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Accurate estimation of the parameters of a curve present in a 
grey-level image is required in various machine-vision and com- 
puter-vision problems. Quadratic curves are more common than 
other curve types in these fields. The accuracy of the estimated 
parameters depends not only on the global interpolation technique 
used, but, as well, on compensation of major sources of error. In 
this paper, first, as a preliminary step in accurate parameter esti- 
mation of quadratic curves, a sequential distortion-compensation 
procedure is formulated. This procedure addresses the major dis- 
tortion factors involved in the transformation of a curve from the 
object space to the image space. Subsequently, as a means for 
accurate estimation of the coordinates of edge points, a new sub- 
pixel edge detector based on the principle of the sample-moment- 
preserving transform (SMPT) is developed. A circular-arc geome- 
try is assumed for the boundary inside the detection area. The new 
arc-edge detector is designed as a cascade process using a linear- 
edge detector and a look-up table. Its performance is compared 
with that of a linear subpixel edge detector. Then, as a part of the 
main theme of the paper, the estimation of the five basic parame- 
ters of an elliptical shape based on its edge-point data is ad- 
dressed. To achieve the desired degree of accuracy, a new error 
function is introduced, and as the basis for a comparative study, 
an objective and independent measure for “goodness” of fit is 
derived. The proposed new error function and two other error 
functions previously developed are applied to six different situa- 
tions. The comparative performance of these error functions is 
discussed. Finally, as the basis for evaluation of the total process, 
a 3D location estimation problem is considered. The objective is to 
accurately estimate the orientation and position in 3D of a set of 
circular features. The experimental results obtained are signifi- 
cant in two separate ways: in general, they show the validity of the 
overall process introduced here in the accurate estimation of 3D 
location; in particular, they demonstrate the effectiveness of the 
sub-pixel edge detector and the global interpolation technique, 
both developed here. Q IWI Academic PXSS, IIIC. 

1. INTRODUCTION 

Estimation of the parameters of a curve from a grey- 
level image is required in various situations in machine 
vision. Depending on the required level of accuracy and 
the conditions under which the estimation is to be carried 

out, various combinations of external factors must be 
taken into account. For example, in some cases, a pro- 
cess of simple global thresholding and simple global 
curve fitting may suffice without considering various 
sources of errors inherent in the transformation from ob- 
ject space into image space. Clearly, however, this sim- 
ple approach does not yield very accurate estimation of a 
curve’s parameters. 

In this paper, we present a generally applicable practi- 
cal method for accurate estimation of parameters of 
curves represented by grey-level images. The method 
considers not only an accurate global interpolation pro- 
cess, but, as well, compensation for various major distor- 
tion factors (sources of errors) involved in this process. 
As presented, the emphasis is on quadratic curves since 
they are more common than others in machine vision. 
But, as a consequence of its general formulation, the 
method can be applied to higher-ordered curves as well. 

In machine vision and computer vision, quadratic- 
curve-related situations (involving conic sections) occur 
in various forms and in various contexts. That quadratic 
curves are common and important in both fields is due to 
several factors: (1) many man-made objects are bounded 
by quadratic surfaces or have quadratic-curved edges; (2) 
quadratic curves or surfaces have been used as artificial 
landmarks in many machine-vision-related problems; (3) 
under both orthographic and perspective projections qua- 
dratic curves always map onto quadratic curves [ 1, 21; (4) 
after first-order approximation (straight-line fitting), 
second-order (segmental or piecewise) approximation of 
curves is computationally cheapest and most common. 
Among the quadratic curves, the circle and its image (al- 
ways an exact ellipse under either orthographic or per- 
spective projections) are the most common. Thus, the 
focus of this paper will be on circular and elliptical 
curves. However, the method presented can be applied 
to other quadratic curves, as well, simply by modifying 
the global interpolation technique that is detailed for cir- 
cles and ellipses in this paper. 

Basically, we can classify quadratic-curve-related 
problems into three groups depending on the context in 
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which they occur: (a) pattern recognition and scene anal- 
ysis, (b) machine-vision metrology, and (c) 3D location 
estimation problems in both direct and inverse forms. In 
all of these cases, parameters of quadratic curves must be 
estimated, either for the purpose of measurement (size 
comparison) in the 2D image plane, or for the more com- 
plex purpose of 3D orientation and position estimation in 
object space. 

In scene analysis, the process of detection of ellipses 
as relatively abstract tokens or as confirmation items has 
been studied [3, 41. In reconstruction or representation, 
conic sections have also been used for objects that are 
bounded by quadratic surfaces [5]. Approximation of 
noise-corrupted data in the image plane by quadratic 
curves has been widely used as a solution to various 
machine-vision problems. From a purely mathematical 
point of view, this problem has been addressed in a num- 
ber of papers [6-81. As well, the same problem has been 
addressed in the applied literature: for example, in den- 
tistry, for estimation of the dental arch form [9], and in 
biology, for automatic chromosome analysis [lo]. In all 
the above situations, only a global interpolation tech- 
nique has been used to compensate for various sources of 
error, 

In the case of quality control and inspection in an in- 
dustrial environment, estimation of circular arc radius 
and center coordinates is a common problem [ll, 121. In 
this context, a high degree of accuracy in the estimated 
parameters is essential. Again, only a global interpola- 
tion technique has been used, and the effect of various 
existing sources of error has not been addressed explic- 
itly . 

Artificial (as well as natural) circular and spherical 
landmarks have been used in various pose-estimation 
problems: for 3D position (or location) estimation of a 
mobile robot [ 13- 181, for 3D location estimation of ob- 
jects [19, 201, and for human-arm-motion studies [21]. 
Circular shapes have been used extensively for defining 
calibration points for camera-calibration purposes [22]. 
Other quadratic curves have also been proposed for cam- 
era pose estimation [23]. For high precision assembly 
tasks using visual servoing, natural circular shapes have 
been used [24]. For precise positioning of surface-mount 
components, circular landmarks are used as well [25]. 
Though, within this class of problems, various levels of 
accuracy are required, the required level is generally 
high. 

In the process of transformation of a curve in object 
space to another in computer-image space, the signal 
goes through several opto-electronic processes, by each 
of which it is distorted, either linearly or non-linearly. 
Accordingly, the accuracy of estimated parameters de- 
pends not only on an accurate global interpolation, but, 
as well, on compensation for major sources of error. 
These major sources of error can be divided into three 

groups: errors due to quantization of light intensity; er- 
rors due to opto-electronic factors: and errors due to spa- 
tial quantization or other types of spatial errors (e.g., 
scattered data). These factors have been addressed sepa- 
rately in various papers; that is, each has been consid- 
ered independently of the others. For example, several 
mathematical and statistical treatments of the spatial 
quantization problem have been published [26-291. As 
well, the quantization of light intensity has been studied 
by several researchers [30-331. 

