent. This means that successive
openings or closings by the same structuring element (or function in case of gray-scale) do not alter the result after the first
application. This corresponds in concept to the ideal nonrealizable bandpass filters of conventional linear filtering [2]. That
is, once an image is ideal-bandpass-filtered, no further bandpass filtering can change the result.

3. ARCHITECTURES FOR MORPHOLOGICAL TRANSFORMATIONS

In this section, a pipeline architecture based on the idea of the systolic array, is proposed for performing morphological

operations. Since the basic operations in mathematical morphology are dilation and erosion, it is then logical to construct
only two basic building blocks, namely the dilation unit and the erosion unit. Thereafter, any other morphological operation
can be implemented using the two basic building units and some logic gates. The advantage of this approach is the maximum

utilization of processing elements attained due to the pipelined nature of the architecture. The architecture is also well-suited
to VLSI implementation because of its modularity, as well as the fact that all data transfers are highly localized (except for a

common-clock line).

In the design of special-purpose VLSI systems, hardware cost is usually less important than design cost since such sys-
tems are seldom produced in large quantities. Hence, it is important that the design cost of such a special- purpose system be
relatively small for it to be competitive with a general- purpose system. As a consequence, modular structures that can be
constructed using only a few simple building blocks are highly desirable. In addition, in VLSI design, routing cost normally
dominates the power and area required for the implementation. Hence, modular sirucwres that can be constructed using only
a few standard cells with regular and simple communication and control are preferred. In other words, we are interested in
architectures which require a minimum amount of global broadcasting and fan-in (collection of intermediate results), and
which can be expanded easily without the need for changing the entire layout. The proposed architecture, which is com-
posed of various combinations (or cascades) of two basic building blocks, is inherently modular, hence it is very suitable for
efficient VLSI implementation.

3.1 Dilation Unit

In Section 2.1, the concept of the surface of a set, and the related concept of the umbra of a surface, are used to define

gray-scale morphological operations. These definitions, however, do not provide us with efficient ways of computing gray-
scale dilation and erosion. In this Section, alternative definitions of gray-scale morphological transformations are employed
which will lead to more practical structures.

From Section 2, it is shown that gray-scale dilation (equation (6)) can be computed by taking the top surface of the
dilation of the umbras of the image land the structuring function g. However, according to the definition of top surface, this
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basically is equivalent to performing a maximum operation. Specifically, if we apply the definitions of binary dilation (equa-
lion (2)) and umbra (equation (5)) in (6), after some algebraic manipulation, it can be shown that gray-scale dilation is
equivalent to taking the maximum of a set of sums [2].

Proposition 1 : Let! .F—E and g :G-+E. ThenfGg,F G G—E can be computed by

(fg)(x)=max(f(x—z)+g(z)} V—z E G ,x—z E F . (12)

Note that when the structuring function is defined as follows:

g(x)=O, V-XE G , (13)

then it is equivalent to a structuring set andfg becomes:

(fg)(x)=max(f(x—z)} V-ZEG,X—ZEF . (14)

The operation implied by the equation above is called the dilation of a function by a set [1].

The proposition above leads naturally to what we call a direct-form implementation of gray-scale dilation. The direct-

form representation implies that gray-scale dilation can be modeled using a similar siructure as employed in linear digital
filtering. The exception is that in this case the operations involved are shifting, addition and maximum, instead of the con
ventional convolution operations of shifting, multiplication and addition used in linear digital filtering.

The direct$onn structure described by (12) is shown in Figure 2. However this structure is still not practical for VLSI
implementation due to its inherent reliance on non-local data transfers. Hence, it was conjectured that by localizing the data
transfers, a more practical strucwre could be created. One, which is based on the idea of systolic arrays as used in linear
digital filtering, is proposed here. A diagram of such a structure, which we call a dilation unit, is shown in Figure 4 (a). A
cascade of identical dilation units can be used to implement a dilation operation.

As seen from Figure 4 (a), the dilation unit is composed basically of four single-bit shift registers, one adder and one
comparator. Due to the pipelined nature of these units, the cycle time, T, of this architecture is determined by the longest
operation undertaken between two shift register elements: In this case, it is equal to one addition time, i.e., T = Ta, where Ta
is the time for one addition. This implies that very high throughput rates can be attained after an initial latency period
required to fill up the pipeline. The precision of the dilation unit is b bits. If b is equal to 1, the structure degenerates intoa
binary dilation unit. In this case, the addition becomes a logical AND operation, and the comparison (or maximum) becomes
a logical OR. Hence, by replacing the adder by an AND gate and the comparator by an OR gate, a binary dilation unit
results, as shown in Figure 5 (a). In this case, the cycle time reduces to one gate delay, i.e., T =T where Td is the propa-

gation delay of a single logic gate.

The block diagram of an example system which implements a 1x3 structuring function, is depicted in Figure 6. The
operations of this morphological transformation are described in the space-time diagram of Figure 7. In particular, the
latency of this pipeline architecture, is Tf =(N +3)T, where N is the length of the structuring function.