In this paper, we address the problem in its totality, 
and present a general practical method for dealing with it. 
Thus, for example, we can handle the 3D location estima- 
tion of a mobile robot using a circular landmark, in which 
the image is an elliptical shape. For this problem, abso- 
lute accurate estimation of all five basic parameters in the 
image plane is essential. This problem, in its totality, 
encompasses all of the issues discussed above. To pro- 
vide practical sequential procedures for the solution of 
such problems is our objective. 

In Section 2 of this paper, the main sources of error 
that cause distortion in the shape of a curve are pre- 
sented, and methods for their compensation are formu- 
lated. In Section 3, a new sub-pixel edge detection opera- 
tor based on a circular approximation of the boundary of 
an object inside the detection area, and the sample-mo- 
ment-preserving transform (SMFT), is discussed and its 
performance is compared with the one based on linear 
approximation. In Section 4, a new method for the deter- 
mination of an optimal quadratic-curve fit (global interpo- 
lation) to a set of input edge points, is presented. For this 
purpose, an error function, based on a new geometrical 
interpretation of minimum-squares error (MSE) fit of 
quadratic functions, is defined; an objective and indepen- 
dent measure for “goodness” of various fits is formu- 
lated; as well, performance of the method compared to 
ones previously developed is discussed. In Section 5, 
experimental results for a set of circles located in 3D 
object space are presented; as well, the level of accuracy 
obtained using the sequential distortion-compensation 
procedure formulated in this paper is discussed. In the 
final section, Section 6, conclusions are presented. 

2. MAIN FACTORS CAUSING DISTORTION 
IN 2D SHAPES 

In general, the image of a nominal curvilinear shape 
acquired by a CCD camera is distorted by several factors. 
Thus, the image must go through several compensation 
processes in order to provide an accurate estimation of 
the shape’s parameters. This sequential compensation 
procedure is as follows: 

(a) Sub-pixel edge detection: From a grey-level image 
of a curve, and all the available information it contains, 
one must detect the curve edge with subpixel accuracy. 
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Note that in practice one is faced with both quantization 
of light intensity and spatial quantization, as well as the 
ambiguity produced by ambient lighting variation around 
the edge of the actual curve; thus it is generally impos- 
sible to identify edge points precisely by mere threshold- 
ing. As a result, a new sub-pixel edge detector based on 
the principle of the sample-moment-preserving transform 
(SMPT) has been developed for accurate edge detection. 
It is presented in Section 3. 

(b) Transformation of computer-image coordinates to 
real image coordinates: Computer-image coordinates are 
expressed in terms of pixel units. Our goal is to define 
edge points in terms of absolute length units (that is, in 
mm), and also to compensate for the timing mismatches 
which occur between image-acquisition hardware and 
camera scanning hardware (or even imprecision in the 
timing of the TV scan itself). For an uncertainty factor 
S,, used to represent the mismatch, the following trans- 
formation is applied [34]: 

xl = $ (Xf - C,) 
x 

yd = dy(Yf - c,). (2.1) 

Here (&, Yd) is the (lens-) distorted real image coordi- 
nate, (Xr, Yr) is the computer-image coordinate with sub- 
pixel accuracy, (C,, C,) is the computer-image coordi- 
nate of the center of the computer frame memory, S, is 
the uncertainty image scale factor, and dy is the center-to- 
center distance between adjacent CCD sensor elements 
in the Y direction. Furthermore, d; is defined as 

d; = d+, 
x 

(2.2) 

where d, is the center-to-center distance between adja- 
cent CCD sensor elements in the X direction, N,, is the 
number of sensor elements in the X direction, and Nrx is 
the number of pixels in a line as sampled by the com- 
puter. S,, C,, and C, are estimated by accurate camera 
calibration, and the values for the other parameters (d,, 
dy , N,, , and &) are supplied by manufacturers of CCD 
cameras and digitizer boards. 

(c) Lens radial distortion compensation: The transfor- 
mation between undistorted true-image coordinates (X,, 
YJ, and distorted real-image coordinates (&, Yd) can be 
defined as [34] 

xu = &(l + & r2) 
Yu = Yd(l -t & r2>, (2.3) 

where, 

r=m 

and Kd, the radial distortion factor, is determined through 
accurate camera calibration. 

(d) Global interpolation: Based on a set of true image 
coordinates (X,, Y,), one must estimate the parameters of 
the imaged curve. Herein, the objective is to minimize 
the effect of spatial scatteredness on the parameter esti- 
mates and achieve an accurate global fit. In Section 4, 
this problem is discussed in detail for quadratic curves. 
Therein, a new error function is formulated for the opti- 
mal estimation of the parameters of a curve. Further- 
more, based on an objective performance measure intro- 
duced there, this error function is compared to other 
error functions previously developed. 

3. SUB-PIXEL EDGE DETECTION 

As already noted, the image of an actual curve ac- 
quired by a CCD camera is distorted due to several fac- 
tors. Thus, the image must be compensated by several 
processes in order to obtain an accurate estimation of the 
curve’s parameters. One of the major distortion factors is 
the spatial and light-intensity quantization (digitization) 
process [27-291. Another major factor originates in the 
actions of conventional edge-detection operators. It can 
also be noted that in practice shadows form around the 
edges of an object in an image-for example, the camera 
calibration plate (see Fig. 1). Thus, it is very difficult to 
identify edge points precisely by mere global threshold- 
ing. One way to deal with this type of distortion is 
through the use of sub-pixel edge detection [30, 31, 35, 
361. The objective of our work in this section (3), is to 
improve the overall performance of the edge-detection 
procedure by achieving a reasonable trade-off between 
accuracy and computational cost. 

Section 3.1 of this paper provides an overview of the 
sample-moment-preserving transforms (SMPT) used in 
the development of a class of sub-pixel edge detectors. 
The approach using a linear border curve is reviewed in 
Section 3.2. Section 3.3 presents the newly developed 
sub-pixel edge detector based on a circular approxima- 
tion of the border curve. Experimental results and a com- 
parative study of the performance of the two edge opera- 
tors (linear and circular) are presented in Section 3.4. 

3.1. Edge Detection Using the 
Sample-Moment-Preserving Transform 

The sample-moment-preserving transform (SMPT) has 
been implemented as a restorative transform in a number 
of applications such as edge detection [30, 311, image 
sharpening [371, thresholding [38], clustering [39], pattern 
matching 1401, and corner detection [41]. SMPT-based 
edge detectors can be classified as belonging to the group 
of parametric edge detectors [42]. In principle, their oper- 
ation consist of fitting a pre-defined edge model to the 
empirically-obtained gray-level-coded intensity data 
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FIG. 1. A camera calibration scene 

Z(x, y), defined within a circular detection area. The edge 
detector accepts as input the gray-level-coded intensity 
data of a set of 69 pixels each having a weighting coeffi- 
cient Wj, chosen so that the detection area will best ap- 
proximate a circle with radius r of 4.5 pixel units. Ac- 
cording to the model, the edge element is considered to 
occur on the border of two adjacent regions Al and AZ. 
These regions, with areas al and u2 respectively, have 
constant intensities ht and h2 with relative frequencies of 
occurrence pl and p2, where pl + p2 = 1 (Fig. 2). The 

FIG. 2. Parameters of the edge model. 

edge detector is defined so that, when applied to the input 
intensity data 1(x, y) within the detection circle, it will 
produce an edge element determined by the values of 
triples (al, hl, pr) and (u2, h2, p2) with the first three sam- 
ple moments Mi of 1(x, y) being preserved [30, 311. 

The values of the parameters of the edge model are 
computed by solving the equations of the SMPT: 

PIhi + p2h$ = Mi = 2 Wjl’(X, J’) i = 1, 2, 3. (3.1) 
j=l 

The probability-distribution function of the computed in- 
tensities of the edge model determines the edge location 
with sub-pixel precision. 

Regions A, and A2 of the edge model are separated by a 
border curve described by an equation in the XY coordi- 
nate system of the detection circle. The values of the 
parameters of the equation are derived based on an a 
priori assumption regarding the geometry of the border 
curve. 

The SMPT-based edge detectors perform well in the 
presence of noise, as documented in [31] both analyti- 
cally and experimentally. 

3.2. Linear Border Curve 

Tabatabai and Mitchell [30] assume that the border 
curve is nearly straight locally and derive a line equation 
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to approximate the border curve for their linear-edge de- 
tector. The linear border segment is described by its nor- 
mal equation with respect to the coordinate system of the 
detection circle (Fig. 2): 

xcosa+ysinc-u= -1 ifp,5p2 
(3.2) 

x cos a + y sin (Y = 1 otherwise. 

The parameters sin (Y and cos QI are derived by using 
the center of gravity G of Z(x, y). These coordinates, with 
respect to the coordinate system of the detection circle, 
are defined as 

where (xj, yj) are the coordinates of the center of the 
jth pixel with gray-scale value Zj and weighting coefficient 
wj. 

The angle (Y defines the inclination of the normal 12 from 
the origin of the detection circle to the linear boundary 
segment, and can be obtained from the following expres- 
sions: 

sin cY = &+ 
cosa=+&&. (3.4) 

The value of the normal distance 1 is derived by comput- 
ing the area enclosed between the linear boundary seg- 
ment and the circle: 

a2 = p2srr2 = II AI dx dy. (3.5) 

The solution of the integral leads to one of the following 
equations for the unknown 1: 

r2 arcsin (71 - 1m - a2 = 0 ifp, kp2 

0.5nr2 - lm - r2 arcsin i 0 -a2=0 

otherwise. 

(3.6) 

3.3. Circular-Arc Border Curve 

Approximating the border curve by higher-order planar 
segments requires the solution of a set of non-linear equa- 
tions. Chen and Tsai have developed such a curve-edge 
detector which approximates the border curve by a para- 
bolic segment and assumes a line-edge profile [37]. The 
values of the three parameters of a parabola are derived 
by numerically solving a system of three non-linear equa- 
tions. 

In the context of our research, the circular-arc approxi- 
mation within the detection circle was considered to be a 
more accurate local approximation of the boundary of 
quadratic curves. The edge profile is assumed to be a 
step-edge profile. The SMFT-based circular-arc edge de- 
tector presented in this paper is defined so that, when 
applied to the empirically obtained gray-level-coded in- 
tensity data Z(x, y), it locates a set of edge points lying on 
a circular arc approximating the border curve within the 
detection circle. 

As noted, the border curve within the detection circle 
is assumed to be approximated by a circular arc (Fig. 2) 
described by the following equation 

(x - Xo)2 + (y - Yo)2 = R2 for (x, y) :x2 + y2 5 r2, 

(3.7) 

where R is the radius of the approximating circle and (X0, 
YO) are the coordinates of its center with respect to the 
coordinate system of the detection circle. 

As indicated in Fig. 2, candidates for these edge points 
appear to be the intersection points (x3, yJ and (x4, y4) of 
the approximating circle and the linear segment produced 
by a linear edge detector. A specific geometric relation- 
ship between the linear and the circular approximations 
of the border curve will be used to derive the equations 
for the coordinates of points (x3, yx) and (x4, ~4). 

If the detection circle is rotated counterclockwise with 
respect to the origin through an angle of (0.5~ - a), then 
the normal n coincides with the Y-axis (Fig. 3). Let X6 
and Y6 denote the coordinates of the center of the ap- 
proximating circle. The coordinates of the rotated inter- 
section point (x;, y$) (and(x4, yi) as well) is related to the 
original intersection point through the following equa- 
tions: 

xi = x3 sin (Y - y3 cos (Y 

y; = 1 = x3 cos ff + y3 sin (Y. (3.8) 

The area a2 of region AZ, bounded by the detection 
circle and the rotated approximating circle is defined as 
follows: 
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a2 = p2r2r = 2 

The following equations for the unknown x; can be de- 
rived solving the double integral in Eq. (3.9): 

- xi YI, - a2 = 0 

ifpl 2~2 

0.5~r~ + r2 arccos 

- XiYt, - a2 = 0 

Y;=l+V 

otherwise 

Xi = i ( r2 - 

r2 _ 12 + 2jyI, _ &2 2 l/2 

2Yb ) ) * (3.10) 

Due to the symmetry with respect to the Y-axis in Fig. 
3, and since the linear segment and the circular arc en- 
close regions from the detection areas with equal areas 
(parameter a2 of the edge model), the areas LRI and ln2 are 
equal. This provides the incentive to conjecture that the 
relative position of point (xi, y;) on the linear segment is a 
very “weak” function of R. Let K denote the relative 
position of point (xi, y;), that is, 

K=&* (3.11) 

The above conjecture was checked by solving Eqs. 
(3.10) for the unknown x; with varying I within the inter- 
val (-4.5, 4.5) pixel units with R ranging from 4.5 to 300 
pixel units. For each xi the corresponding value of K was 

FIG. 3. A detection circle rotated through an angle (0.5~ - a). 
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FIG. 4. The envelope for the values of K. 

computed. The maximum and minimum values of K for 
each 1 are plotted in Fig. 4. The curves for Kmin and K,,, 
delimit a narrow butterfly-shape envelope for the relative 
position K of point (xi, y$) (and xi, y;) as well). The width 
of the envelope varies from 0.0011 to 0.046 depending 
on 1. 