3.2 Erosion Unit

The rationale underlying the erosion unit is similar to that of the dilation unit The strucwre derives from the direct-
form representation for gray-scale erosion. As done for dilation, this is created by applying the definitions of binary erosion
and umbra to equation (9). After some algebraic manipulation, it can be shown that gray-scale erosion is equivalent to taking
a minimum of a set of differences [2]. In fact, we can think of erosion as equivalent to correlation, where the summation
operation is replaced by a minimum operation, and multiplications become subtractions.

The corresponding direct-form representation for gray-scale erosion is given by the following proposition [2]:
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Proposition 2: Letf .F—>E andg :G-E. ThenfOgF 0 G-E can be computed by

(fGg)(x)=minff(x+z)—g(z)) V-ZEG,X+ZEF . (15)

Similarly, ifg(x) is defined as in (13), (15) becomes

(fOg)(x)=min(f(x+z)) -z E G , x+z E F (16)

which is the erosion of a function by a set.

The block diagram of the direct-fonn implementation of erosion is depicted in Figure 3. Note that this is very similar
to the one for dilation, wherein the maximwn operations are replaced by minimum operations, and additions become subtrac-
tions. Note also that the order of the structuring function g, is reversed. Similarly, based on the idea of a systolic array, a
pipelineable unit, which we call an erosion unit, is derived. The internal structure of such a unit is shown in Figure 4 (b).

As seen from Figure 4 (b), the erosion unit is composed of four single-bit shift registers, one adder and one compara-
tor. The cycle time in this case is the same as that for the dilation unit, i.e., T =T. The corresponding latency,
Ti =2(N+1)1. Note that latency for the erosion unit is always greater than that for the dilation unit. This follows, since
erosion, being a shrinking operation, will require a longer delay for the appearance of the first output data (of the shrunken

object).

Corresponding to the dilation situation, a binary erosion unit can be constructed using the configuration of Figure 4 (b)

in which the subtractor is replaced by an EXCLUSIVE-NOR gate and the comparator (minimum) is replaced by an AND
gate. The internal structure of the resulting binary erosion unit is shown in Figure 5 (b). In this case, hardware cost is drasti-

cally reduced, while the cycle time is also reduced to one gate propagation delay, i.e., T =T.

4 SOME IMPLEMENTATION EXAMPLES

In this Section, some implementation examples which utilize the proposed dual architectures, are presented. Since in
image processing, the structuring elements are usually 2-D, some means of decomposing a complex siructuring element into
a few simpler structuring elements wifi help reduce hardware complexity, as well as implementation cost. The following
properties of mathematical morphology are particularly useful in creating efficient implementations.

Parallel Decomposition:

XG(Blu..'uBM)=(XGBl)uu(XQBM) (17)

XO(BluuBM)=(XOBl)(C(XGBM) (18)

Serial Decomposition:

XQ(B1 G . . . BM)=( • •((X@B1)GB2) . . . QBM) (19)

XQ(B1 . . . GBM)=( • ((XGB1)0B2) ' OBM) (20)

Note that the equations above also apply when X and B are gray-scale signals. Note, as well, that special case of the above
decompositions is to restrict the structuring element to one-dimension (vertical or horizontal), in which case the proposed
architectures are very efficient for 2-D processing.

Next, we will examine the implementation of two morphological operations which find application in computer vision.
The one is the morphological skeleton transfonn. A skeleton of a binary object consists of the loci of the centres of the maxi-
ma! inscribable disks in the object. The skeleton SK(X) of a binary image X is defined as the union of the loci
Sm(X), m = 1, ' . . ,M of the maximal inscribable disks niB of radius m [3]. The formula for SK(X) and Sm(X) are given as

follows:
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Figure 2 A direct-form implementation of gray-scale dilation
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Figure 3 A direct form implementation of gray-scale erosion
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Figure 4 (a) A gray-scale dilation unit (b) A gray-scale erosion unit

Figure 5 (a) A binary dilation unit (b) A binary erosion unit
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Figure 6 An implementation of a 1x3 structuring function using a pipeline of dilation units

Input 12 13 14 21 R R 31 32 33 R Output

fo 0 0 0 0 0 0 0 0 0 0 0 0 0

fi fo 0 0 0 0 0 0 0 0 0 0 0 0

12 fi fo fo+go 0 0 0 0 0 0 0 0 0 0

13 12 fi f1+go 0 fo 0 0 0 0 0 0 0 0

14 13 12 f2+go 0 1' fo fi f1-i-go 0 0 0 fo+go 0

15 14 13 f3+go 0 12 Ii 1 f2+go fo 0 0 MAX1 f0-i-go

16 15 14 f4+go 0 f 12 21 f3+go fi fo fo+g2 MAX2 MAX3

1•7 16 f•5 f5+go 0 f• f3+gi f4±go 12 f f1±g2 MAX4 MAX5

where

MAX1 =maxIfi f1+g0}

MAX2 =max [f2+go , f1+g}

MAX3 = MAX1

MAX4 =max[f21 , f3+go]

MAX5 =max [MAX2 , fo+g2]

Figure 7 Space-time diagram forgray-scale dilation using the structure of Figure 6.
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Figure 9 An implementation of pecstrum
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Figure 8 Implementation of morphological skeleton transforms
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