This specific geometric relationship between the linear 
and the circular approximation of the boundary curve 
within the detection circle suggests that it is possible to 
design an arc-edge detector as a cascade of a linear edge 
detector and a look-up table (LUT). The mean values of 
K for each 1 with resolution 0.1 pixel units has been used 
to create a LUT. 

Assuming that the values of the parameters sin (Y, cos 
cy, and 1 have been computed by a linear edge detector, 
and the value of K has been obtained from the LUT, then 
the coordinates of the edge points (x3, y3) and (.x4, ~4) can 
be obtained from Eqs. (3.8) and (3.11): 

x3 = ICOS(I! + Ksinam 

y3 = 1 sina! - Kcosam 

x4 = lcosa - Ksinam 

y4 = lsina + Kcosam. (3.12) 

The arc-edge detector discussed above has been applied 
to the image obtained from the camera-calibration scene 
(Fig. 1). In the implementation strategy, the image is first 
segmented and the boundaries of those regions contain- 
ing each of the objects of the scene are chain-coded [43]. 
The resulting chain-code description (Fig. 5) is used to 
define a path on which the edge detector is applied. The 
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FIG. 5. A path for the circular-arc-edge detector. 

output of the arc-edge detector applied to the third object 
in the left upper corner of the camera-calibration scene 
(Fig. 1) is shown on Fig. 6. 

It should be noted that the use of a look-up table intro- 
duces a certain computational error. The absolute error 
Aa of the LUT is defined as a “difference between areas” 
of the detection circle, which the linear segment and the 
circular arc enclose. For each 1, the absolute error Aa is a 
function of R, which can be computed through the fol- 
lowing procedure: 

-fix a value of 1 (less than 4.5 pixel units); 
-compute the area azl bounded between the linear seg- 

ment and the detection circle by using Eq. (3.6); 
-use 1 as an entry to the LUT and obtain the value of 

K; 
-compute the coordinates of the point (x$, y; = 1) by 

using Eq. (3.12); 
-select a value for the variable R; 
-compute the area ap bounded between the circular 

arc and the detection circle by applying Eqs. (3.10); 
-then, by definition, compute Aa = azr - a21. 

V 

FIG. 
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6. An edge map of an elliptical-shape boundary. 
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FIG. 7. Look-up table error. 

A family of curves presenting Aa as a function of R is 
shown in Fig. 7. The maximum value of the absolute 
error for each I does not exceed 0.017 square pixel units 
for R greater than 10 pixel units. 

3.4. The Comparative Performance of the New 
Sub-Pixel Edge Detector 

Both edge operators (based respectively on linear and 
circular approximations of edge borders) were applied to 
all the elliptical shape boundaries in the image of the 
calibration plate (Fig. 1). The results comprise two sets of 
2D sub-pixel coordinates of edge points. It should be 
noted that in the case of the linear edge detector, the 
intersection points ofthe linear segment and the detec- 
tion circle have been taken as edge points (Fig. 2). The 
performance of the edge detector was evaluated through 
the estimation of the the total deviation of the set of 
detected sub-pixel edge points from the optimal elliptical 
fit in MSE sense. An error measure was defined as “the 
sum of the normal distances of all the edge points to the 
optimal ellipse. ” 

Based on the experimental results obtained for the 
amount of the error measure, the details of which have 
been published elsewhere [32], the circular edge operator 
has a better (from the accuracy point of view) perfor- 
mance than the linear edge operator. The average devia- 
tion and the standard deviation of the circular-arc edge 
points from the elliptical fit (0.136 and 0.174 respectively) 
are almost three times less than those detected by the 
linear edge operator. This is expected due to the nature of 
the boundary approximation within the detection circle. 

4. PARAMETER ESTIMATION OF QUADRATIC CURVES 

As was indicated earlier, a circle and its image (an 
ellipse) are the most common quadratic curves in ma- 
chine vision. Thus, in the following sections, parameter 
estimation of an elliptical shape is discussed, though, the 
overall methodology is applicable to other quadratic 
curves as well. 
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4.1. Problem Statement 

As noted earlier, the need for the accurate estimation 
of the basic parameters of an elliptical shape arises in 
various machine-vision-related situations. In this section, 
we briefly review techniques which have been proposed 
by various research groups, and formulate the problem to 
be addressed. 

One method for dealing with the elliptical-estimation 
problem is based on the use of optimization techniques. 
From a purely mathematical point of view, the problem 
of fitting a conic or a conic section to a set of data has 
been addressed in various papers 16, 71. The same prob- 
lem is also addressed in the applied literature: in dentis- 
try, for the estimation of dental arch form [9]; in biology, 
for automatic chromosome analysis [lo]; in the quality 
control of manufactured parts, for the estimation of an 
arc center and its radius [ll-121; in vision-based assem- 
bly, for polygonal and elliptical approximation of me- 
chanical parts 1441; in object recognition, for detecting 
cylindrical parts and their orientation [19]; and, in pattern 
recognition and scene analysis, for the reconstruction 
problem [S, 81. 

Other methods for dealing with the same problem have 
been investigated: using the Hough transformation for 
detection of curves (e.g., circles) [45]; using a modified 
Hough transformation for detecting ellipses [46]; decom- 
posing the five-dimensional Hough transformation space 
into three sub-spaces based on the edge-vector-field 
properties of ellipses [47]; and estimating the parameters 
of an ellipse by combining transformation, projection, 
and optimum approximation techniques [3]. 

Most of the papers referred to above are concerned 
more with ellipse detection, while providing only a rough 
estimate of parameters. So, generally speaking, accuracy 
is not an important aspect in their development. Even 
those who actually seek accurate estimation of ellipse 
parameters confine themselves to finding the “best” fit to 
a final set of data points. As we have already shown in 
Section 2, for accurate estimation of the parameters, one 
must consider other factors as well, 

It is important to emphasize that the quality of input 
data has a major impact on the accuracy of parameter 
estimation. No matter how good the fit may be, when the 
accuracy of input data is low, accurate estimation of pa- 
rameters is not possible (the poisoned-point problem). 
The problem is one of quantization error (in both the 
light-intensity and spatial domains). This important fac- 
tors has been addressed in a number of studies [27, 291. 
Subpixel edge detection is closely related to this data- 
accuracy problem and was addressed in Section 3. 

In this section, it will be assumed that the input data 
have a high degree of accuracy, as if obtained through 
subpixel edge detection and following the removal of 
quantization error. This assumption leads to the follow- 

ing definition of the problem to be solved: “Given a set of 
2D-image coordinates of edge points of an elliptical 
shape, it is required to determine the best ellipse fitting 
those points and subsequently estimate its five basic pa- 
rameters: location, (X0, YO) (ellipse center), orientation, 
@A (the angle between the major axis of the ellipse and 
the X-axis of the computer-image frame), and shape, A, B 
(major and minor radii).” 

4.2. Parameter Estimation 

There are several different methods for the solution of 
this problem, depending on the number of parameters 
that must be estimated, their expected level of accuracy, 
and the acceptable computational cost. In this paper, we 
present three different methods, the experimental data 
obtained for each, and a discussion on their comparative 
performance. 

Estimation of the five parameters of an ellipse based on 
a set of 2D coordinates can be achieved by defining an 
error function and then minimizing it. However, the ac- 
curacy and cost of the estimation process depend on the 
geometrical nature of the error function, whether this 
function is linear or non-linear, as well as on its form. 

4.2.1. The Error Function JI and Its 
Geometrical Nature 

Let 

Q(X,Y)=uX2+bXY+cY2+dX+eY+f=0 

(4.1) 

be the general equation of an ellipse. Let 

(Xi, Yi) i= l,N (4.2) 

be a set of points to be fitted to an elliptical shape. Then, 
if one considers the value of Q(X, Y) at a given point (Xi, 
Yi), the quantity Q(Xi, YJ vanishes if the point is on the 
ellipse, it is negative if the point is inside, and it is posi- 
tive if the point is outside the ellipse. Accordingly, one 
technique for fitting an elliptical shape to a given set of N 
points would be to use the minimum-squares error crite- 
rion which minimizes the error function 

Jo = 5 [QtX, yi>12. (4.3) 
i=l 

Thus, the objective is to determine a parameter vector 
WT = (a, b, c, d, e,f). Although, this error function has 
been used by different researchers, each of whom has 
used different constraints and solution methods, most 
have not discussed the geometrical nature of the optimi- 
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zation process based on it. An exception is Cooper and 
Yalabik [8] who considered this aspect of the problem for 
an elliptical shape while assumingfto be equal to - 1. As 
well, later, Bookstein [7] discussed it for the general case 
(Eq. 4.1) and showed the geometry of error-of-fit for all 
conic sections. With reference to Fig. 8, he has proved 
that 

QWi, Yi) cx [$($+ 2)]? (4.4) 

where (dJd!> is the ratio of the distances (PiPi) and 
(O’PI), Pi is an edge point, 0’ is the center of the optimal 
ellipse, and Pi is a boundary point of the optimal ellipse 
along the ray PiO’. Since di is a maximum in the direction 
of the ellipse’s major axis, and a minimum in the direc- 
tion of the ellipse’s minor axis, it can be seen that if two 
data points are equidistant from the ellipse, with one ly- 
ing along the major axis and the other along the minor 
axis, then, the contribution to (4.3) of the data point lying 
along the minor axis will be greater. 

In this paper, we analyze a solution method [5] which 
is based on the constraint f = 1 (implying normalization 
with respect tof), for which Eq. (4.1) becomes 

Q(X, Y) = aX2 + bXY + cY2 + dX + eY + 1. (4.5) 

Using the minimum-squares error criterion, the error 
function is then defined as 

Jl = i [Q(Xi, Y,>lj=,. (4.6) 
i=l 

This method leads to a set of linear equations, for 
which the optimization process is non-iterative and there- 
fore computationally fast. However, due to the geometri- 
cal nature of the error function, the contribution of data 
points is not uniform, a fact which affects the accuracy of 
the parameter estimates. 

YA 

yt P,’ Pi 

X 

FIG. 9. The area difference of two concentric ellipses. 

4.2.2. A New Geometrical Znterpretation for JI 

Although researchers mentioned above [7, 81 have dis- 
cussed the geometrical nature of the MSE function for 
quadratic curves and Cooper and Yalabik [8] have even 
indicated the non-uniformity of the contribution of the 
data points to the MSE function, they did not suggest any 
solution for the problem this produces. Thus, it is of in- 
terest to define an error function such that the contribu- 
tion of the data points to the error function would be 
uniform. In order to achieve this, one must attempt first 
to clarify the geometrical nature of the error function J, 
defined in (4.6), and then to normalize the contributions 
of data points to it. 

Let (Xi, Yi)(i = 1, N) be a set of data points, and let the 
optimal parameters of the ellipse be (A, B, 0, X0, Yo). 
Furthermore, let (A’, B’, 0, X0, Y,) be the parameters of 
the ellipse that passes through the data point (Xi, Yi). The 
two ellipses are concentric and have the same eccentric- 
ity and the same orientation (Fig. 9). An error can be now 
defined as the difference between the areas of two el- 
lipses, 

ei=S-S! 
I. (4.7) 

In order to calculate Sl, first consider a line that passes 
through a data point Pi(Xi, Yi) and the center O’(Xo, Yo); 
the intersection point of this line with the optimal ellipse 
is P,!(X(, Yi). By defining di = P,!O’, df = PiO’, and 6i = df 
- di, the following relation can be derived, based on the 
similarity of two ellipses: 

ei = r(AB) (1 - $)a 
1 

(4.8) 

Using the definition of 6i, (4.8) can be re-written in the 
form 

Ol X 

FIG. 8. Distances di and di of an ellipse. 
ei = m(AB) [2 ($f + 2)]. (4.9) 
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Comparison of the two relations, (4.4) and (4.9), shows 
that they both represent the same geometrical quantity. 
To further clarify this issue, an explicit expression for the 
term (1 - d!2/df) in (4.8) can be derived as 

d;’ 

l-z=*- 

[(Xi - Xo)COS 0 + (Yf - YO)sin 01’ 
A2 

_ [-(Xl - X,)sin 0 + ( Yi - YO)cos @I2 
B2 3 

(4.10) 

where (Xi, Yi) are the coordinates of point PI. The ex- 
pression on the right hand side of (4. f 0) is the equation of 
an ellipse when written explicitly in terms of its five pa- 
rameters. This expression can be written in the form that 
was given in (4.1) as 

1 - $ = -(uX~ + bXi Yi + cY~ + dXi + eYi + f), 
I 

(4.11) 

where 

a = (A2 sin2 0 + B2 cos2 O)lA2B2 

b = 2(B2 - A2)sin 0 cos O/A2B2 

c = (A2 cos2 0 + B2 sin2 O)lA2B2 

d = -2 (ax, + ; Y,,) 

e=-2 pXo+cYo i ! 

f = (ax; + bX,,YO + cY; - 1). 

Thus, one can conclude that if the constant term in the 
equation of an ellipse is normalized so that it is equal to 
F, defined as 

F = (aXi + bXOYO + cY; - I), (4.12) 

the expression for the error defined by (4.8) can be writ- 
ten as 

ei = -rW)[Q(Xi, Y,)l+,, (4.13) 

where Q(Xi, Yi) is the equation of an ellipse, in which the 
constant term is normalized with respect to F. 

Based on (4.13), one can define an error function as 

J2 = 2 [& (S - sr,]’ = 2 [&I’ 

The comparison of J2 with J1 defined by (4.6) shows that 
the only difference between the two is that in J,, f = 1, 
while in J2, f = F, which is just a constant multiplication 
factor. Thus, one can conclude that the two error func- 
tions are equivalent. However, in the process of deriving 
an expression for J2, a new and clearer geometrical inter- 
pretation of the error function J1 is obtained. In fact, it 
has been shown that the optimization of this error func- 
tion minimizes the error generated due to the difference 
in urea as defined in (4.7). Based on this new interpreta- 
tion of the error function, we can define a new error 
function with improved performance. 

4.2.3. An Improved Error Function J3 

In order to improve the performance of the optimiza- 
tion based on the error function J,, the contribution of 
each data point to the error function should be normal- 
ized. This can be achieved by defining a weighting factor 
which is a function of the position of an individual data 
point. Let 6i be the distance of a particular data point to 
the optimal ellipse (PiPI in Fig. 9). Then the amount of 
error due to this data point is 

el = rrAB 

If this point, with the same 6i, was on the major axis of 
the optimal ellipse, the error would be 

e2 = TAB (4.16) 

Using (4.15) and (4.16), the following weighting factor 
can be defined for a data point (Xi, Yi) 

(4.17) 

As 6i is normally much smaller than di or A, (4.17) can be 
approximated as 

Based on the weighting factor defined above, the pro- 
posed new error function is defined as follows: 

J3 = g [wi& (S - Si)]’ = f. [WiQ(Xi, Y,)]&,* 
i=l 

(4.19) 

Or, if we use the constraint f = 1, 

J3 = 2 [WiQ(xi, ui>l;El- (4.20) 
i=l 
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In order to avoid an iterative process, the coefficient wi 
must be first estimated for each data point. To achieve 
this, one must have an initial “optimal” ellipse from 
which & and di can be estimated for each data point. For 
this purpose, the error function Jr can be used. Thereaf- 
ter, the optimization (minimization) of the error function 
J3 would proceed by taking the first derivatives with re- 
spect to the five unknowns (a, b, c, d, and e) to yield a set 
of five linear equations with five unknowns, the solution 
of which is the vector WT = (a, b, c, d, e). The five 
parameters of the final optimal ellipse can then be esti- 
mated using the equations 

x 
0 

= 2cd - be 
b2 - 4ac ’ 

y = 2ae - bd 
’ b2 - 4ac ’ 

OA = atan 
(c - a) + k’(c - a)* + b2 

b 

A2 = [‘,i’--z;] [(c + a) + v(c - a)2 + b21, 

21 - F,> 
‘* = Lb2 - 4ac I 

where 

[ (c + a) - k’(c - a>2 + b21, (4.21) 

bde - ae2 - cd2 
F, = 

b2 - 4ac . 

4.3. Error Function Jq 

Another existing error function, based on distance 
measurements, which has been claimed to have a better 
performance than J,, is briefly reviewed in this section for 
its comparison with the newly proposed J3 function. Na- 
kagawa and Rosenfeld [44] proposed the distance mea- 
sure 

(4.22) 

where di is the distance Pip: as defined in Fig. 9 for the 
data point (Xi, Yi). 

As can be deduced, the error function is non-linear; 
thus the optimization process must be iterative. More- 
over, the form of the error function 54 is such that, in 
each iteration for its estimation, the contribution of each 
individual data point must be evaluated separately. As a 
result, the optimization process based on the J4 error 
function can be very costly. 

A final point that should be mentioned here is con- 
cerned with the idea of defining an error function based 
on the normal distance of a data point to an ellipse. This 
is a special case of a more general problem which is re- 
ferred to as “function fitting based on minimization of 
neroendicular deviations.” There is no general algorithm 

for this type of problem [6]. Though, as defined, it would 
yield a best fit, this error function is highly involved, 
complex, and computationally expensive. The reason is 
the non-linearity of its error function and the correspond- 
ing requirement for an iterative process of optimization. 
More importantly, in each iteration for every single 
point, a fourth-order equation has to be solved in order to 
find the normal distance. 

4.4. An Objective Measure for “Goodness” of Fit 

In order to carry out a comparative study of the three 
error functions J1, J3, and J4, an objective and indepen- 
dent measure of “goodness” of fit is highly desirable. In 
this section, such an objective measure is defined as “the 
sum of normal distances of all the data points to the opti- 
mal ellipse, ’ ’ and a procedure for its evaluation is pre- 
sented. 

This measure can be obtained following the optimiza- 
tion process of each error function. However, first, the 
coordinates of the intersection point of a normal line 
which passes through a particular data point and the opti- 
mal ellipse must be determined. 

Thus, the initial problem can be defined as follows: 
Given a point (Xi, Yi) and an ellipse with parameters (A, 
B, 0, X0, Yo), find the normal line to the ellipse which 
passes through point (Xi, Yi). In order to simplify the 
estimation process and obtain more manageable equa- 
tions, a transformation consisting of a translation and 
then a rotation will be applied to all the data points and 
the optimal ellipse, as follows: 

Xi] = Xi - X0 

Yil = Yi - Y() 

Xi.9 = Xi1 COS 0 + Yil sin 0 

Yi, = -Xi, sin 0 + Yir COS 0. (4.23) 

Following this, the transformed equation of the optimal 
ellipse can be written in the following form: 

(4.24) 

Let P(Xi, Yi) be a data point, PP” be the normal to the 
ellipse (Fig. IO), and the coordinates of point P” be (Xy, 
Yy). Thus, if ml is the slope of the tangent line at point P”, 
and m2 is the slope of line PP”, then one of the constraints 
on the coordinates of point P” is: 

rnlrn2 = -1. (4.25) 

It can be shown that the first constraint on point P” can be 
expressed as follows (using 4.25)): 

(4.26) 
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FIG. 10. Normal and “central” lines to an ellipse. 

The second constraint on point P" is that it must satisfy 
the equation of the optimal ellipse, i.e., 

X!‘2 y:” 
$+3=1. (4.27) 

From (4.26), an expression for Yy can be determined. 
Substituting this expression into (4.27) and simplifying it, 
a quartic equation is obtained, 

Xy4 + QX:~~ + a2Xy2 + a3X: + a4 = 0, (4.28) 

where 

Ul = [2Az (1 - $1 X;l/U5 

+cxz u5 B2 ' I/ 

U4 = [-($1 xqz5 

a5 = [B2(l - $r]. 

Equation (4.28) can have a maximum of four real solu- 
tions, corresponding to which there would be at most 
four points satisfying the two constraints. Correspond- 
ingly, it can be shown that a data point (Xi, YJ can have 
either two or four normals to an ellipse. Furthermore, it 
can be shown that one of the normals yields the minimum 
distance to an ellipse, and this normal is the one that we 
want to determine. To solve equation (4.28) the method 
of solution of a quartic equation based on the resolvent 
cubic equation can be employed [48]. 

Once the coordinates of point P" have been estimated 

for all data points, Si = PP" can be calculated for each 
point. The “goodness” measure is then defined as 

G = 2 Sf, 
i=l 

(4.29) 

where an error function that yields a smaller value for G 
is a better fit. 

4.5. The Comparative Performance of Error Function .J3 

In this section we present just the results of the overall 
performance comparison without giving the details of the 
experimental data. The details of the experimental results 
obtained for various cases and the corresponding data 
analysis have been published elsewhere [49]. 

As was indicated earlier, if an error function is non- 
linear, the optimization process is generally an iterative 
one. For such a process, a “good” initial set of unknown 
parameter values can reduce the number of iterations 
substantially, and reduce the chances of reaching a local 
minimum due to the non-linearity in the optimization pro- 
cess. The use of the Ji error function is proposed for 
establishing the initial values, since Jr is linear, and the 
estimation process of the five ellipse parameters based on 
it is non-iterative. Using the results of the optimization of 
J1 as a set of initial values, the other two error functions, 
J3 and J4, can be optimized. The iterative optimization 
method used in this study is the downhill simplex method 
due to Nelder and Mead [50]. 

Two different cases were considered: a simulated el- 
lipse and an imaged ellipse. For the first case, a “per- 
fect” ellipse is generated using digitizer-board graphic 
commands, the boundary of which is digitized according 
to a mathematical procedure that minimizes the digitiza- 
tion error of a continuous boundary of an ellipse. In the 
second case, an “imperfect” ellipse image was used to 
simulate possible external distortions, such as the 
thresholding effect on a grey-level image. The shape of 
this ellipse is further distorted by its passage through the 
image-acquisition system (that is, the camera and the dig- 
itizer, for which all the distortion factors that were ear- 
lier-mentioned apply). Each case was tested under three 
different conditions: (1) all edge points were used, (2) 
sampled edge points were used-sampled in 5-pixel steps 
along the Y-axis, and (3) sampled edge points of only a 
segment (approximately one third) of the ellipse’s bound- 
ary were used. 

The experimental results showed that the performance 
of the proposed error function J3 is better in accuracy 
than the other two if all the edge points are used, as is 
often the case. However, when the number of edge 
points is reduced, or when a partial ellipse is considered, 
the total performance of J4 (indicated by the “goodness” 
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measure G) is better than that of JJ (although they are 
very close), and J3 is better than Ji. However, a general 
problem with J4 is the iterative nature of its optimization 
process, and the need for the estimation of the function 
value for each individual data point in each iteration; as a 
result, it is computationally very expensive. Thus, we 
can conclude that the new error function provides an 
acceptable trade-off between relatively high accuracy 
and relatively low computational cost. 

5. EXPERIMENTAL RESULTS 

For experimentation purposes, we have considered a 
3D location estimation problem which requires a rela- 
tively high degree of accuracy in the estimated parame- 
ters. Furthermore, this problem has been chosen due to 
its importance in machine vision. The objective in this 
experiment is to estimate accurately the 3D orientation 
and 3D position of a set of circular features. First, in 
Section 5.1, the total process that is involved (seven 
steps) is briefly summarized. Subsequently, in Section 
5.2, the experimental results of the total process are pre- 
sented. 

5.1. The Total Process Involved in 
3D Location Estimation 

Accurate estimation of the 3D location of a circular 
feature from an input grey-level image requires a set of 
processes to compensate for various types of distortion, 
as well as a general analytical solution method. In a real 
process, as opposed to a stimulated one, various sources 
of noise affect the input image and thus distort it. The 
experimental results in this section report the total pro- 
cess of accurate estimation of the 3D location of a circu- 
lar feature, which involves the application of the sequen- 
tial distortion-compensation procedure developed in this 
paper and a general 3D analytical solution method (hav- 
ing no simplifying assumptions) for circular features 
which was previously derived [51]. For completeness, a 
brief review of the steps involved in the total process is 
presented below: 

(1) Camera calibration. The camera is calibrated by 
applying the mono-view non-coplanar points technique 
[34], as a result of which the 3D location of the camera 
frame with respect to a pre-defined world frame of refer- 
ence is estimated. Furthermore, the effective focal length 
of the camera, the radial distortion factor of the camera’s 
lens, and the uncertainty scale factor for the x-axis (due 
to the timing mismatches which occur between image- 
acquisition hardware and camera scanning hardware) are 
also obtained. 

(2) Sub-pixel edge detection. After an image of a circu- 
lar feature is acquired, the new sub-pixel edge detector 
developed in this paper is applied, whose result is a set of 

sub-pixel edge-points data. The sub-pixel edge detector 
compensates for quantization error and estimates the lo- 
cal boundary of a circular feature more reliably. 

(3) Coordinate transformation. Computer-image coor- 
dinates are expressed in terms of pixel units. To define 
the edge-points in terms of units of absolute length (in 
mm), and also to compensate for timing mismatches, a 
set of transformations are applied. These are imple- 
mented by using the uncertainty factor estimated in step 
(1) and technical specifications of the camera’s CCD chip 
and the digitizer board. 

(4) Lens-radial-distortion compensation. The esti- 
mated lens-radial-distortion factor in step (1) is applied to 
all edge-points to compensate for lens radial distortion. 

(5) Global interpolation and elliptical-shape-parame- 
ter estimation. The interpolation technique based on the 
optimization of the new error function developed in this 
paper is applied to accurately estimate the five basic pa- 
rameters of an ellipse-the perspective projection of a 
circle onto the image plane. 

(6) Circular-feature 3D-orientation estimation. Us- 
ing the estimated effective focal length in step (1) and 
the estimated values for the five basic parameters of 
an ellipse found in step (5), and applying the analytical 
method developed in [51], the 3D orientation of the cir- 
cular feature with respect to the camera frame is esti- 
mated. 

(7) Circular-feature 3D-position estimation. Using the 
estimated orientation of a circular feature in step (6) and 
its known radius, and applying the analytical method de- 
veloped in [5 11, the 3D position of the feature is estimated 
with respect to the camera frame. Applying the transfor- 
mation from the camera frame to the world frame of ref- 
erence, obtained in step (I), to the estimated 3D position 
of the circle yields the 3D position with respect to the 
world-reference frame. 

5.2. Experimental Results for the Total Process 

For experimentation on the total process, six co-planar 
circles arranged into two columns on the left and right 
sides of the plane were used. The plane of the circles, in 
an inclined orientation with respect to the camera image 
plane, was positioned so that the field of circles extended 
over the entire field of view. These conditions provided 
the most general camera-circular-feature configuration. 
Furthermore, in order to obtain a sharp image of all cir- 
cles, this plane was located within the approximated ex- 
isting depth-of-field of the camera [52]. 

The application of the above seven-step procedure to 
the six coplanar circles resulted in two sets of data, tabu- 
lated in Tables 1 and 2. Through camera calibration, the 
orientation angles of the normal to the circles’ plane was 
estimated. These are referred to as “Reference Angles” 
in Table 1. The estimated orientation angles of each cir- 
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TABLE 1 
Estimated Orientation Angles of the Surface Normals of a Set 

of Circular Features 

Angles a (degree) P (degree) Y (degree) 

Reference angles 89.72 76.73 13.27 
Circle #1 88.73 76.06 13.99 
Circle #2 89.61 74.99 15.01 
Circle #3 88.75 76.54 13.52 
Circle #4 89.87 76.39 13.61 
Circle #5 89.11 76.43 13.60 
Circle #6 87.46 77.93 12.34 
Average angles 88.92 76.39 13.68 
Average deviations 0.80 0.34 0.41 

Note. (Y, p, y  are the angles which the surface normal of a circle 
makes with the x, y, z axes of the camera frame, respectively. 

cle’s norm are also presented in this table. Note that 
since the circles were coplanar, they must have the same 
orientation angle. The average orientation angle is de- 
fined as the mean value of the orientation angles of the six 
circles, while the average deviation is defined as the ab- 
solute value of the difference between a reference angle 
and an average angle. The average deviations of the three 
orientation angles were determined as, 0.80, 0.34, and 
0.41 degrees, respectively. As can be seen, the results 
show only a small error indicative of the good perfor- 
mance of the total process. 

In Table 2, the results of the position-estimation pro- 
cess are presented. The coordinates, estimated with re- 
spect to the world-reference frame, are given under the 
column “Estimated.” The exact 3D coordinates of the 
circles’ centers are known a priori and are given in Table 
2 under the column “Reference.” The differences be- 
tween the reference and the estimated coordinates of all 
the circles are calculated, and the means of these values 
are given under “Average Deviations.” The results can 
be better appreciated when the size of the field of view 

(275 mm by 200 mm) and the focused distance (864 mm) 
are taken into consideration. The 1.28 mm average error 
for the depth estimation in an approximately 864 mm 
focused distance is less than 1.5 parts in 1000 average 
accuracy. As a whole, both sets of results show the valid- 
ity of the total process involved in the 3D-location esti- 
mation in general, and the applicability of the methods 
developed in this paper in particular. 

6. CONCLUSIONS 

In this paper, the problem of accurate parameter esti- 
mation of quadratic curves was addressed. It was shown 
that this depends on both an accurate global interpolation 
and compensation of major sources of errors. As a result, 
a sequential distortion-compensation procedure was for- 
mulated. Subsequently, a new sub-pixel edge detector 
was developed for accurate coordinate estimation of edge 
points from grey-level images. It was designed as a cas- 
cade of a linear-edge detector and a look-up table. Fur- 
thermore, its performance was compared to that of a lin- 
ear sub-pixel edge detector. As well, for accurate global 
interpolation purposes, an error function was derived 
based on a new geometrical interpretation of minimum- 
squares error fit of quadratic functions. Using an inde- 
pendent and objective measure for “goodness” of fit, 
developed in this paper, the performance of this error 
function was compared with the two other error func- 
tions. For experimentation on the total process involved 
in the accurate-parameter-estimation process, a 3D-loca- 
tion estimation problem was considered. The objective 
was to accurately estimate the 3D orientation and the 3D 
position of a set of circular features from a grey-level 
image. The experimental results obtained showed the va- 
lidity of the total process involved in the accurate 3D- 
location estimation in general, and the effectiveness of 
the sub-pixel edge detector and the global interpolation 
technique, both developed in this paper, in particular. 

TABLE 2 
Estimated Positions of a Set of Circular Features 

Coordinates 

x (mm) Y (mm) z (mm) 

Reference Estimated Reference Estimated Reference Estimated 

Circle #I 0.00 0.38 0.00 0.63 10.00 8.05 
Circle #2 185.00 184.78 0.00 -0.03 10.00 11.01 
Circle #3 0.00 0.24 37.00 37.27 10.00 9.31 
Circle #4 185.00 184.64 37.00 37.43 10.00 9.15 
Circle #5 0.00 0.26 74.00 74.34 10.00 8.92 
Circle #6 0.00 0.46 148.00 148.60 10.00 7.92 
Average deviations 0.32 0.38 1.28 

Note. All the coordinates are with respect to the world reference frame. 
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